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Ahstract

TFor series syslems with & componenes 1018 assumecd that the cause of fatlure i3 known 1o belong
o of the 2° — | possible subscts of the failure-modes. The theorctizal time to fiwilene dus 1o &
causes are assuned w have independent Weibwl) diseibutions with equal shape parameters. After
finding the MLEs and the obgerved inforoation maois of {2 0 A4, 0% 2 priae disteiboion 13
promasced Do (A, o0 fe ), which 15 shawn fe vield wosgale-imsarian, noninliemative prior as well.
My panticolar slmucture a2 imposed on the pror of 8, dethods o oblyin the margingl posterior
distributions of the parameters and other parametric functions of intercat and eheir Bayesian point
and interval estimates are discussed. The developed rechnigques are illosoraed asing a nemersical
example.

Fepworas: Bories system; Lampetiog risksy Waibull disoibution:  Vasking: EM aleoricthe:
Bavesian extimitivan

1. Tnirmduction

Suppose g ountil has & cawses of failure O, Oy, Llers a undi may be o man-mude
machine or a biological syslern. a cawse ol failure may be & machme-component or
a diseaze, and fallure may mean a voofunctional state v deardi Let ¥, denoe the
theoretical time 1o failure of a woic due to Cod — Lo &, Then the real me to
failure of a wnit is given by L7 = Minimum{¥,... ¥ ], if it fails ag soon 25 one of
the canses takes place,

This paper analvzes Incomplete data that migle arise while dealing with zoch kind
ol series systems, The most commmen form of ingompletengss in ohserviations an time
1o [milore s righl-censoring, in which one observes {7 % @ The other source ol incom-
pleteness is 1he deliciency of knowledge ol the cxacl cause ol Tailure € 'Lhe literaluee
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is rich when the cause of failure £ is cxactly known, which s the wsoaal compeling
risks model, and we refer to David and Mocschberzer (1978} [or an overview aod
bibliosraphical reterences. Bul thers are sitnatons both in reliability theory and survival
analyusix in which the cause of [ailure might nor exactly be known for the failed units,

Lsher (1987) uives an example where the exact cause of failure may be unknown
in an Lngimeering application. Think of a hardware failure of a large computer systcm
in wse. In such w simaton, the ohjective being fo get the system back on line as
soon as possible, ehenever the cauze of Ffailure is narrowed down 1o a amall subset
of components, say a clronit board for example, the entire subsystem is replaced hy
4 new ore. Thus the exact failing compenent may uof be investigated any further.
(e cun suppose similar scenarios to arse while dealing with complex mechanical
{uutormbile for example} or electrical (power generator for instance) systems. Similarty
the exdel cause of death of a panent remaing unkoown withont an autopsy io biomedical
applications.

Followimg Guess et al. {1991, [or a failed unit, we define the minimum random sub-
sel (MESY as the set [C, ., 0020, L, G} of *nacrowed-down’ possible cause(s)
ol failurc.

With £ = 2, ¥ and ¥; independent sxponentials, and incomnplete knowledge of
thes cause of failure. which iz known as masking io the literanire. MLEs are provided
by Miyakaws (1984). 1le also deals with the problem nonparametrically for & = 2,
Miyakawa does nor address the Issue of censoring. Iinse (1982) gives a nonparametric
solution for an acbirary &, but in his model either the cause of failure is exactly known
or cotnpletely unknown. Le. his MRS's are confined o either the whale set {0, .., &)
or fhe singletons. Usher and Hodgzon (1988) solve the peablem of finding the MLFs
for the case of & — 3 independent exponentials with masking. There, however. they do
not dzal with censored observations. Dognaksay { 1991) extends the work of Llsher and
Hodgson (J1988) {with & = 3 indepcndent cxponentials with masking) in the direction
of fimding approximate confidence intervals of the parumeters, while Reisor et al. {1995
pravide a Bayesian analysis for £ = 3 independent exponentials. Berger und Sun {1943
render 3 Bayesiun analysis for £ independent Weibudls with unequal shape parameters,
hut they restrict themselves o the case of the cause ol failure alwiys being unknown
(MES = 4C),....C3 b

