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Sankhya : The Indian Journal of Statistics 

1995, Volume 57, Series B, Pt. 3, pp. 353-364 

ON DISPARITY BASED ROBUST TESTS FOR TWO 
DISCRETE POPULATIONS* 

By SAHADEB SARKAR 
Oklahoma State University 

and 

AYANENDRANATH BASU1 
University of Texas at Austin 

SUMMARY. For discrete two sample problems disparity tests based on minimum disparity 

estimation (Lindsay 1994) are considered. The likelihood ratio test can be obtained as a disparity 

test by using the likelihood disparity. It is shown that, the asymptotic distribution of the disparity 

tests under composite null hypotheses is chi-square. In general, several disparity tests are more 

robust against outliers than the likelihood ratio test. A Monte Carlo study illustrates these points 

in Poisson populations for the Hellinger distance test. 

1. Introduction 

Beran (1977) showed that one can simultaneously obtain asymptotic effi 

ciency and robustness by using the minimum Hellinger distance estimator. As 

robust M-estimators typically lose some efficiency at the model to achieve their 

robustness, Beran's method was an improvement over them. Several authors 

have continued this line of research including Tamura and Boos (1986), Simpson 

(1987) and Lindsay (1994). Tests of hypotheses based on the Hellinger and re 

lated distances were considered by Simpson (1989), Basu (1993), Lindsay (1994) 
and Basu and Sarkar (1994a). These tests are asymptotically equivalent to the 
likelihood ratio test (Neyman and Pearson 1928, Wilks 1938) at the model and 
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at contiguous alternatives but have far better robustness properties than the 

latter when outliers are present in the data. 

In this paper we extend these ideas to develop testing procedures when two 

discrete populations are involved. The results easily extend to three or more 

populations. We are currently studying the corresponding problems for the con 

tinuous models, theory for which is somewhat more complex as it involves kernel 

density estimation. In Section 2 we briefly discuss minimum disparity estima 

tion and disparity tests studied in single population cases. Section 3 describes 

the null hypothesis and introduces the disparity tests in the two populations 
case, and establishes the limiting chi-square distribution of the tests under the 

null hypothesis. In Section 4 we provide some simulation results for Poisson 

populations showing that the disparity test based on the Hellinger distance is 

far more robust against outlying observations than the likelihood ratio test. We 

present some concluding remarks in Section 5. 

2. Minimum disparity estimation and disparity tests 

in one population 

Let {rn?(x)} represent a family of probability mass functions having a count 

able support and indexed by ? = 
(?l,. 

.. 
,?k)'. Given a sample of size n 

{X\, X2, . , Xn) from this distribution, let d(x) represent the observed propor 
tion of Xt's taking the value x. Let 6(x) 

= 
[d(x) 

? 
m0(x)]/m0(x) represent the 

"Pearson" residual at the value x. Let G be a convex function with G(Q) 
= 0. 

Then, the nonnegative "disparity" measure p corresponding to G is defined as 

p(d,m0) 
= 

?xG(t)(x))m0(x). 
... 

(2.1) 

When there is no scope for confusion, we will write p(d, nip) simply as p(/3). A 

value of ? that minimizes (2.1) is called a minimum disparity estimate. When 

G(b) = (? + \)log(b + 1), the disparity 

LD(d, m0) = Zxd(x)[log(d(x)) 
- 

log(m?(x))} ... (2.2) 

is called the likelihood disparity, and its minimizer is the maximum likelihood 

estimator (MLE) of 3, because the likelihood disparity is the negative of the log 
likelihood divided by n plus a factor free from parameters so that maximizing the 

likelihood is equivalent to minimizing the likelihood disparity. Note that (2.2) is 
a form of Kull back-Lei bier divergence. On the other hand, G (6) 

