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WITNESSING DIFFERENCES WITHOUT REDUNDANCIES 

FRANCO PARLAMENTO, ALBERTO POLICRITI, AND K. P. S. B. RAO 

(Communicated by Andreas R. Blass) 

ABSTRACT. We show that n - 1 elements suffice to witness the differences of 
n pairwise distinct sets, and provide sufficient conditions for an infinite family 
of pairwise distinct sets to have a minimal collection of elements witnessing 
the differences between any two of its members. 

By the Extensionality Axiom, the difference between two distinct sets a and b 
is witnessed by at least one element d such that d E a \ b or d E b \ a; in fact 
any element in the symmetric difference aAb = (a \ b) U (b \ a) witnesses such a 
difference. For that reason we say that aAb is a differentiating set for {a, b}. Since 
all the elements in aAb but one are redundant for that purpose, unless a'Ab is a 
singleton, we say that aAb is a redundant or non-minimal differentiating set for 
{a, b}, while for any d E aAb, {d} is an irredundant or minimal differentiating set 
for {a, b}. Suppose now that n pairwise distinct sets ai,. .. , an are given; how many 
elements do we need to witness their being different from each other? Equivalently, 
given a differentiating set D for {ai,... , an} , how many redundant elements 
are to be found in D ? Two extreme cases immediately come under attention. 
If a,,... ,an can be arranged into an increasing chain with respect to inclusion, 
or else if a,,... ,an are pairwise disjoint, then obviously we need exactly n - 1 
elements to witness their differences and any differentiating set for {ai, ... , an} of 
cardinality m has at least m - n + 1 redundant elements. In general it is obvious 
that we need at most (n) elements to witness the differences of n pairwise distinct 
sets a1,... ,an . However (n) is by far an excessively large bound; in this note we 
offer an extremely simple proof that n - 1 elements always suffice to witness the 
differences among n distinct sets (see Proposition 1). For an earlier proof of this 
result in the special case in which the n sets are subsets of an n-elements domain 
see [Bon72, Bol86]. 

Even from the first rough estimate, it is clear that in the case of finitely many 
pairwise distinct sets a,, ... , an , an irredundant differentiating set can be obtained 
from any finite differentiating set by suppressing one after the other the elements 
which are redundant and remain so as the procedure goes on. It is quite natural 
to enquire whether that holds also for infinite families of pairwise distinct sets. 
Any sequence of sets densely ordered with respect to inclusion readily provides an 
example of a family of pairwise distinct sets for which no minimal differentiating 
set can exist (see Proposition 2 below). However, by making an essential use of the 
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Axiom of Choice (AC), we single out two significant cases in which differences can 
be witnessed without redundancies: 

* with possibly finitely many exceptions, any two sets in the family have finite 
symmetric difference; 

* only finitely many sets in the family have a non-empty intersection with any 
given set in the family. 

Definition 1. 1. d witnesses the difference between two sets a and b if d E a 
and d f b, or else d ? a and d E b. 

2. D is a differentiating set of a family of sets {ai}iEI if for every i, j e I, if 
i :& j, then there is d E D such that d witnesses the difference between at 
and aj. 

3. If D is a differentiating set of a family {ai}iEI, then d is redundant if D\{d} 
is also a differentiating set of {ai}leI v 

4. D is redundant or non-minimal if it has a redundant element, irredundant 
or minimal otherwise. 

Proposition 1. If D is a differentiating set of a finite family 
{a,.... 

, an}, then 
there is a differentiating set Do C D of {a,, .. ., an}, such that IDol < n - 1. 

Proof. If n = 1, obviously Do = 0 has the desired property. 
Assume the stated proposition holds for n. Given a,,... , an, an+1, by inductive 

hypothesis there is a subset Do of D such that ID' I < n - 1, which is a minimal 
differentiating set for a1,... , an . 

