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Abstract 

A likelihood-based generalization of usual kernel and nearest-neighbor-type smoothing techniques and a related 
extension of the least-squares leave-one-out cross-validation are explored in a generalized regression set up. Several 
attractive features of the procedure are discussed and asymptotic properties of the resulting nonparametric function 
estimate are derived under suitable regularity conditions. Large sample performance of likelihood-based leave-one-out 
cross validation is investigated by means of certain asymptotic expansions. 

Keywords: Consistency; Fisher information; Generalized regression model; Maximum likelihood cross-validation; 
Weighted maximum likelihood 

1. Introduction 

Consider a set of independent observations (Y~, X I ), (Y~, X2) . . . . .  (Y~, Xn) and a generalized regression set 
up in which the conditional distribution of Y~ given Xi  = xi has a p.d.f./p.m.f, of the f o r m f  (Y~I 0 (xi)}. Here the 
form o f f  is known but 0 is an unknown real-valued function that happens to be the parameter of interest. 
There are plenty of examples in the literature that arise in practice and fit into this structure. Specifically, 
usual regression with Gaussian error, logistic regression, Poisson regression, inverse Gaussian regression and 
gamma regression are all special examples of such a general model. In fact, all the standard examples 
included in "generalized linear models" (see McCullagh and Nelder, 1989) can be considered to be special 
cases of the preceding generalized regression set up. Besides, the conditional distribution of Y~ given X~ = xl 
may have a known distribution with a location structure, where O(x~) will be the unknown location 
parameter. Recently several authors have extensively explored strategies for estimating 0 by constructing 
various types of nonparametric smoothers (see, e.g., Hastie and Tibshirani, 1986, 1990; O' Sullivan et al., 1986; 
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Stone, 1986; Staniswalis, 1989; Cox and O'Sullivan, 1990; Gu, 1990, 1992; etc.). Staniswalis (1989) (see also the 
"local likelihood" estimation considered by Tibshirani and Hastie, 1987; Firth et al., 1991) considered kernel 
smoothers that were constructed via a maximum-likelihood-type approach. The purpose of this note is to 
investigate certain theoretical issues that are crucial if one wants to guarantee desirable statistical properties 
of such likelihood-based nonparametric smoothers. We will derive some very general conditions on the 
model and certain weight functions (which may or may not arise from kernel functions) that ensure good 
asymptotic performance of the function estimates constructed using a weighted maximum likelihood 
approach. Also, we will try to get useful insights into the likelihood-based leave-one-out cross-validation 
technique by means of certain expansions that expose some key features of such a cross-validation strategy. 
Further, we will indicate some potential advantages in using the weighted maximum likelihood technique to 
construct nonparametric function estimates and point out some important related issues. 

2. Estimation and cross-validation based on likelihood 

From now on, we will assume that the domain of 0 is a compact subset of R d, and the support of the 
regressor X is contained in that set. Let x be in the domain of 0, and consider the estimate/),(x) defined as 

O.(x) = argmax f i  {f(Yil t)} ~.'(~) 
t i = 1  

assuming that a maximum exists, and it belongs to the range of 0. Here W.,i(x)'s are some appropriately 
chosen nonnegative weight functions satisfying Y,7= 1W.,i(x) = 1. Further, for an Xi close to x, the value of 
W~.i(x) will be large while for an Xi far away from x, the value of W,,i(x) will be small so that 0~(x) can be 
viewed as some kind of a local average based on data within a neighborhood of x. Examples of various types 
of weight functions constructed using different kernel functions can be found in Nadarya (1964), Watson 
(1964), Priestley and Chao (1972), Gasser and Muller (1979, 1984), Cheng and Lin (1981), Eubank (1988), etc. 
On the other hand, the weight functions may arise from nearest-neighbor-type local averaging also, and there 
a certain number of nearest neighbors of x among the data points get positive weights, and other distant 
neighbors are assigned zero weight. 