In this paper, we assuone thar we have & k-component series svatems with indepen-
dent and identically distributed Lfetine L. For a failed unit, topether with its time to
Fuilure L5 we also observe that its cause of failure belongs to a MRS [0, ... G
[C)....,Ci b while for a right-censored unit the only information we have is £ =
The asaumed theoretical madel is, the lifetime of the #h component ¥; ~ Weibulli i, ),
for £ — L.k and ¥o, ., ¥y arc independent. The analysizs in the case of unequal
shape parameters lurns oul o be quite different from the weatment given hera, In par-
ticular, the choice of the prior distribution in the present problom, which is twitively
appealing, yiclds some analytical reduction in the peslenior analysis and Lthus, although
there are r— | paramelers, one never needs Lo nomerieally integrale in mone than 1wa
dimetsions (0 compule the marginal posterior quantities of the parameters and other
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pargmetic functions of interest, while in the case of unequal shape parameters the
corputations arc done using a Gibbs sampler after an appropriate adjostiment of Theo-
rem 2.2 ol Hergor and Sun (19937, Tn Section 2, we derive the MLFs aof {4, ... 4. M
wiing the EM algomithm of Dempster ef al. {1977, and give the expressions to com-
pule the observed imformatiun matrix, This s pamanly to lay the ground waork for
the compulation of the jomt posterior modes. and fo obfain the asymptotic nooal ap-
proximation of the pestericr distribution of the parameters, For known [ the model
15 vquivalent o that of & independent exponentials and serves 1o gencralize the resylts
of Reiser el {19951 and that of Usher and Hodpson (1988), who remark That the
problem of fnding the MLE for & independent exponentials with masking and un arthi-
trary & 1% iowraclable. In Section 3, we introduce the prior disribution for (4. 4, L
A seale-mvaranl nominformative prior tor (4,0 400 i also derived, which can be
modeled by the proposed prior with some particulur chodees of the hyper-purmmeters.
Ka specitic loon i wssumed Tor the prior of §, but § and 14, 0 20 gre wsaomed
to be wdependent a priori. In Section 4, we analyvee the joint posterior distmibution ol
the pammeters and derve some ol it wselul properlics, which are hebplil in oblaining
the margingl posterionr disiibutions und the Bavesian gstimules of the paramelers amd
Lthe pavamelric funclions of intergst. The paramgtric functiems for which the marginal
puslerior distributions ure obrained are w75, 4 Fu re, and Fo-0 where = s the prob
abilily of [failure dus 1o cause O 5 — }_?'ll Ao Fi-yis Lhe syrvival funeton ol Y.,
[ E.oamd KUY i the survival fumetion of £, We illustrate the Bayosian meth-
ods 1o oblain the marginal posterior distibutians, Bayves® culimates, posterior miodes,
and highest postenior densily (abhreviated as HPD o now oy credible scts of the
paramciers and the parametric functions of intetest using o set of simulated data in
Seetion 5. Finally, we give some concluding romarks in Seclion f.

2. Likcliheod fumction

Tiest note that for 4 failed whit with the obsereed tme o lailure v oamd MRS
16 o), s contribution o the bkelibood function is given by

(e 4 1 2y ot e_""‘u,

while for a right-congored unit with &7 = o its contrbution to fhe likelilood fumstion
is u_:'“ﬂ. Lot #g. .., uy denoee the &O— v — m) observations on £/ of which s oarc
righi-censared. This notation ol wsing w lor bh 0 — w und L = . although sHehily
abusive, iz helpful for clarity.

The problem of writing the likelihood funcrion lies in the algebraic formalism of
ordaning the WRS5s, The Cuess et al, (1991 form of the likelibood function docs
not yicld o tractable fiem. Consider the problam of writing the contribution to the
likelihood funesion for units having MRS of cardinality /. f—= 1. k. Tet g, - f“ll
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For u fixed [ thete are ¢, possible subsets of {¢4...., ) These g0 possible subsels
arc ordered as follows.
Lot

i for il d=rhoggn Tl

o |1 if e MRS
0 dr e ¢ MRS

Tt W — 8y -8 “'t' denote a k-bit hinary integer. One cun associare o umique Ky

with esu.,h subset of {( Ne-vna G} of cardinality J, Now order these ¢; subsets according
ty the order wy; > - - > Kgp 50 that one can speak ol the jth subset of cardinakily
without any ambiguity.

Suppose there are @, units in the jlh subset of cardimaliiy £, F = 1,...,&. with

their observed times W failure being ¢ 7 — L. 5 i — Loy q,., .-' = 1 SR Let
I 3 g, denote ﬂ1e total numer af uncensmed units § = 54 Z S R

logi{sg b und Tifi) = Z"p_, t#a. Then the likelibwood function can be wotten as (with
the convention that 07 = 13

Iiy,.. f]hﬁ} _ H H L f].ﬁ'“]) frig e,m,-[_u‘i—n g AT (2.1}

femlii=d i1

To find the MLEs of the parameters, if one diflerentiates log £ and equates it to 0§,
the (£ + 1) = {& | |} system of equations do not yicld a tractable form to sulve, even
minerically. o the EM algodthm is tied instead. In order to apply the algorithm, one
should luuk at the complete duty Hikelihood function. Since the incompletencss due to
righi-censoming dogs not pose amy problem, e incompleteness is reganded as the lack
ol exuct knowledge of the cause of failuee. S0 for the complete dala problem, let
denowe the total mimber ol units, failing due 1o &, i = 1, .., &, so thut 4 = Ef—[”z-
These n,’s are cstimated by their cxpected values, given the incomplete data, in the
E-siep; and wilizing these eapected values, the complete dara likelihood is maximized
in the M-glep to yietd the cutrent estimates of the parameters; and one ilerates hetween
these twao steps wntil the solution converges, With the other notations as above, the
eomplete data likelihood is given by