= 
[(6 + l)1/2 

- 

l]2 generates the squared Hellinger distance. Other examples of disparities 
include the Pearson's chi-square, Neyman's chi-square, the power divergence 

family (Cressie and Read 1981), the blended weight Hellinger distance family 

(Lindsay 1994; Basu and Sarkar 1994b) and the negative expoential disparity 

(Basil and Sarkar 1994c; Lindsay 1994). 
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Let V represent the vector gradient with respect to ?. Under differentiability 
of the model, the minimum disparity estimating equations have the form 

-Vp = 
ZxA(b(x))Vm?(x) 

= 0, ... (2.3) 

where A(b) 
= 

(b + 1)[G(1)(6)] 
- 

G(?), and G(1)(?) denotes the first derivatives 

of G(S). The function A(?) is an increasing function on [?l,oo) and can be 

redefined, without changing the estimating properties of the disparity, so that 

A(0) 
= 0 and ?(1)(0) 

= 1, where A^\b) denotes the first derivative of A(b). 
This function A(b) is called the residual adjustment function of the disparity 
and plays a leading role in determining the theoretical properties of the estima 

tors. For the likelihood disparity (LD) the residual adjustment function is linear 

with A{b) 
= b. However, the residual adjustment function of a disparity like 

the Hellinger distance (for which A(6) 
= 

2[(b + 1)1/2 
- 

1], after the above stan 

dardization) can significantly downweight the effect of a large Pearson residual. 

In this sense the residual adjustment function has an interpretation similar to 

the ^-function in M-estimation. A minimum disparity estimator is more robust 

than the MLE if its residual adjustment function downweights an x value with 

a large positive b{x) relative to the residual adjustment function of the likeli 

hood disparity. On the other hand, negative Pearson residuals represent sparse 

data where one would expect more observations under the model. The x-values 

where this occurs can be called "Pearson inliers". A disparity like the negative 

exponential disparity (Basil and Sarkar 1994c; Lindsay 1994) can downweight 
Pearson inliers relative to the MLE. 

The curvature parameter A2 of a disparity is the second derivative of its 

residual adjustment function evaluated at zero. This parameter plays an impor 

tant role in determining the trade-off between robustness and efficiency. Dis 

parities with large negative values of the curvature parameter generate more 

robust estimators, whereas A-? 
= 0 implies second order efficiency in the sense 

of Rao (1961). Similarly, disparity tests with large negative values of A2 provide 

stability to the level and power of the tests under contamination, whereas A2 
= 

0 usually leads to more powerful tests. For the likelihood disparity A2 = 0, and 

for the Hellinger distance A2 = 
?1/2. 

Let T = 
Tp represent the minimum disparity functional obtained by min 

imizing the disparity measure p with respect to ?. Consider testing the sim 

ple null hypothesis ? 
= ?* against some suitable alternative. For this the 

disparity test statistic corresponding to the disparity measure p is defined as 

Dp 
? 

?2n[p(Tp) 
? 

p(/3*)]> all(l under null hypothesis Dp has an asymptotic 

X2 distribution with degrees of freedom equal to the dimensions of ? (Lindsay 

1994). When p equals the likelihood disparity, Dp equals the negative of twice 

log likelihood ratio. 

The two population case of the hypothesis testing problem using the mini 

mum disparity approach can be solved by generalizing the method of Lindsay 

(1994) appropriately. In order to motivate the extension of the one sample 
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case to the two sample situation, we now present in some detail the deriva 
tion of the asymptotic distribution of the disparity test statistic in the one 

sample case under a composite null hypothesis. Consider the null hypothesis 
Ho : ? G ?o, where Bo is a subset of the parameter space B. Let r be the 

number of independent restrictions imposed by the null hypothesis Hq : ? So 
We assume that the specification of Bo can be expressed as a transformation 

?% 
= 

<ft(i/!,..., z/*~r), i = 
1,..., Ar, where v = 

(i/1,..., vk~r)' ranges through an 

open subset of 9_*:"r. We also assume that # possesses continuous first partial 
derivatives. 