Since Do is a differentiating set for a1,... ,an, there can be at most one k, 
1 < k < n such that: 

Do n an+1 Do n ak- = 0 

If there is no such k, then it suffices to let Do = Do . Otherwise letting ko be 
the unique such k we pick any d E D such that 

d E (an+, nFD)A(aknD), 

and let Do = D'U{d}. Do is a differentiating set for a, .. ., an+1 and IDol < n. LI 

Remark. Note that Proposition 1 is implied by the following weaker form: every 
finite family of n pairwise distinct sets has a differentiating set of cardinality less 
than n. In fact given a differentiating set D for {a,,... , an4 it suffices to apply 
this weaker form to {a, n D, ... , an n D} to establish the conclusion of Proposition 
1. The same remark will apply also to our further results. 

Clearly the previous result entails that if D is a differentiating set for {a,, . . . an 
then D contains minimal differentiating sets for {aI,... ,an } of cardinality less 
than or equal to n - 1. 

Note, however, that it is possible to have minimal differentiating sets of different 
cardinalities. For example D = {O, 1, ... I n - 1} is a minimal differentiating set 
for the family {a,,... ., a2n} of all subsets of {0, 1, ... , n - 1}; D is also a minimal 
differentiating set for {a, U {n}, a2 U {n + 1}, ... , a2n U {n + 2n - 1}} , which 
however admits also {n + 1, . , n + 2n - 1} as another minimal differentiating 
set of cardinality 2n - 1. Of course by Proposition 1 there cannot be any bigger 
minimal differentiating set for the same family. 

As mentioned, Proposition 1, for the special case in which a1, ... , an are subsets 
of {1,... , n} has been proved in [Bon72] via a graph-theoretic argument. That 
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result is reported in [Bol86], which, besides Bondy's proof, provides also a different 
proof which directly applies to yield the general result stated here. 

Turning now our attention to infinite families, we note that a minimal differen- 
tiating set does not necessarily exist. 

Proposition 2. If F is a family densely ordered with respect to C, and D is a 
differentiating set for F, then every element of D is redundant. 

Proof. Given a, b E F such that a C b, there exists a countable sequence a1, a2, ... 
F such that a C a, C a2 C ... C b. Since D is a differentiating set, for every 
n > 1, Dn (an+l \an) 0 0. Thus D n (b \ a) is infinite. The conclusion immediately 
follows. D 

Infinite sets have to appear in any family which has no minimal differentiating 
set: that is among the consequences of the next proposition. 

Proposition 3. If D is a differentiating set for a family {ai}liE such that for i 
and j in I, i 7& j, the symmetric difference (ai n D)A(aj n D) is finite, then D 
includes a minimal differentiating set for {ai}iEI I 

Proof. Let D be the set of differentiating sets for {ai}i which are contained in 
D. Let C be a descending chain, with respect to inclusion, of elements in . 
Every C E C has a non-empty intersection with the symmetric difference of any 
pair of distinct elements in {ai}iEI . Moreover, since such symmetric differences 
are all finite, the same holds also for nCEC c which therefore belongs to D . 
An application of Zorn Lemma guarantees the existence of a minimal element in 
D. D 

Corollary 1. Every family of pairwise distinct finite sets has an irredundant dif- 
ferentiating set. 

Infinitely many infinite sets are necessarily present in any family of pairwise dis- 
tinct sets lacking an irredundant differentiating set; that is among the consequences 
of the following strengthening of Proposition 3. 

Proposition 4. If D is a differentiating set for a family F= =Fo U {a,,... , an} 
such that for all a and b in Fo, (anD)A(bnD) is finite, then D includes an 
irredundant differentiating set for F. 

Proof. By induction on n. We distinguish two cases: 
Case 1): There exists D' C D, differentiating set for Fo , such that for some 

1 < i < n, ai n D' has a finite symmetric difference with b n D' for some-and 
hence for all-b E F0. Pick any such ai and let F'0 = F0 U {ai} . Obviously, 

F= F'o U ({a,,... ,an} \ {ai}). 

Using the same argument of the proof of Proposition 1, it follows that by adding 
to D' at most n elements in D, we obtain a differentiating set D" C D for 
F. Hence we can apply the inductive hypothesis to conclude that there exists an 
irredundant differentiating set D"' C D" C D for F. 