For a fixed value of y, the funct ionf(y  [ t) will be assumed to be differentiable with respect to t for all t e J, 
where J is an open interval containing the range of the real-valued function 0. As a consequence of this 
smoothness assumption, the estimate O,(x) can be computed by solving the weighted maximum likelihood 
equation 

£ f'{Y~lO.(x)} W.,,(x) = O. (2.1) 

H e r e f ' ( y l  t) denotes the derivative of f with respect to t. Interestingly, for a large class of models used in 
practice (e.g. logistic regression model, Poisson regression model, gamma regression model, usual regression 
with Gaussian error, etc.), it is possible to solve (2.1) explicitly to obtain a closed-form expression for 0,(x). It 
will be appropriate to note here that this is one of the most appealing features of this approach because 
several other approaches considered in the literature (e.g. "penalized likelihood" as in O' Sullivan et al., 1986; 
Cox and O'Sullivan, 1990; Gu, 1990, 1992; or "local scoring" as in Hastie and Tibshirani, 1986, 1990) do not 
possess this attractive simplicity, and their implementation will typically require complex and iterative 
computation. Further, when the regressor is multidimensional, the "penalized likelihood" procedure be- 
comes seriously problematic due to numerical and analytic complexities associated with the problem as well 
as lack of simple extension of splines in multidimension. The weighted maximum likelihood approach is 
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completely free from such problems as the fundamental idea lying at the root of it remains unaffected whether 
one has to deal with univariate or multivariate regressors. 

In practice, there will be a smoothing parameter intrinsically associated with the weight functions W~,i's 
(1 ~< i ~< n), and its choice will influence the performance of 0~ as an estimate of 0. To be more specific, for 
weight functions arising from a kernel function, the smoothing parameter is the bandwidth while in the case 
of nearest-neighbor-type estimation, it is the number of nearest neighbors used. Whatever the case may be, 
we will denote the smoothing parameter by h,, and a brief description of an adaptive data-based procedure 
for choosing h, using a likelihood-based leave-one-out cross-validation follows. Such a procedure for 
selecting the smoothing parameter has been used by Staniswalis (1989) and Firth et al. (1991), and their 
approach generalizes the earlier least-squares leave-one-out cross-validation technique considered by Stone 
(1974), Hardle and Marron (1985a, b), etc. 

For 1 ~< i ~< n, let ff~i) be an estimate of 0 constructed using the weighted maximum likelihood technique 
applied to only n - 1 of the data points, which are (Y1, X~) .... ,(Y~-~, Xi-1),(Y~+I, Xi+~), ...,(In, X,). More 
specifically, 

/~°(x) = argmax I-I {f(Yjlt)} W~'i)x) 
t j : l<~j<~n,j#i  

and the following equation holds: 

f ' {  YJ I ff~i)(x)} W(i)tx~_ 
j:l<~j<<n,j#i f{yj[t~tnl)(x) } ,.j, , - -0 .  

. . . ( i ) ,  
Here, w,,,j s (1 ~< j ~< n, j :# i) are weight functions depending on the smoothing parameter h,, and they are 
based on X~ . . . .  , X~_ ~, X~+t, . . . ,X, .  Define a cross-validation function as 

MLCV(hn) = ~ log If{  Y~[ O~')(X,)} ], (2.2) 
i = 1  

where MLC V stands for "maximum likelihood cross-validation". Then h, will be chosen in such a way that 
MLCV(hn) is maximized. By suitably rescaling the range of the regressor (or equivalently the domain of 0), 
this maximization can be reduced to a limited numerical search if necessary. 

The methodology described here has been implemented by Staniswalis (1989) and Chaudhuri and Dewanji 
(1991) to analyze several interesting simulated as well as real data sets that include censored survival data and 
data arising from biological and psychological experiments giving rise to discrete and non-Gaussian 
continuous responses. In all the cases reported by them, this simple and convenient technique appears to 
work extremely well. In the following section, we explore large sample properties of the function estimate and 
some related asymptotic issues. 

3. Some asymptotic analysis 

We begin by introducing some regularity conditions on the mode l f (y  I t). From now on, it will be assumed 
that the support o f f (y  [ t) is the same for all t e J, and for every fixed y in that support, g(y I t) = log{f (y  I t)} is 
thrice continuously differentiable with respect to t e J. Let Y denote the random variable with p.d.f./p.m.f. 
f(Y[ t). Suppose that 
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and 

E { g ' ( Y I  t ) }  2 = - E  ~-~log{f(YI  t)} = - E { g " ( Y  I t)} = I(t), 

where I(t) is the usual Fisher information, which is assumed to be finite, positive and continuous for all t e J. 
Further, for any t ~ J, we will assume the existence of a 6 > 0 and a pair of nonnegative random variables 
KI(YI  t), K2(YI t) satisfying E{Kx(YI  0} 2 < oo and E{K2(YI t)} < ~ such that 

dd-~s22 log {f(YI s)} Ig"(YIs)l = <~ KI(YI  t) 

and 

Ig'"(YIs)l= ~Ss31Og{f(YIs)} <~ gE(YI t )  

for all s s( t  - ~, t + ~) c_ J. Clearly, these standard Cram~r-type conditions will be satisfied for all standard 
models frequently used in practice including models in exponential families. 