Let u0(x) 
= V logm0(x), the maximum likelihood score function. Let V? 

represent gradient with respect to ?\ the z-th component of /3, and Ui(x) 
= 

u,(x,/3) 
= 

Vilogm0(x). Similarly, Vt; and utJ will represent the second partial 
derivatives with respect to ?l and ?j and u,^ will represent the third partial 
derivatives. We let /^denote the true parameter value, and let 60(x) denote 

6(x) when m0 = 
m0o. We assume the following regularity conditions (Lindsay 

1994). 

Assumption I. Var^u^X)) is finite 

Assumption II. The residual adjustment function A(6) is such that A^(6) 
and [t4^(<3)](1 + S) are bounded by C and D, say, on [?l,oo). 

Assumption III. Ex[m0o(x)]1^2 \ ut(x;?0) \,?>x[m0o(x)]l/2 \ utj(x;?0) | and 

?_[raflj(_;)]1//2 | ut(x;?o)\\uj(x; ?o) | are all finite for all i, j. 

Assumption IV. /30 is the unique minimizer of p(m0Q)m0) with respect to 

0. 

Assumption V. The conditions on pages 409 and 429 of Lehmann (1983) are 

satisfied and there exists MtJjt(x), M^^x), and Mi??(x) that dominate in ab 
solute value uijk(x) ?))utj(x] ?)uk(x\ ?) and ut(x;/3)uJ(x;/3)ujfc(x;/3) respectively 
for all ? in a neighborhood of ?o and that are uniformly bounded in expectation 

E0 for all ? in some, possibly smaller, open neighborhood of /30. 
Let Dp 

= ? 
2n[p(/3n) 

? 
p(/?*)] be the minimum disparity test statistic where 

?n,?n are tne minimum disparity estimates of ?o without any restriction and 

under the null hypothesis repsectively. Let ?ni and ?*nL be the MLE's of ?o 
without any restriction and under the null hypothesis respectively. We show 
that when the null hypothesis is true the limiting distribution of Dp is x2(r) 

First we present the following : 

Lemma 2.1. (i) -n'l2Vp(?o) 
= 

n'^^uM) + 0,(1). (ii) VtJp(?o) 
= 

^?oi^J) + ?p(l)> where I^(i^j) represents the (i,j)-th element of I^, the 

Fisher information matrix, (iii) The minimum disparity estimator ?n is 
a consistent estimator of ?o, and /?* is a consistent estimator of ?o when 

the null hypothesis is true, (iv) n^2(?nL 
- 

?*nL) 
= 

nll2(?n 
- 

?*n) + op(l). 
Proof of (i). Since -n1/2Vp(/30) 

= 
n~^2^^U0o(Xt) + n1/2S[_4(_0(a:)) 

- 

?o(x)]Vm0o(x)1 it suffices to prove that 

E | n^2E[A(60(x)) 
- 

?o(x)]Vm?o(x) |-> 0. ... 
(2.4) 
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Let 

^(x)=n^[(-gL)V2_1]2. 
It can be shown that (see Lemma 24, Lemma 25 and Lemma 23 respectively of 

Lindsay (1994)) 

E[Yn(x)\ < E(\ 60(x) \W2 < KW]'1'2, ... (2.5) 

lim E[Yn(x)} 
= 0, ...(2.6) n??oo 

and 

I A(bo(x)) 
- 

b0(x) |< ?[(^r)1/2 
- 

I]2 ... (2.7) 

for some positive constant B. By (2.7) E \ nl/2E[A(b0(x)) 
? 

bQ(x)]Vm?0(x) | is 

bounded by BE[EYn(x) | Vm?(x) |]. Then (2.4) follows from (2.5), (2.6) and 
Assumption III. 