Case 2): Suppose the assumption of case 1 does not hold. Let X be a dif- 
ferentiating set for {ai,... ,anl . By applying Zorn's Lemma, as in the proof of 
Proposition 3, to the family of subsets Y of D such that Y U X is a differentiating 
set for Fo, we obtain a minimal subset D' of D such that D'UX is a differentiating 
set for F0a 



590 FRANCO PARLAMENTO, ALBERTO POLICRITI, AND K. P. S. B. RAO 

We claim that D' U X is also a differentiating set for F. The only non-trivial 
point to verify is that two elements ai E {ai,... , an}, and b E F are differentiated 
by D' U X. Indeed, by the case hypothesis, for every ai E {a,, ... , an7}, and every 
b E F the symmetric difference ai n (D' U X) Ab n (D' U X) is infinite. 

While the elements in D' are certainly not redundant, some of the elements in 
X could be so. However, since X is finite, it suffices to remove the redundant 
elements of X to obtain a minimal differentiating set for F. E 

Remark. Given a family of finite sets F = {ai}EI, in ZF, F can be transformed 
into F/ = {bi}iEi where bi = {(xai) x E ai} . The elements of F' are finite 
and pairwise distinct, hence by Corollary 1, PF has an irredundant differentiating 
set. Using such a set, since the elements of F' are in fact pairwise disjoint, it is 
quite straightforward to obtain, in ZF, a choice function for the original family F. 
Therefore Proposition 3 entails, in ZF, the axiom of choice for families of finite 
sets. 

We do not know whether this principle, which is weaker than AC, suffices to 
establish in ZF Proposition 3. 

The proofs given for Proposition 3 make use of Zorn's Lemma on a family of 
subsets of D. We can provide different proofs for Propositions 3 and 4 of a more 
constructive character, which only assume that the given differentiating set D can 
be well ordered. As a consequence no form of the axiom of choice is required when 
D is a countable set. 

Proposition 5. If D is a well ordered differentiating set for a family F such that 
for all a and b in Fo, (a n D)A(b n D) is finite, then D includes an irredundant 
differentiating set for F. 

Proof. Let {do, d1, . . . , da,... } be a well ordering of D. 
Let 
* DO=D; 
* D+' = D' \ {d6} where 6 is the least ordinal s.t. d6 is redundant (for F) in 

D'; if there is no redundant element in D', then D+1 = D'; 
* DA= rag, D' for A a limit ordinal. 

Since the Da's are decreasing with respect to inclusion, there is a (least) ordinal 
ao s.t. 

D- = Da?+1. 

Clearly D'o has no redundant element. Furthermore for every a, D' is a differ- 
entiating set; in particular D'O is a minimal differentiating set for F. In fact Do 
is a differentiating set by hypothesis and if D' is a differentiating set for F, then 
D'+' is a differentiating set for F as well. Furthermore, due to the finiteness of 
(aAb)nD for all a, b E F, if for all a < A, (aAb)nD' : 0, then (aAb)nDA - 0. E 

Proposition 6. If D is a well ordered differentiating set for a family F = Fo U 
{ai,... ,aI} such that for all a and b in Fo, (anD)A(bnD) is finite, then D 
includes an irredundant differentiating set for F. 

Proof. Let {do, d1, . . . , da, .... } be a well ordering of D. Since D is, in particular, 
a differentiating set for Fo, as in Proposition 5 we can determine a minimal dif- 
ferentiating set Do C D for Fo. If Do is a differentiating set for F, we are done. 
Otherwise by the argument used in the proof of Proposition 1 there is a subset Co 
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of D \ Do having at most n elements, such that Do U Co is a differentiating set for 
.F. However, Do U Co need not be minimal since the presence of elements in Co can 
make redundant some of the elements in Do. 

Let 

* Do = Do; 
* Da+1 = Da \ {d6} where 6 is the least ordinal such that d6 E Da and is 

redundant (for TF) in Da U Co; if no such ordinal exists, DO+1 = Do; 
* DA = nf<a, Da for A a limit ordinal; 

and let a0 be the least ordinal such that D`? = D'o+l. 
D`0 has no redundant element in Do? U Co. Furthermore no element in Co can 

be redundant in D"0 U Co, since the elements of Co were not redundant in Do U Co 
to start with. However D'O U Co need not be a differentiating set for Y. 

If a, c E F and a n (D`0 U Co) = c n (D`0 U Co) then (aAc) n (Do \ D'O) must 
be infinite. For, otherwise, for some a < o 

(aAc) n (Do U Co) C Do \ D`+ 

and 

(aAc) n (Do U Co) ' Do \ Do. 