[
Leliy an = \‘II jfl?-‘| i pt =1 g =i (2.2}

In order 1o formulate the ][tmilmn a few potations arc introduced, Let d=(4,,..., 40"
el — % T Jc'}“' Iu _n” 1], and (f) —__I, |I0g[uﬂ}uu
E-Step:

n,_zz Woofori— ...k (23

L I
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Medlen:
i log fp : s i . :
,, -0 = i, - i — ..., k. 14
it T : b
& low Ly A — adifi) (25

-
g =y ATy — STLAY

Mote that the solulion of (2,58 15 independent of the values of #,7s obtained in (2.3
and the 2% as well Dot us denote (287 by = ol 1. Une solves (2.3 iteratively; by
first chuosing en initdal wuloe Sy of 5 obtaining B as of 4.0, and comtinging until
a desired desrec of wecurdey s achioved. Let the solution of (2.3} he denoted by ji'
Thus @ dees not depemd un the EM iteration and is repeatedly used in (243 af the
bl -mlipr. Ll _ﬁ s obtained, one stats with an initial valoe & of 4 1n the iterative
stepr wiven A, first the /;'s arg cstinnated using (2.3), and then these s ' are wrilized
in {247 1 abtain 4, . the current esttmare of 4, As nsual the iteration continuss uniil
A salislaeiny solution s reachad. We suppress the iterative -_-.uhscnpt £ oTor the cursen
estimate ol Ao oand let the selution of (2.4% demole by i-— ey A ¥ AL any given
atage ol Heration. Lot us denote the patamoeter veotor (2787 by H‘, and let irs estimare
i — qf._ B

In order to show that the solution of (2.4 and (2.5, at any given stage of ieratwon,
indead muximizes Lo, one must shuw that the matrix of the second parlial denvatives
cvirluated at §, | log e ii®® {?:ﬂ] — H (say), 1s negarive defione, Denote the lop lefl
do ) wubmatdx ol H by A, 0 — Lk Tt can be shown that

(-t {Ifl iy

[ P

1t gan also be shown that

i .
H o LM et i TR = T
L1 nr-‘m}[{" (R = STEEP? = (TR = 77 )]

where TY(H1 — E'L! [lug[u,= }f: rf'f.. Straighttorward alpebra yiclds
TUNT(8) - T — Z Z,-. F.U“E it — log uj.,-“lxu'_';u';':,.- =0 WHE s

Mence & maxinizes 12.2) and is the MLE of .

For the convergence of the M ireration. a suffivient conditon on the #7515 2iven
below.

Condition C. Jun 158 < & 3 oup =09 — Lo g

NMow we address the comvergence of the EM algodithm invodving the iteration be-
rwveets (233 and (2.4 only. The convereenee issue of The M lerauon has been studied
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by Tef Wu (1983} The tngumplele data likelihood piven in (2.1} above is unimodal
il Condition € i satisflied. The tikelthood of the complele data, piven the incomplete
ohservalions, s the joint ponl of & inweper-valued random vaciables &)L 5y, where
cach A5 s the sum of 2% — 1 independent meltinomial random vanables, having mului-
nomial probabilitics of the type A;cﬁ}jj_ﬁ}'ﬂ-{l). Thus it i5 clear thut the pradient veclor
ol the expeetad log lkelihood of this complete dats given the tncomplete observalions
is comtinuous. Thus Corollary 1 of Jefl Wo applies, and pusmnlees the convergence ol
thes M iteration.

We arc interested inthe asymptotic normal approximation of Lhe posterior distibytion
of @ For that purposc, we need to cvaluate the second derivatives of the likelihood
fimction. For /4" 2 {1...., 4},

; 0 51
e lag 1. u 70 i gL . ay

: =Ty
i ZZ vl d ]2 rA-L,H b

=1 =l

i log £,

T (w24 2770
Lel I(ti} denote the observed information matrix, where
( i 1;1;;_1) ‘ ( # log L) ‘
=1.03 H - F
f{é} . fhdan g @ fAAf g @ 55

( # log f.)J
i il 8

3. Prior distribution

(")
PR P

In this section, we ineoduce a prior distribution ={4) for 4. In the analysis that
follows, the prior an f is arbitrary and is denoted by mif¥). [t is also assumed that
the priot of 4 is independent of the prior of . The basic idea of the prior is taken
from Pefia and Gupta {199}, where thev use it to find Rayesian cstimates of the
parameters of the hivanate exponentaf model of Marshali and Hkin ¢ 1967 under both
sertes and parallel sampling. Algebraically the following prior 15 just a £-dimensional
goneralization of their prior. Althongh the mtivation for this prior in this problem s
quile different than theirs.