Proof of (ii). Note that Vtjp(?0) = EAM(b0(x))(l + ̂ (x^u^u^m^x) - 
EA(6o(x))Vijmp0(x). The first term 

| ZA{l)(b0(x))(l + bQ(x))ul(x)uj(x)m0o(x) 
- 

T,ui(x)uj(x)m0o(x) | 

< (C + ?>)E | ?o?xj^^u^^m^^) | ... (2.8) 

by Assumption II. Then, by (2.5) and Assumption III, the expectation of the 

right hand side of (2.8) goes to 0. It follows by Markov's inequality that 

| ̂ A^(b0(x))(l 4- bo(x))ut(x)uj(x)m0o(x) 
- 

/A(i, j) |= op(l). 

Similarly, using the first order Taylor series expansion of A(6) around 6 = 0 
it can be shown that T,A(bo(x))Vijm?0(x) converges in probability to 0. This 

completes the proof of (ii). 

Proof of (in). The proof of consistency of ?n follows from arguments similar 
to those of Lehmann (1983, pp. 430 - 

432) used to prove consistency of the 

MLE, with ?p(?) in place of n"1 log likelihood function, and from using (?), (ii) 
and Assumptions (IV) and (V). 

Suppose that the null hypothesis is true. By assumption Bo can be expressed 
as a transformation ?x 

= 
gi(vl,..., vk~r), 

i = 
1,..., k. Let 

D? 
= % 

dVj\h*{k-T) 

Let vn be the minimum disparity estimator of the true parameter Vq> defined 

by ?o = 
g(vo) under the ^-formulation of the model. Then, it follows from 

the arguments for consistency of ?n that vn is a consistent estimator of vo and 

?? 
= 

g(yn) 
= 

(<7i(?n)i ,9k(Vfi))r is a consistent estimator of ?o. 
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Proof of (iv). It follows from (i), (ii), (Hi) and Assumption V that 

n1/2? 
- 

?o) = (I^rV^n -1S?=1aA(X?)l + o,(l) 

for all minimum disparity estimators including the MLE. Thus, nxl2(?ni 
? 

?n) 
= 

Op(l), and nll2(?*nL 
- 

?*n) 
= 

op(l) in particular. Z7 

From the proof above it also follows that nll2(?n 
? 

?o)?*iV(0, J^1), 
and 

n1/2(/3* 
- 

?Q)? N(0,D|y0J^1D?/0) 
under the null hypothesis, where J?0 is the 

information matrix under the ^-formulation and ?* denotes convergence in dis 

tribution as n ?> oo. Therefore, nl'2(?n 
? 

$*) 
= 

Op(l). Serfling (1980, Theorem 

4.4.4) shows that n(?ni 
? 

?*nL)' I?oC?nL 
? 

?nL)~"X2(r)' Now using Lemma 2.1 - 

(ii) and a Taylor series expansion of 2np(??) around ?n, we have 

-2n[p(&)-p(/3;)l = 
n(&-/?;;)lA(^ 

where d2p(?n)/d?d?' is the matrix of second partial derivatives evaluated at ?n 
a point between /?n and /?*. Therefore, using n1//2(/3n ?/3*) 

= 
Op(l) and Lemma 

2.1 - 
(ii), (iv) we have -2n[p(?n) 

- 
p(?*n))\2(r). 

3. Disparity tests in two populations 

Let (Xj,..., Xni) and (Yi,..., Yn2) be random samples from populations 

having probability mass functions meL(x) and me2(y) respectively, where 0\ and 

02 are k\ x 1 and ?>2 x 1 parameter vectors respectively. Let n = n\ -f n2 
and let 0 = 

(0\,02)' 
= 

(01,... ,0h)' be the combined vector of parameters of 

the two populations. Note that k < k\ + k2 since 0\ and 02 may have some 

common parameters. We assume that the two random samples are independent, 

and that n increases to infinity with n\ln2 
? 

c, 0 < c < 00, i.e., neither 

samples size asymptotically dominates the other. We specify a null hypothesis 
Hq to be tested as Ho : 0 Go, where B0 is a subset of the parameter space 
?C^ and 0o is determined by a set of r < k restrictions given by equations 

Ri(0) 
= 0,1 < i < r. For example, for k ? 