This means that D'+1 is obtained from Da by taking away from Da an element 
which is not redundant, since it is the only element which witnesses the difference 
between a and c in Dog contrary to the definition of Do+l. Obviously, from the 
fact that (aAc) n (Do \ D'O) is infinite it follows that (aAc) n Do is infinite, so that 
a and c cannot be both in F0. Hence D'O U Co is a (minimal) differentiating set 
for Fo. By adding a set Ci of at most n elements to DaO U Co we can obtain a 
differentiating set for F. If D"0 U Co U Ci is minimal we are done, otherwise we 
repeat the procedure leading from Do to Do?, starting with Di = D'O U Co. We 
claim that after finitely many steps we obtain a minimal differentiating set for F. 
This follows from the fact that, if a E {al,.. ., an} and a n Di = c n Di for some i, 
then either 

i) cE {aa,,. .., an} and a n Dj =A c n Dj for any j > i, or 
ii) c E.Fo and anDj 7 bfnDj for j > i and b EFo. 

As for i) notice that if a n Di = c n Di, then (aAc) n Dk is finite for any k > i, 
in particular this holds for k = j -1, from which it follows that a n Dj 7& c n Dj. 

As for ii), if for j > i there were b E .Fo\{c} such that a n Dj = b n Dj, then 
(aAb) n Dj-1 would be infinite. Since a n Di = c n Di and Dj-1\Di is finite, it 
would follow that (bAc) n Di is finite, contradicting b, c E To. [D 

The full fledged Axiom of Choice AC is certainly needed to prove the following 
result, which provides another sufficient condition for a family of pairwise distinct 
objects to have an irredundant differentiating set. 

Proposition 7. If D is a differentiating set of a family F such that for all a E F 
there are only finitely many b's in F such that a n b n D $ 0, then D includes 
an irredundant differentiating set of F. 

Proof. Given x E D let 

Ax= {a E I x E a}, 
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and let 

Bx= {bE F xCb A brnnAX 0}. 

From the assumption on F it follows that both Ax and Bx are finite. Moreover, 
let 

ax= (Ax) \ (U B) 
Clearly if ax =$ ay, then ax n ay = 0, for every x E D, 

xEaE.F iff ax Cfa, 

and only finitely many pairwise distinct ax's are included in any given element of 
F. 

For a E F let a = {ax : x E a} and let YF = {a I a E F}j. Since F is a family 
of finite sets, by Corollary 1 it has a minimal differentiating set D. The image of 
any choice function for D is a minimal differentiating set for F. E 

The previous proof shows how the problem of determining a minimal differen- 
tiating set for a given family F can be reduced, by using the Axiom of Choice, to 
the problem of determining a minimal differentiating set for the family F whose 
elements are the quotients of the sets in F with respect to the equivalence relation 

defined as follows: 

x any iff Va E F(x E a -+y b). 

As for Proposition 3 and Proposition 4 we provide a more constructive proof 
also for Proposition 7. We first sketch a proof, using the countable axiom of choice, 
under the assumption that the given family of sets is countable and then point out 
how AC permits the reduction of the general case to this special one (see Corollary 
2 below). 

Proposition 8. If D is a differentiating set of a countable family F such that 
Va E F there are only finitely many b's in F such that a n b n D + 0, then D 
includes an irredundant differentiating set of FF. 

Proof. (Sketch) Let F = {aiiE be a countable family of pairwise distinct sets 
with ao = 0. 

Let Do = 0. Assuming Dn has been defined and is a minimal differentiating set 
for {ao,.. ., an, there is at most one k such that 0 < k < n and an+, n Dn = 
ak n Dn. If there is no such k, then we let Dn+l = Dn. Otherwise Dn+1 is obtained 
by first adding to Dn an element of D in an+1 \ ak, if that is possible, or else 
an element of D in ak \ an+1, and then removing the redundant elements until a 
minimal differentiating set for {ao, ... , an+1} is obtained. 

For every k E w let 
* fk=min{j I Vi > j(ainak=0)}, 
* Fk=min{j|Vi>jVh <fk (ai n ah = 0)}. 