Next, we impose some conditions on the weight functions W~,i's that are assumed to depend only on the 
Xi's at this point. For  any x in the domain of 0, we will assume that 

~ {W~,i(x)}2--* 0 in probability as n--, oo. 
i = 1  

Also, it will be assumed that there is a sequence {6,} (random or deterministic) such that ~, > 0 for all n ~> 1, 
~ tends to zero in probability as n goes to infinity, and 

lira P r {  max ~ / ( x )  = 0} = 1. 
n--,~o l<~i<~n;IX~-xl>~, " 

Stone (1977) gave a set of sufficient conditions on weight functions for the consistency of usual nonparametric 
regression, where one tries to estimate the conditional mean. Our conditions are very closely related to his 
conditions. For  weights arising from any compactly supported suitable kernel function, it is quite easy to 
verify that both the conditions will hold whenever the bandwidth b, (say) satisfies bn ~ 0 and nb~ ~ ~ as 
n ~ ~ (here d is the dimension of x). On the other hand, for a nearest-neighbor-type approach, those two 
conditions on weight functions will hold provided that the number of nearest neighbors of x grows to infinity 
while the diameter of the set covering those neighbors tends to zero as the sample size increases. Further, it is 
straightforward to verify that those conditions can be made to satisfy by choosing the weight functions 
appropriately whenever the regressors are random with an absolutely continuous distribution having 
a density that remains bounded away from zero and infinity in a neighborhood of x. Alternatively, the 
regressors can be chosen in an appropriate deterministic way (e.g. they can be evenly distributed over 
a compact regressor space) so that both the conditions will hold. 

3.1. Main results on the behavior of tg, 

With the assumptions on the model and the weight functions in hand, we are now ready to state our first 
Theorem. 

Theorem 3.1. Suppose that the regularity conditions assumed on f (y l t) and the conditions imposed on W~.i's 
(1 <. i ~ n) at the beginning of the section hold. Further, assume that O(x) is continuous in x. Then there exists 
a root On(x) of the estimating equation (2.1) (see Section 2), which will be a maximizer of our weighted likelihood 
and a consistent estimate for O(x). 
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Proof. First note that Eq. (2.1) can be restated as 

Y. g'(r~lt)W.,i(x) = o. 
i = 1  

For any fixed e > 0 that is sufficiently small, we have the Taylor expansion 

g'{ Y~I O(x) + ~} w.,~(x) 
i = 1  

= ~ o'{ r,I o(x,)} w., i(x) + ~ {O(x) + ~ - o(x,)} o"( r,I ¢,(x)} w..,(x), 
i = 1  i = 1  

where ¢i(x) lies between O(x) + ~ and O(X~). In view of the conditions imposed on f (Y l  t) and the weight 
functions, the first term in the preceding expansion has zero conditional mean given all of the Xi's (1 ~< i ~< n), 
and its conditional variance tends to zero as n tends to infinity. The continuity of 0 and the conditions 
imposed on the weight functions and 9" imply that 

- [ 

~< { max 
l <~ i <~ n; IX~ - xl <~ 6, 

10(x) - 0(x,)l  1o" { r~ I ~i(x)} I w..~(x) --, 0 
i 

in probability as n ~ or. 