2, we might have Hq : 9 ? Q0 = 

{9 
= 

(9\,92)' : 0i = 
02|. In this case, r = 1 and the function R\(0) may be 

defined as 0\ 
? 

02. 
Let le be the /c x k matrix whose (i, j)-th element is given by 

1 + c 
-E 

d2 
logmdl (X) dO*d0i 

+ --? 
1 + c 

?>2 

80*803 jlogm02(Y) ...(3.1) 

Note that in case 0\ and 02 have no common parameters, the matrix 1$ is a block 

diagonal matrix with two blocks which are equal to 
-^hi 

and ̂ /?2> where 1$. 
is the Fisher information matrix corresponding to me^x)^ =1,2. 
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In the sequel, let 0q denote the true parameter value. Let dt(z),i 
= 1,2, 

be the proportion of sample observations having the value z in the i-th sample 
and let p(0?) 

= 
p(dX)mei) denote the corresponding disparity. Let the overall 

disparity po(0) for the two samples taken together be defined by 

po(0) 
= 

rr'ln.p^) + n2p(02)], 
... 

(3.2) 

and the disparity test statistic is defined by 

-2n[po(0n) 
- 

Po(0*n)} ...(3.3) 

where 0n = 
(0\,0%,... ,0^)' is a vector at which po is minimized over 0 and 

similarly 0* = 
(0*1, 0*2,..., 0**)' is a vector at which po is minimized over Oo. 

Let 0*, 0% denote the estimates of 0\ and 02 components respectively. 
Note that the overall disparity is defined as a weighted average of the dis 

parities for the individual samples, instead of the ordinary average with equal 

weights. There are two reasons. First, this takes into account different sample 

sizes available for the two populations. Second, with this definition of overall 

disparity the likelihood disparity test coincides with the likelihood ratio test. 

This makes it possible to investigate other disparity tests in relation to the like 

lihood ratio test by direct comparison. When p is the likelihood disparity, let 

LDo(0) denote the overall disparity (3.2), and let 0n? = 
(0^?,.. ., 0^)' denote 

a vector that minimizes LDq(0) over 0 with 0*? and 0ynL representing the esti 

mates of 0i and 02 components respectively. Similarly, let 0*nL 
= 

(0*^,..., 0** )' 

denote a vector that minimizes LDo(0) over 0O with 0*? and 0*? representing 
the estimates of 0\ and 02 components respectively. Note that 

LDo(0nL) 
- 

LDo(0*nL) 
= n1 [nlLD(dli^L) + n2__/J(<?2, 0?nL) 

- 
nvLD(du0*nxL) 

- 
n2LD(d2, 0%)] 

= ? n l[niT,d\(x)logm<2x (x) 4- n2Sd2(x)Zo<7raQ, (x)] X dnL X UnL 

+n~x[n^d\(x)logme** (x) 4- n2Y,d,2(x)logme+v (x)) x nL X nL 

= n'Hog \ ft me?x(Xi) ?? m^ (Yj) / l? ra?. (Xi) U m?y (Yj) \ , 

...(3.4) 

which shows that the likelihood disparity test is equivalent to the usual like 

lihood ratio test. Another justification for defining the overall disparity as in 

equation (3.2) is provided by Simpson (1989, Example 6.2), where a disparity 
equivalent to (3.2) for the Hellinger distance case has been used. 

For the results presented next we assume that Assumptions I-V hold both 

for the families mel and ra#2. When p is the likelihood disparity this means that 

the the regularity conditions for Theorem 4.4.4 of Serfling (1980) are satisfied. 