Let =; denote the probability of faillure due 1o cause ). 1o the present medel, m; =
Adx It 15 wsually possible ro express a prior opinion about (z1,..., 7] for an analyst
of a serios system. For instance, i s likely for a design engincer of 2 system to have
a prior opnion about the probability of system tailure doe to a particular component
or failure-medes of the system. A doctor may have a prioer kdea aboul the likelihoods of
the different causes of death of a patient. We assume that (7),..., 7 ) has a Dirvichles
distribution with paramcters foy, ... 2 ). This distchution has a density with tespect to
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the Leabspie measure in 3! which is given by

; v -
f ) 2 1 X
-, = - o for 7, =0 and R L
oy, T ) = H:.‘:I;'{.:{.:]H ' 2 ' (3.17
() ptherwiso,
where 2, — 32w oand m = 1 E:"" |1 . The density in {301 s denowed by
S .. % 1 The prior on (=) ..., R o b 1% thoes resicled t 1ls natora] domain, The

: _1| x5 L {her than the

simplex &5 — {{x.. . xeq Y £ = | IR |} }:*
Mexibility of the shape and mathomatical convenicnes, Divichlel distibution also hus
an appealing property for appraising a prior distriholion lor {7y, ;e 3 One might
subjuectively compare the reladve likelihoods of fuilares doe o differonl causes, and
assign propoctiond) values o the 27% For example, 17 ¢ s 12l o be x dmes as likely
o be the couse ol failure as compared o € e may take @ — vxg, a6 the cxpeeted
prior gucss. Lhen one must do a conststeney check inog Bine similar o Berger (1985
p. 7831 Since there are only finiely many causes, the profitom of cliciting consistent
%, values is muoch casicr in this case.

Obaerve tha this poor iv already scale-invanant. 1 the unit of measurements of Lhe
theoretical life distriburtons {¥), ..., ¥ b is changed. that is il instead {c¥.. ., ol oare
the thearetical life distribuwtions for any ¢ = 0, then m°s remain wochanged and thus
the same prior is apphicable. Moreover a noninformarive state of rmind can be modeled
by piving a uniform distnbution on the gutueal domain of (&0 me ) iz . "Lhis
AmMoUnts to assigning %) — o0 — % — L,

“ow gssinne that (..., Ked 15 independent of <, and pur a Gamma prioe an < wich
purameters (2,1 That 1%,

ey

S -r:_ﬂ;_" e 1 4w (3.2)

The density in (3,27 is denored by %w, 43, AL this point it showld ke mentioncd that
given B, 1 seale-invariant noninformative prior for L ¢an be modeled with 2 — 0 und
v — Uin (327 abuve (ignoring the nonmalizing constant =821, as 1% cxplained below.

The following arpument s conditional om §. The televant inlormation aboul 1 anses
through the pd T for el Y ol 8 only. Beeausy in this model, the cause of failuce, the
MRS of uny unil, s independent of the failure lime £, and the probabitity distribution
of uny MES depends only on {m, o, m b S0 consider the pd[ of U and F — o F
for an acbitrary ¢ = 0 fiw scale-invariance.

_flr;lfu] 3] ﬁﬁﬂfi—le—iulll

"
e

Sl =gt e where g - et

Botice that this means, if the unil of measuring liletime is changed. snll the problem
has the same formal gitueture. ‘Thus i w{d) denotes the prior densiy for e {4040
setup and 7 (ph denotes the prior densiy for (Foy), then the eqoaliny Pogd o 41 —
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Poein © AY nust hold ¥4 (0, ~c). Since 5 — 2¢® it should ulso be true that Py €
Ay= P C oy whern of 4 — {.:.-"gz - .»]‘}. Hence Poii € A} - P.(5 < o4} This
shoyld hold ¥e == 0. The last cquality can be wrillen uy

[ﬂrfi}d}. -—f wfAyds = f met et da,
g4 o K

Now for the above equality to hald %A, 2(4) = ¢8m(cf4) must be truc Wi > 0 and
Yo = 0. 8o jn particular, taking i — ¢~F onc gets mle Y = ofri1) Now since lhe
equality must hold ¥ = 0, given £, take ¢ — 4~°F, Henee =i 270

With the above priots on (5, ... % ) and £ given in (3.1} und (3.2), respeevely,
the prior on A 15 ohtamed as follows:

ATy Ty, A —

[ Pl }'“
Lo 1) 1)
{H],...,T‘.',l__'l_]r ".". = |:3.-3}

I—I

Note that {3.3) is a density with tespect 1o Lehessue meusure in T Pertonming
a nendegengrate transformation frim (o, ome LA = (4L Ay one can wbtain
the priar for i The Jacobian of this tanstormation with = — 404 4 --- 4+ 43 ) amd
A= idee-—igis A MY wlieh can be scen by fnding the differential maox of the
trans{ormution, and ils deweomninant is fownd by lower-trangolarizing il by replacing i
flh row by ith row 44,747 s klh row, Tor 7 — 1ok — 1. Henes the privt density of 4
s miven Dy

L

s [H”?{}ﬂii;}] [H" } e |, A O Ay = 0. (34)

The prior density in {34} 15 called the Dirichlet Gamuna density widh parameters
(g, om 2 ) and is denoted v Z8%(2),..., %, 2,90 As a reference prier. ane can
use ﬂ]E scale-invaviant noninformative prior J‘fé‘{ | E— 1,0,00 tignoring the normalizing
constant), denoted by mriA), which is oc 1725

For later reforenee, {ov 4 ~ 29%(a,, . %, 7,7} we mive the capressiom tor the mo-
ments of 4 below.

ELa) = =% far i= 1,k {3.5)
xay
ax | stz [ %] | @l
Fla] — — { +1)— —a1 Cov(d, A/ — == [ L - ] ;
A + % epys lap =1 an

4. Posterivr analysis

As belore, et & — {3, f) denotle the parameter veclor. The pror density of @ is
denoted by (@) and is piven below.
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a{M) = kel . (1]

where wid) s wx given in {3.4) ahove and 7] is an arhittary prior on . We denote
Lthe duts by D and are interesled in the postorior distribitions of the parametors and
some paramelric functions given 2 For oany paramcter ot parametric function b, s
poaterior densily s penerically deneted by w3y Mulliplying the itkelihood luncetion
given i (2.1} by the prior given in (.10, we st

L i3 Cow an
ooy [T N [HH 2 ] e T g (4.2)

where g{f) = A"e™=(8). We first find the manginal posteror densily ol f# by iu-
terraring (4.73 above with tespect o e - i, Obsorve thal since gy, 's are non.
nepative intogers, one can expand {30 | 4050 nsing a multnamial expansion, and

uI=

then fake the rwe produces on § and [ respectively, and finally end up with a 2*

(2 &y fold summation, Now if each term wathin this summation is multplicd by
L[ A™ P o b g (70 00 each ane of them gers a form of a %% density, la-
tLETHUl‘IE those terms ong can et the marging] pesterior donsity of . Bt notice that 1
15 not nocessaly fo evaluate the integrals of sach term explicily. Let a nypical e he
denated Ty iﬁf@’l‘ili'n:'----.'}\'I;’I'ﬂ-_‘x':m‘rfﬁj | w1, where %P und 225, 5= 0.k, denats
the comesponding posterior parameter valugs of a 4% density. For & — 1, & ’x: i
tlepends an the dummy indices of the 2¥ —(2 |- &) fold summmations, i that dependence
is suppmesscd for the saks of clarity, Also nmice that "z: 285 are free of # Thus the
unly fuctor in the integral involving # is (T(f) - ¥ 7. Herwe we need m cvaluate
7 From (3.4) for a =%a . #e. 2,71 density. the exponent of « — 2 x. But
ﬂ;:r ._ul.,h wrn in the summution the cxponemt of 2 is constant. viz. #y, — 3 — ). wnd

-1,:, — :}__,i‘_, ':"”.' — ﬁ.‘:ﬂ L 1 Hy+ 2. Henee ghEl — 5:};":' — s+ =3y 4 =
Thus we gt
Dy o (TUEY - Ve e ) (433

From the preceding arqument, it is also clear dhat =g A8 2 5 o finlle mixture of %
densives. Minice Turther thal in cach of the terms in the mixeeres, the term mvolvine ¢
1 ATt = U Hoggy e swith the trensformation 7 - 40— 0. b= 1 und 4 —
}:'l_l Ay 0L can gt {in g similar way the 999% density in (3,47 s denved [rom (3,393
that wimy, . mp [} 15 8 mikture of Dirchlet densitics and s independent ol 2, and
henee ot A The marging] posterior densiy of 2, conditional on 8, i ¥a—x T84+
Loy order o get the marginal postenior density of J: lor e — 10 k. vne [irst oblains Lhe
jonl pasterdor densily of (w4 ) condiliens] oo §. This i accomphished by noticiog that
7, g independent af & and [, the posterior density of &, 15 a mixmre of Beta densitics,
und thut of » conditional on f is 2 Gamma density. Now atior making the trmslorma-
e, (s md — (i m ) and aumerically integrating 7 out from this hivadate densny
vne gels Lhe posterior density of 2 conditions] on 5 Finally this condinonal density s
roultiplivd by w58 and s oumereally inteetated with respect w o oeder 10 vbrain
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7z M) The above mentioned properties of (he posterior disitibulion, for the purpose
of marginalization of {4.2), which is a majur problem with a parameter space of arbi-
trary dimenzion due to madidimensional numerical mtegrations, s summarized below,

PL. (g1 Is as in (4.3 but & one-dimcnsional numereal inepration is reguired o
evaluate the normalizing comstant.