Then it follows that 

1. Vi>j>Fk (aknDi c akn Di), 
2. Vi > k (akn Di 7& 0), 
3. DW = {d E D : 3kVi > Fk d E ak n D } is a minimal differentiating set for 

F. 
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Finally, the assumption that ao = 0 can be discharged passing to the family F' = 
r U {0}. E 

Corollary 2. If D is a differentiating set of a family .F such that for all a E F 
there are only finitely many b 's in F such that a n b n D :& 0, then D includes 
an irredundant differentiating set of F. 

Proof. For a, b E F, let a 0o b if there is a finite sequence of sets ao, . . . , an such that 
ao = a, an = b and for 0 < i < n, ainai+1 + 0. Clearly -0 is an equivalence relation 
and, because of the assumption on F, only countably many members of F belong 
to the same equivalence class. Proposition 8 ensures the existence of a minimal 
differentiating set for every such class, and using AC we can pick one of them. The 
union of the minimal differentiating sets chosen is a minimal differentiating set for 
.F. L 

Remark. Since any family of sets of pairwise disjoint sets trivially fulfills the condi- 
tion in Corollary 2, the same argument given in the remark following Proposition 
4 shows that full AC is a consequence of Corollary 2. Therefore Corollary 2 is 
equivalent to AC, over ZF. 

The above results are by no means limited to the case in which one is dealing 
with sets and the membership relation; they apply to all those ways in which the 
difference between distinct objects is witnessed through a binary relation which 
may or may not hold between elements of a possibly different kind and the given 
ones. For example, if we look at the (supposedly) distinct columns of an m x n, 
(0,1) -entries matrix, since the difference between two columns is witnessed by one 
row at least, we have a lower bound on the number of rows that can be suppressed 
still leaving a matrix with distinct columns, namely m - n + 1 . Similarly an 
w x w (0,1) matrix with distinct columns such that every column has only finitely 
many l's, admits a minimal submatrix, obtained from it by suppressing rows (if 
necessary), still having different columns. 

We can also state some relations with minimal covers: given a family F = {ai }iEI 
and a set D, if for d E D we let C(d) = {(i, j) I d E aiAaja}, then it is easy to see 
that D is a differentiating set for F if and only if {C(d) I d E D} covers I x I\ A(I), 
where A(I) = {(i, i) I i E I}I. Furthermore D is an irredundant differentiating 
set for F if and only if such a cover is in fact a minimal cover. If F satisfies 
the condition of Proposition 3, then {C(d) I d E D} is a cover of I x I \ A(I) 
with the property that every infinite subfamily has an empty intersection. Every 
cover having such a property has a minimal subcover, and Proposition 3 can be 
derived from this principle. Incidentally, such a principle can be established by 
using essentially the same argument used in proving Proposition 6. Despite such 
connections, we note however that the existence of a minimal subcover of a given 
family of sets and the existence of an irredundant differentiating set for it, are in 
general unrelated. For example, since for every natural number n we have that 
n = {0, ... , n - 1}, the family N of the natural numbers is a cover of N itself, 
which has no minimal subcover, while N is an irredundant differentiating set for 
N. On the other hand the family {aq I q E Q} U {Q}, where aq = {p E Q I p < q}, 
has {Q} as a minimal subcover, but it has no irredundant differentiating set. 

We should mention that the original motivation which led to the results in this 
note came from investigations into the decision problem for the satisfiability of for- 
mulae in the language with the equality and the membership relation (see [PP92]). 
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As a matter of fact the possibility of bounding to n - 1 the number of sets 
that is necessary to add to given n distinct sets a,,... , an to make the resulting 
structure extensional over a,,... , an, greatly improves the efficiency of the decision 
procedure for (an extension of) the class MLSS (see [CF089]). 

Concerning the naturally arising question of how many successive addition of dif- 
ferentiating sets are needed to eventually obtain an extensional structure including 
the originally given sets ai,... , an, we point out that [PP88] provides an example 
of two sets w' and w" for which there is no way of completing that task in finitely 
many steps. 

It is on the ground of such an example that a way of stating the existence of 
infinite sets, which is remarkably simple from the point of view of logical complexity, 
becomes available, as shown in [PP88] and [PP90]. 
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