On the other hand, we can write 

~o"{Y,I ~,(x)} rv..,(x) = ~" ~[o"{Y~lO(X,)} + / {o(x , ) } ]  w..,(x) 
i = 1  i = 1  

-- ~ I{O(X,)} W~,,(x) + ~ e{¢,(x)-O(X,)}O"'{r,l~,,(x)}W.,,(x), 
i = 1  i = 1  

where ~ki(x) lies between O(Xi) and ~i(x). It is straightforward to verify using the conditions imposed on g" 
and the weight functions that the first term on the right-hand side of the above equation tends to zero in 
probability as n tends to infinity. Also, since I has been assumed to be a continuous and positive function, the 
sum Y~'= 1 I{O(Xi)} W.,i(x) must remain positive and bounded away from zero in probability as n tends to 
infinity. Finally, the assumptions made on g'" imply that 

[ 
~< I max 

1 <~ i<~ n;IX~-  xl <~ 6. 
I¢,(x) - 0(X,)l} ,=,~ Iv'"{ Y~I ¢,(x)} I w..,(x) --, 0 in probability as n--* or. 

Combining all of these observations, we now have 

n - ~  eJ° i = 1  
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Arguing along the same line via Taylor expansion of ~7= 1 9'{ Y/I 0(x) - e} IV.,i(x), one can show that 

lim P r [  ~ 9 ' { Y i l O ( x ) - e } W , , i ( x ) > O l =  1. 
n ~ ° O  i = 1  

Therefore, as n tends to infinity, Eq. (2.1) will have a root lying between O ( x ) -  e and O(x)+ e with 
probability tending to one as the sample size grows to infinity. Since this is true for any given e > 0, the 
Theorem is now established. [] 

Our preceding Theorem guarantees the existence of at least one solution of (2.1) that is consistent. In some 
situations, Eq. (2.1) may have multiple roots (e.g. when our weighted likelihood has multiple maxima). 
However, for models that belong to exponential families, the log-concavity of the weighted likelihood in large 
samples guarantees unique solution of (2.1). From now on, we will assume that O,(x) is a consistent solution 
of (2.1). Then we have the following simple Taylor expansion: 

~. o'{ Y,I o (x , ) }  w..,(x) = ~ {o(x , )  - O.(x)}o"{ Y,I n,(x)} w..,(x). 
i = 1  i = 1  

where rh(X) lies between O(Xi) and 0,(x). Assuming that (see (a) in the proof of Theorem 3.2 that follows) 
Y,~'= 1 g"{ Yil qi(x)} W,,i(x) 4= O, we can rewrite the preceding equation as 

O.(x)- 0(x)= 
E7=1 {o(x,)  - O(x)} o"{ ~1 n,(x)} w~.,(x) 

27=1 g"{ Y~ I n,(x)} w.,,(x) 
.Y_.,7=, o'{ Y,I o(xo} w..,(x) 
27=1 O"{Y~I ~/,(x)} W.,,(x) " 

Let us denote the first term in the above decomposition by B,(x)  and the second term by V.(x). In view of the 
arguments used in the proof of Theorem 3.1, it is now obvious that B.(x)  converges to zero in probability as 
n tends to infinity whenever our previous conditions on the model and the weight functions hold. In fact, the 
asymptotic behavior of B.(x)  depends mainly on the behavior of 0 in a neighborhood of x, and we have 
assumed 0 to be a continuous function in the statement of Theorem 3.1. On the other hand, we have the 
following Theorem that describes the limiting behavior of V,(x). 

Theorem 3.2. Suppose that all the conditions assumed in Theorem 3.1 hold, and we have 

max1 <~ i <~ n W~,i(x) 

[y:7=1 { w..i(x)}~] '~ 0 in probability as n ~  ~ .  

Assume further  that there is a p > 0 such that supe~ j E { #'(Y It)} 2 + p < o0, where Y is a random variable havin9 
f ( Y I  t) as the p . d f / p . m f  as before. Define {a,(x) } z = [I {0(x) } ] -1 2~'=1 { IV.,i(x)} 2, where recall that I {0(x)} is 
the Fisher information associated with the model f (y lO(x)} .  Then {tr.(x)}-lV.(x) converoes weakly to 
a standard normal random variable as n tends to infinity. 

Proof. It is easy to see that the conditions assumed in Theorem 3.1 yield the following: 

(a) The sum Y.7=, g"{ Y~lrh(X)} IV..,(x) converges to - I  {0(x)} in probability as n tends to infinity in view of 
the continuity of 0 and I, the conditions imposed on 9" and the weight functions, and some of the 
arguments used in the proof of Theorem 3.1. 
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(b) Let ct,(x) be the ratio defined as 

ZT:, 
= t{0(x)} E L ,  " 

Then the continuity of 0 and I together with one of the conditions assumed on the weight functions will 
imply that a.(x) tends to one in probability as n tends to infinity. 