Following the proof of Lemma 2.1 - 
(ii) it can be seen that the matrix of second 

partial derivatives of the overall disparity converges to the overall matrix le0 in 
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probability. Replacing the disparity p(?) by p(0), and Ip by 1$ in the proof of 

Lemma 2.1 - 
(Hi), we see that 0n is a consistent estimator of 0o. 

The null hypothesis i/o imposes r restrictions on 0. We assume that the 

parameter space can be described through a parameter v, composed of k 
? r 

independent parameters such that v = 
[yx,..., vk~r)', i.e., 0 = 

0(1/) where g is a 

function from 5R*~r to 5R*. Thus 0* = 
g(vn), where vn is the minimum disparity 

estimator of the parameter in the v- formul?t ion of the model. Let D? and J? 
be defined as in Section 2, and let i/q be the true value of v. 

Define ule(x) 
= V/o<;m0. (x), i = 1,2. Using Assumption V and arguments 

similar to those used in the proof of Lemma 2.1 - 
(i),(ii) it can be seen that 

n^{0n 
- 

flo) 
^Iflb1n,/2[iSn.iUi(>(Xi) 

+ 
ly^=yUl(y.)] 

+ 0p(l). This establishes 

that nlf2(0ni?0n) 
= 

op(\) for all minimum disparity estimators 0n, and nll2(0n 
? 

0o)~*N(O,I?o1). 
Similar arguments establish that under the null hypothesis 

n1/2(0*? 
? 

0*) 
= 

op(\) for all minimum disparity estimators 0*, and n1/2(0* 
? 

00)^(0, D^DU). 
Combining these results we also get 

?1/2(?nL-^) 
= 

n1/2(?n-?;)+0p(l), ...(3.5) 

and 

nl,2(?nL 
- 

<TnL) 
= 

Op(l), n1/2^ 
- 

fl;) 
= 

0,(1). 
... 

(3.6) 

Theorem 3.1. Under the null hypothesis, 
? 

2n[LDo(0nL) 
? 

LDo(?^L)] con 

verges in distribution to x2(r) 
Proof. Let b0 

? 
(R\(0),..., -fiV(0)'). Then by an application of the multi 

variate delta method (Serfling 1980, Theorem 3.3A) the limiting distribution of 

nV'b^ 
is NO^.C^C^), where 

r \dR>~ 

and C9o is C9 evaluated at 0 = 00. By Theorem 3.5 of Serfling (1980) one gets 

?(b-^Cfcl^)-?^) V(r). .. 
- (3-7) 

Since the second derivative of the likelihood disparity evaluated at 0o converges 
to I?o, 

we get 

-2n[LDo(0nL) 
- 

LDo(0*nL)] 
= 

n(0n? 
- 

0;?)%o(0nL 
- 

0*nL) + op(l). 
... (3.8) 

However, since under the null hypothesis b$* 
= 

0, we have 

bg- 
= 

bg- 
- 

wL 
= 

ce(0nl/ 
- 

e*nL) + op(\ enL 
- 

<rnL |). 
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Since n1/2(0?? 
- 

0*nL) 
= 

Op(l), (3.7) thus reduces to 

n(0nL 
- 

0:jCfeo(CeJdolCeo)--'Ce?nL 
- 

0*nL) + op(l). 

But 
C^Q^C^)"1^ 

= 
ldo (Serfling 1980, Theorem 4.4.4), which estab 

lishes that the right hand side of equation (3.8) converges to a x2(r) distribution. 

Z7 

Next result establishes that each disparity test is asymptotically equivalent to 

the likelihood ratio test under the null hypothesis, which together with Theorem 

3.1 establishes the limiting distribution of the disparity tests to be x?(r) under 

the null hypothesis. 
Theorem 3.2. Under the null hypothesis, Jfor any general disparity mea 

sure p, (-2n[LDo(0nL) 
- 

LDo(0*nL)] + 2n[po(0rl) 
- 

po(0*n)]) converges to zero 

in probability as n ? oo. 