P2
n x =1
mis Dy = j (T + eI My g1 0] df for d = 0
Tin )
and thus is obtained by a one-dinensiopal numencal integration.
P wim_.....5e_, D) is a hnite mixture of ‘_"«?[DE[P] i “"}I densitics. In partcular,

far i=1,... .k, ol is a mixture of .f‘{'x(m (7 —nqp +Jf|:}_}—l1 'ﬂ} fBota) densitios,

aud thus no pumerical integration is negessary. Moreover, w; 1s ndependent of (7, 1}
& posterio,
P4 Fori=1,....4&and & = 0,

H{—iglﬂl] -
‘).'I (=

!l:u

i
]{T[_.”:} I .r:]l"r m-’ﬂ[mﬂ‘}/ '[-{_-ll }

(LR i, i] dnf] df
and thus [s obtained by a two-dimensional nurnerical 1I1Lugra1iﬂn.

Sinee the model is rogulur, the usus] asymprolic arguments of Johosen {19707 ar
Cihosh ot al. {1982) to upproximale (@] by a {4 — 1)-variate nownal distribution
via a Laplace spproximation hold orue. MNole that we have already shown that 8. the
MLF of 0, cxists in Seclion 2. Suppose that Foéy = TI{E]TI:{;}, twhere I(fi} 15 as
wiven in (268} (O . Oy = &= T{ﬁ}[ﬂ - fi‘_i,' fy the true unknown value of o
from which the data D are penerated; and Py the corresponding probability measure.
Also lel @y denole the standdard nonnal c.df. Then following Johnzon {1970) the
following probability sfatement can be made:

Suppose the prer =(8% of & is twice differentiable in a neighborhood of #. Then
piven & = O and » = (L N, = 7020,

i Fll
P, | PlE=d D €8, D) = 1_[{1'31::5 < guformly in £, . e
L i=l
R

Mote that the ahove statemenl simply means (hat for large r 008 can approximate
a(0] 8y by a Ay i, L ti}]“] p.d I, [or any regular prior @}, as is given in Berger
(1985, p. 2247, Under such cireumstances, the marginalization of m(# ) takes place in
the line of wsual multnvariate normal theory and the R credible sets Jor the 475 or
# are available dirgctly. for example, in Berger (1985, po 143 ), withoul any numetical
mgthonds,

Now wea lumn W the problem of estmating . The two mast popular Bayesian esti-
males are the posterior mean, which is the Bayes' cstimate tor any symmelric guadratic
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loss, and pestedor mode. The posterior mean of § iz found by numerical itegration
usiogr (4.3 Vo find the posterior mean ol Lhe 4,7 one muost Grst find G condidonal on
fi. which from (3.5) can Te seen to be [(m ¥ (0 - wpe +a)(TEFNL 21 Y e
where the "3" is on the 25 (2 - &) fold summation and w is 1 canstant depending
o the dummy ingdices of the summmation. One then numencally integrates our 5 with
respect to oo A4, Notice that all the momedeal integrations ane in one dimension. Ta
md the joint posterior mode of #, ang follows the smme EM fteration ws in Seeton 2
The Eeslop s given o cquation {(2.3) remeans unchanged bal the Mostep s 10 he
mendificd as tollows:
M-xrep for the povterfor mode:

LR S TR
T k=T )

MT () + 1 imi i)

b= (- kT SRODET(E) by - TOR) 1wy

where =1y s the derivative of o), MNote that Tike §2.50, (450 s also salved -
cratively and 15 independent of (233 and (4.4}, The maximization and comveroenge
imsucs can he carnicd out inoa Ting simvilar to Section 2, The HPD cradible sets of the
Pavameters arc tound mumencally atter olitaining the margingl posterior densitics.