(c) Given all of the Xi's (1 <~ i <~ n), the conditional mean of the sum of independent random variables 
Y~7= 1 9'{ Yi ] O(Xi) } IV,,i(x) is zero, and its conditional variance is y.7= , I {O(Xi) } { IV., i(x) } 2. 

The proof of the Theorem is now complete using the observations made in (a)-(c) and an application of 
Lindeberg's central limit theorem exploiting the condition on weight functions and the moment condition on 
g'(YI t) assumed in the statement of the Theorem. [] 

As already mentioned, Staniswalis (1989) investigated a kernel-based approach to estimate a function 
parameter nonparametrically using the likelihood and briefly (somewhat casually) discussed the asymptotic 
properties of constructed estimates. Such a kernel smoothing technique is a special case of the general 
weighted maximum likelihood approach considered here. However, though the approach here is very 
general, the conditions imposed to derive the asymptotic results are neither very strong nor un-natural, and 
we have tried to state the conditions in a way so that they become quite easy to comprehend, verify and 
implement in specific situations. 

3.2. Likelihood-based cross-validation." some heuristics 

So far we have investigated the asymptotic behavior of 0, by imposing conditions on the weight functions, 
which were assumed to be functions of the Xi's only without considering a data-based adaptive selection of 
the smoothing parameter. However, the practical implementation of the procedure will involve selection of 
the smoothing parameter by maximizing the cross-validation function described in (2.2) (see Section 2), and it 
is quite relevant to explore the asymptotic properties of this likelihood-based cross-validation criterion. 
Using the regularity conditions assumed on the modelf(y I t) and a second-order Taylor expansion ignoring 
the remainder term, we can write 

MLCV(h . )  = ~ log[f{Y~lO~°(X,)}] = ~ g{Y~lt?~i'(X,)} 
i = 1  i = 1  

Z o{r, lo(x,)} + Z {O: '>(x , ) -o(x , ) Io '{ r ,  lo(x,)} 
i = 1  i = 1  

+ { g T ( x , ) -  o(x,)}2g"{r, lo(x,)}. 
i = 1  

Clearly, approximating MLCV(h . )  by such an asymptotic expansion is meaningful provided that the 
estimate O~°(Xi) is close to O(Xi) for each i. The first term in this approximating expansion is completely 
free from h.. Also, since /)~i)(xi) is the leave-one-out estimate of O(Xi) based on 
(Y1, X1) .. . . .  (Y/- 1, Xi-1),  (Yi+l, Xi+l)  . . . . .  (Y~, X,,), the second term in the expansion has zero expectation, 
and the third term has expectation 

-- E [ i~_ l { O(ni)(xi) -- O(Xi) } 2 l { O(Xi) } ] 
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assuming that  all the expectations exist finitely. This indicates that  the strategy of  choosing h, by maximizing 
M L C V ( h , )  will asymptot ical ly  yield a value of  h,, which will be an approximate  minimizer of  the weighted 
sum of squares 

{O(.°(X,)-  O(Xi)  } 2 I {O(X,)  }. 
i=1  

The appearance  of  the Fisher information as the weight function in the above weighted sum of squares is 
a very desirable and no tewor thy  feature in view of Theorem 3.2. 

Brillinger (1977, 1986) ment ioned about  "condit ional  M-estimates" and Stone (1977) briefly discussed 
them in a very general and abstract  set up. It is not  difficult to observe that  our  weighted max imum 
likelihood estimates can be viewed as special cases of these "condit ional  M-estimates". However,  neither 
Brillinger (1977, 1986) nor  Stone (1977) indicated how to determine the appropr ia te  degree of  smooth ing  for 
such estimates and what  kind of  cross-validation can possibly be used. Staniswalis (1989) and Firth et al. 
(1991) used l ikelihood-based leave-one-out  cross-validation to select the smooth ing  parameter  associated 
with their kernel smoothers.  But none of  them provided any theoretical justification for using the likeli- 
hood-based  leave-one-out  cross-validation. While we have not  undertaken formal analytic investigations 
into such cross-validation in this note, the observations and heuristics presented in this section are quite 
promising and provide valuable insights. 
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