Proof. As in the proof of Theorem 4.4.4. of Serfling (1980, first equation), 
we have -2n[LDo(0nL) 

- 
LDo(0*nL)] 

= 
n(fl?? 

- 
O^Jh?nL 

- 
0*nL) + op(l) and 

the limiting distribution of n(0n? 
? 

0*?)'l0o(0n? ~^n? *s X2(r)- Similarly, by the 

Taylor series expansion of 2npo(0*n) around 0n (using dpo(0n)/d0 
= 

0) we have 

-2n[p0(?n) 
- 

po(0n)\ 

= n(0n 
- 

0*nyie?n 
- 

<Tn) + n{0n 
- 

<rj 
[?Ppo(0)/d0d0' 

- 
h0] 

(?n 
- 

9n) 

where d2po(0n)/d0d0' is the matrix of second partial derivatives of po evaluated 

at 0 = 0n, a point lying between 0n and 0*. Since (0n 
? 

0q) 
= 

op(l), so is 

[d2po(0n)/ded0' 
- 

I?J. The result then follows from (3.5) and (3.6). Z7 

4. Example 

In this section we present some numerical evidence that illustrates that the 

Hellinger distance based disparity test is a far more robust alternative to the 

likelihood ratio test in the presence of outliers. For our example we consider 

Poisson populations. This simulation study was performed using FORTRAN 
on a Sun workstation at the University of Texas at Austin. 

The data were generated from two Poisson distributions with parameters 

01 and 02. The hypothesis of interest here is //o : 0\ ? 02. The asymptotic 
distribution of the dispartity tests for this hypothesis is x?(l). Fot the purpose 
of our experiment we took 0\ = 02 = 5. All the computations presented here 

are based on five thousand replications, the same set of samples being used for 

the calculation of the two test statistics. 

We generated samples of sizes n\ and n2 for different combinations of (n^, n2); 

samples of equal sizes (n2 
= 

ri\) and of unequal sizes (n2 
= 

2u\) were chosen for 
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H] = 25, 50 and 100. For each of these cases we computed the empirical levels 

of the likelihood ratio and the Hellinger distance tests as the proportions of test 

statistics exceeding the x2(l) critical values. We used 0.10, 0.05 and 0.01 values 

for the nominal level a. The results are presented in Table 1. 

Table 1. EMPIRICAL LEVELS FOR THE TESTS UNDER UNCONTAMINATED DATA 

(711,712) _Likelihood 
Ratio 

Test_Hellinger 
Distance Test 

_ a 0.10 0.05 0.01 0.10 0.05 Q.Q1 

(25, 25) 0.0960 0.0480 0.0092 0.1416 0.0778 0.0216 

(50,50) 0.0987 0.0498 0.0118 0.1230 0.0681 0.0198 

(100, 100)_0.0934 
0.0506 0.0094 0.1135 0.0656 0.0149 

(25, 50) 0.1049 0.0517 0.0093 0.1476 0.0778 0.0210 

(50, 100) 0.1036 0.0545 0.0109 0.1409 0.0727 0.0168 

(100, 200)_0.0935 
0.0508 0.0092 0.1128 0.0588 0.0146 

To study the robustness of the tests we contaminated samples 1 and 2 at the 

values u\ and ??2 using contaminating proportions (1 and t2 respectively, i.e., 

instead of using the uncontaminated data {d\(x)} and {d2(y)}) we use {d\M (x)} 
and {d? 2(y)} defined by 

<WaO 
= 

0 -^)dl(x)-r(lIUi(x)J 0 <c? < 1, 

*\M 
= 

(1 
- 

e-Odafo) + *2/u2(?O, 0 < (2 < 1, 

where IM denotes the indicator function at the value u. We looked at three 
different cases : 

(a) ii\ 
= 

ri2, c\ 
? 