Finully, we give he exprossion for the posterior densities of the theoretical survival
funclions doe o the & different canses, and the real survival tunclion of a unil. In this
motlel, the survival Funeton of ¥ 3s given by #7000 - c_"""ﬂ fory o= and i - 1., .
and tha ol £ s piven by P — ¢ Tor £ 2 4, For u fxed ¢ 2 0, et us denoie the
vompuonent reliabilities #0007 by g, and the system reliabibity £78) by g0 Then using
Pd (ori— 1,.. &k, and Oezpy=1,

“log p, ¥t U [ : S
| — — KT D S St S 1 4§
% gl in |l _ (T A
i D] =2 lag p ¥ :
= [ .|| T J ”-I'MI LT R -|[1'JT|"‘ l.']ﬁ (44
s J
and is obtwined by a two-dimenstonal mymericnl integration, Similarly using P2, for
Oz
{— lt]j-__ll.l\]m L i i’ _ k=i TE: ¥ | o
‘.'Tf.‘rﬂ]: /ETI' b ..- 2, Lk .I-r 5DE‘|”"' nr ._.||d|.
d m'lfn+9'] K [c7ip S !

4.7

anel 1% ublained by a onc-dimensional numericsl integrution. The posterior nwesn. oode
and the HPD credible et are lound mumedeally aod is illustrared in the oest secuon,
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5. Numerical illustration

oy this seclion, we lusirale the above methods by wsing a sel of simulated daa,
[L 15 gssumed that we have a threecomponent seties sysiem with ¥ ~Weibuli{2,2),
Yo o Weibull(3.2), and Fy - Weibuili4.2). Thiry observations are penerated indepen-
dently on each of ¥, F» and F¥a. To incorporale censaring. 30 observations are also
eenerated independently from a Weibullgi.875,2) dismibution to accommodate abont
| 7% censoring. Let this censoring random variable be denated by O, If for a ooir,
Minimum{ ¥, ¥, F2} = €. then it is censored. However, as in Section 2, we denote
the observations on U as Minimum{¥.. ¥.. ¥5,C}. with the understanding that if the
observation 18 censored, then O 15 observed (e §F = O, winle [or an ubcensored
observation (7 = Minimum{ ¥, Fz, ¥sl. In order to distinguish between a censored
ohservation with an uncensored one, a cepsoring indicabor variable 7 s introduced,
with the inrerpretation of a value of | 0 be censored, while a value of O to indicate
an wincersorad observalion. Lo order o mask the cause of failues, 30 observations on a
masking variable M is penerated independently of ¥, Y, Fi, and O, with Af taking
valves 1. 2 and 3 with the respective probabilities 0.3, 0.4 and 0.1, The value of Af
is ignered for the censored observations, The valus of Af determines the cardinality of
the MRS of a unt, For Mf = |, the MRS iz a singleton and the cause of failure is
takeu to be 4, so that F; = Minimom{ ¥7, ¥2, Fa}. For M =2, the MRS is a doubleton
and to gpet the exact sets, 30 diserete uniform candom variables, sav J, taking values
in [1.2,3} ate also independently penerated, and the corresponding MRS s taken to
be §1.2,3} — {J} for the vhservations with 1 — 0 and A7 — 2. This is done o en-
surg that the cause of failnre masking is independeat of the lifstime random variables.
l'or M =3, the MRS—J1, 2.3}, The generated data, as described above, Is given in
Table 1.

I order to find the MIF, observed information matrix, jpoint posterior modes of the
parametcrs, and the margingl postenor distibutions of the parameters and the para-
metrg functions (and thus their posterior estimates, like the posterior mean, posienion
varignee, marginal posterior mode and the HPD eredible set), one only needs 1o input
the vbservations on L7 1, the c?r_E.‘;.]’s, the wmy s, and e prior hyper-pammeters. The rest
ol the vomputalion is aowmated.

Let & = {7, fz Az, Y. First d. the MLE of 8, and the observed information inatrix
I8y, are found to obtain the asymptotic normal approximation to =(@|8) as given
below,

A1 1 4892
i 2 3.6729
A 4312

g 23643
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For the purpose of illugtration, we luke the seale-invariant nonimformative prior o
of Scetion 3 for (4, 27,73, and take a ynitorm prior for § on [1,00) Note thal for
a given problem, onc will ysually have some prior idea about the failure mtes of the
¥;'s. It they arg fclt to be increasing (as is the case m this illustration), the supporl
of the prior of f should be restricted o |1, so), while lur deerpasing Laiture rates the
prior support for § should be taken ax (0,1]. In either case, a wniform preior will serve
the purpose of a relerence prior. Thus the poor on 0 is piven by

1

e =
O T

A=l Lm0, dy=0, Bzl

MNexi, the joinl posterior mode of @, the maxima of =(# D), is found again by using
the EM alponithun, which is also utilized in obfaining 8, the MTE of 8, ahove. The
marginal postericr demsity of B, o I, is obtained mumerically using PI, and is
plotted in Fig. 1, Similarly, the marginal posterior densities, of 2, /3 and 4y, m(d; D),
A D), und = 25| B, ane rumerically evalysted using P4, and are plotted in Figs. 2, 3
and 4. respeclively. The posterior mean, posterior medidn, posterior vananee, marginal
postetior mode and the exact 5% HPD credible set sre obtained numericeally by using
the marginal pesterior densities. The asvaptotic 25% IIPD credible sets are found
using thc normal approximation to the posterior, described above. These quantittes for
the {our parameters are surmmarized in Table 2.

The marginal posterior densilics ol ), m, and 7 are oblained osiny P3, and are
plotted in Figs. 5, 4. and 7, respectively. The marginel posterior density of 2 is obtained
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uwiing P2 and is plotted in Fig. 8 The posterior csfimates of these four parametric
lunetioms are obtained numerically and are summuarived in Tahle 3.

Along with the marginal posterior densities ol Lhe parameters and the parametric
functions, the shove mentioned cxact 95% 1IP1} credible sels are alse indicated o
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Figs. | & with the help of two vertical lines {indicating the two eod-poins), aod a
harizontal line {indicating the critical value of the posterior density ).

In crder to estimatc the component Telighility functions F (e}, Fatt). Fafe), the
muargingl posterior densitics of these functions arg oblumed at » — 005,080, (RS,
{194, using (4.6, while for estimating the swsiem reliabilty lunction F{), the murginal
posterior densitics are ohtained al ¢ = Q.05 010, 0L35,060, using {4.7) The posle-
rior mean, mareinal posterior mode and the 95% LIPD credible intervals are obtaimed
at guch of the above s for each of the reliabiliy fonctions, The point estimates (pos-
terior mwesn and marginal posterior mode) and the two end-paints of the HPD argdibla
intarval are ploted at each ol the above s and then joioed by linear inerpolation,
toe ohtain the point estimates and the HPT credible band for the funcuons. Figs, 9-11
givie these posterior cstimates for Fofe), Fafr), and Falz), respectively, while Fig. 12
gives the estimates for (23 bn cach of the Figs. 9 12, the ‘dark’ line indicates the
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postertar mean, the “light grey’ hine indicates the posrerior mode. while the two *dark
ey’ lings give the 95% HID credible band for the reliabilities.

& Concluding remarks

Ta comehude, we first observe a few computational details, The dats are simulated
using MINITAR. The remaimder of the programs are written in C. amd ass run in a
DEC-Alpha workstation. The praphics s donc using Mathematica. In onder b obtain
bath the MLE and the joint posterior modes, the inital value of § is laken w be |
Convergence of {2.5) was obtained atter 22 ileratioms und (4.5) converpged afler 24
ireruions. lor the LM neration bevween {23 and (2.47 or (2.3} and {(4.4), the ininal
values for 2-, 4> and A3 are all taken 10 be 1, and both the EM iterations converged after
I3 jteratians, All the above iterations are continued waril the consecutive estimates agres
up to 4 decimal places after the decimal peinl. The program yielded these estimates
along with the observed information mutrix almost instantancousky. All the numerical
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inlgrations are done wsing Simpson®s one-third rule. Also all the inproper inregrals
of 1be posterior densities are carried our till a fiaire value until the integral =~ (19999,
The computation of w(f|M) is done lirst, which is wsed in the computation of all
the subscquent posterior densitics {except ol course the = |Bys), und is oblaioed
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wilhin 30 CPU minutes. The compuration of w(i|P) and mis'P¥s are equally [ast.
The evalualion of 2| 8}s is done parallely and takes more than 500 CPU minures.
The posterior distibution of F(7) for a fixed 1. is obtained within 60 CPL minares.
bul that ol the Fifr)s. which ac again computed parallely, takes more than 100}
CPU minudes. A gencral piposs proegram is wreiden to obeain the Bayesian eslimates
hike the posterior mean, posterior quantiles. posterior varlance, marginal posterior mods
and any LK1 — 2% HPD credible set, omec a wnivariate posterior density s given us
inpul. This prigram i spplied on the posterior densities of all the paramelers and the
parametnic Junctions to obtain the Basyesian estimates, and yielded the results almasar
imslantancously in each case,

The puapose of the paper s to llystrate thar a noninfarmative Bayesian analysis or
o robust Bayesian analysis, [via the asymptotlic normal approximation to the posteriors
for any repular pricrs), of masked syslem [ailure dala s compatationally feasible in
real time, when the compunent lifetimes are assumed Lo be independent Weilndl's with
propoviional bazacd. If the component lifetimes wre ihdependent exponentialy, analysis
may proceed exactly in a similar mwunner and the expressions ol the posterior densstics
simplif further wund the dimensionalities ol the numeneal inleprations never sseecd |
While the numerical integrations of arbirary dimensions may be avoided via Gibbs
sumpling, when the component lifrimes are Weibulls with unequal shape parameters:
o thix case ol equul shape parameters, the salution is partially analytical, and rhusg
reducing the dimwension of numencal inlegrations o st most 2 even willl a (& 4+ 1]-
dimensional parameter spuce.
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