0.10, u\ 
= 

15, no contamination in the second 

sample; (b) ri\ 
= 

n2) t\ 
? 

0.10, u\ 
= 

10, t2 
= 

0.15, u2 
= 

15; (c) n2 
= 

2n\,t\ 
= 

0.10, u\ 
? 

10, t2 
= 

0.15, u2 
= 15. Note that a Poisson (5) random variable 

takes the values 10 and 15 with approximate probabilities 0.0181 and 0.0002 

respectively. These probability values are sufficiently small for us to study the 

contamination effects at the points u\ = 10 and u2 = 15. The empirical levels 

using the contaminated data are shown in Table 2. 

Table 2. EMPIRICAL LEVELS FOR THE TESTS UNDER CONTAMINATED DATA 

(711,71-2, f-i, ti, U[, u-i) Likelihood Ratio Test Hellinger Distance Test 

_ a 0.10 0.05 0.01 0.10 0.05 0.01 

(25,25,0.10,0,15,-) 0.6822 0.5526 0.3016 0.1776 0.1074 0.0334 

(50,50,0.10,0,15,-) 0.9126 0.8442 0.6414 0.1662 0.0944 0.0302 

(100, 100,0.10,0, 15, -)_0.9966 
0.9914 0.9522 0.1716 0.1026 0.0350 

(25,25,0.10,0.15,10,15) 0.8218 0.7076 0.4198 0.1690 0.0996 0.0290 

(50,50,0.10,0.15,10,15) 0.9840 0.9552 0.8240 0.1666 0.0972 0.0258 

(100, 100, 0.10,0.15, 10, 15)_1.0000 
0.9998 0.9968 0.1706 0.1022 0.0292 

(25,50,0.10,0.15,10,15) 0.9056 0.8314 0.5764 0.1478 0.0830 0.0250 

(50,100,0.10,0.15,10,15) 0.9960 0.9888 0.9388 0.1398 0.0798 0.0240 

(100,200,0.10,0.15,10,15) 1.0000 1.0000 1.0000 0.1492 0.0852 0.0220 
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The results clearly show the strong robustness properties of the Hellinger 
distance test relative to the likelihood ratio test. This point has also been 

observed in the empirical study of Basu and Sarkar (1994c). The level of the 

likelihood ratio test is not affected much if both the samples are contaminated 

at the same value at the same proportion. This is not unexpected because this 

perturbs the estimates of 0\ and 02 roughly by the same amount. We noticed 

this in our simulations but have not presented those numbers here for brevity. 

5. Concluding remarks 

Disparity based test in the single population situation have been studied 

earlier by Simpson (1989), Basu (1993), Basu and Sarkar (1994c) and Lindsay 

(1994). The present paper extends the above works to the case of general 

disparity based robust tests for two populations. Extension of the results to the 

case of k populations, k > 3, is straightforward if n"xnx 
?* c,, 0 < c, < 1, for 

each i = 
1,... ,/c, where n, is the sample size for the i-th population and n = 

(n\ + 7i2 + .. . 
4-Tijfc). Our numerical example above demonstrates the robustness 

properties of the Hellinger distance test. However, the Hellinger distance is just 
one of several disparities that are known to produce robust estimators and tests 

in parametric models. For example, several other members of the blended weight 

Hellinger distance family and the negative exponential disparity can produce 
estimators and tests which are competitive with the Hellinger distance based 

statistics. In the single population case, the robustness of such estimators and 

tests statistics. In the single population case, the robustness of such estimators 

and tests were demonstrated by Basu and Sarkar (1994c) for the normal models. 

In this paper we have considered robust disparity based tests for discrete 

models. The extension of this theory to continuous models requires additional 

tools like kernel density estimation methods. Such an extension will be of great 
value in many practical situations. For example, it will be very useful to deter 

mine robust tests for the equality of several means in the one way analysis of 

variance model. 
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