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§ 1. INTRODUCTION

Schrodinger Operator : In Non-Relativistic Quantum Mechanics the

Schrodinger operator given by the Hamiltonian

H = 5P24W(Q,P) = ~%aeW(Q,P) = H_+H(0,P) (1.1)

where Q,P are the position and momentum operators on:}4 = LZ(Rn) is of

great interest.

(i) When W = 0, H is the energy operator of a freely moving particle.

(ii) When W(Q,P) = W(Q) with W(x) real valued i.e. when W is independent
of P, H is the energy operator of a particle moving under the influence
of the potential W(x). Of special interest will be the case when W is the
Coulomb potential : W(x) = k/|x]| wherefiﬁis a real constant,

(iii) When W(Q,P) = NO(Q) + Wl(Q)Pl + . + Wn(D)Pn, then H is closely
related to the energy operator of a particle moving in a static magnetic
and electric fields. Note that when wl,wz,...,wn are all zero we get (ii).
Thus (ii) is a particular case of (iii). In (iii) we assume that the

intensity of the potentials decreases with the distance from the origin
f
i.e., lim zrle(x)] = 0. The main interest of this thesis is the

<o 30
operator H of (iii).

2 2 4)

(iv) When K(0,7) = W(3) = %0° ar %{G°+Q") then H is called the

Hamiltoniarn of the harmonic or an-harmonic oscillator.

Self adggihtness ¢ Since Non-ilelativistic duantum Mechanics requires that
the operator H should be self adjoint, the first task in Mathematics is to
prove rigorously that,H is, indeed, s¢lf adjoint when suitable conditions
are imposed on W(Q,P). Even when W = 0, H = %5 = H, is not defined on

the whole space. Thus to determine the self adjointness of an operator is
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not an obvious one. There are various technigques and we cite only two,
that of Kato-Rellich and Friedrichs [1,2,3,5]. The first technique is useful”
for {iii) while the second is useful for {(iv).

tet A be densely defined (linear) operator on ﬁwlr, i.e., A is defined
on D(A) with values in j'i and D{A) is a decnse subspace of :’E. A is said
to be closable if there exists a closed operator Al extending A. In such
a case there is an operator AG which is closed, extension of A and every
closed extension of A is alsc an extension of AO. AO is called the closure
of A and D(A) is called a core for Ao' 1f Ao is self adjoint then A is said
to be essentially self adjoint.

Let C:(Rn), s(R") denote the space of all infinitely differentiable
functions with compact support and the Schwartz space of rapidly decreasing
functions. Then it is known [1,2,3,5] thkat HD with its maximal domain is
self adjoint and that both Cz(Rn), 5(R") are cores for H .

For self .adjointness a necessary condition is symmetry. The operators
H in (i), (ii) and (iv) are obviously symmetric. For (iii) we assume that

n
wj are real valued. Then for symmetry we need Bwj(x)/ax = 0 in the

, J
j=1
sense of distributicns which we always assume. At a later stage we shall
split WJ into Hj = wga-ws where Wg is smooth. In such a case we shall
n n
further assune that 0§ = E BW%(x)/ax. = E BNS(X)/ax..
j=1 J J j=1 J J

The energy operator with a static electro-magnetic field is given by
H=X% z(P.+H.(Q))2 + W (Q). Then H = <%A+Z W (Q)P.+W (Q)-1i £ oW _(Q)/oU .,
1 0 j ¢ J O 3 J 3
which reduces to (iii) if the last summand is zero.
In (iii) H can be thought of as a perturbation of HO and Kato-Rellich

Theorem {1,2,3,5] answers when is the perturbation of a self ad joint

operator self adjoint.
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Theorem 1.1 (Kato-Rellich) [1,2,3,5] : Let A be a self adjoint operator,

B symmetric with D(B) _> D(A). Define

p(B,A) = inf{s > 0: Fcr some b > 0 and all f¢& D(A),}|BF|]| < a||Af|| + b]|f]

If p(B,A) < « then B is said to be bounded relative to A or simply B is
A bounded. p(B,A) is called the relative bound of B w.r.t A or simply A

bhound. If p(B,A) < 1 then

(i) A+B with D{A+B) = D{A) is self adjoint,
(ii) any core for A is a core for A+B,

(iii) A+B is bounded below if A is.

Remark 1.2 : Let A be self adjoint, D(B) ~)D(A). If B(A+i)™' is compact
then p(B,A) = 0. K

As a consequence we have the following

Theorem 1.3 : Define for A < n

{gR" >R : sup | dytaty | 2 fx-y |} < )
x |y-x]<d

"

H

and for A >n

2
{q:Rn >R :1sup | lq(y)| dy < «}.
x Ix-y|<1

"\

If Wj & MA for some A < 2 for j = 0,1,...,n then
(i} p( I wj(u)Pj e HO(Q),HO) =0

(ii) H = Ho + EW‘].(Q)P.j + NQ(Q) is self adjoint with D(H) = D(Hg).

Proof : Refer Theorem 10-18 [3].

Remark 1.4 : MA is a linear space for each A. Further if q(x) = ix—al"6

for some a € R" and § =« (0,%0) then g ¢ M This shows that there are

)“I
also unbounded functians in MA' Certainly all the bounded functions are in

!'I, -
“~

- -
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v & b
* L]

Theorem 1.5 : (Friedrichs) [1,2,3,5] : Let A be a densely defined symmetric

nonnegative operator in a Hilbert space“}{l. Then A has an extension to

0, = {fe 3~i : there exists a sequence f_ inD(4)such that f, + f strongly

and lim <A(fn-Fm),fn-fm> = 0}
n,mece

and the extension is self adjoint, nonnegative called Friedrichs extension
of A,

Now Pz,az are both defined on S(Rn) and so is P2+Q2 on S(Rn) Gt which
it is nonnegative. By Friedrichs’ theorem P2+Q2 nas z self adjoint extension.
Similarly P2+92+Qa has a self adjoint extension. 8y the same argument
P2+(PQ+QP)2 and P6+(PQ+QP)Q defined on S(R™) have self adjoint extensions,
infact S(R™) is a core.

Some other methods for proving self adjointness are {i) perturbation of

quadratic forms [Z,5] {(ii) Nelson's theory of analytic vectors (3,53].

Spectrum (essential, point) tHaving docided the self adjointness, the next

important thing is to decide the spectrum and the spectral properti=ss of the
operator. If A is self adjoint then the only general result known is that
o(A) = spec (A} {1,7,3,4,5,7] is a closed subset of R, Infact given any
closed sct C of R we can find a self adjoint A with of{A) = €. {Let

{xl,xz,.., } be any countable dense subset of €. Un

2

. N = e 1
At = {(al,az,,..) : a_ are compiex numbers, Z]ant < =}

define A(al,az,...) = (xlal,xzaz,...) so that C = spec A-)} The operator p?
has no eigenvaiue at all where as P2+Q2 thas only eigenvalues in the
spectrum; g(Pz) = [0,«) where as g(F2+Qz) = {{r¥)7 + n = 0,1,2,...}

let gd{A) = all the discrote eigenvalues of A of finite multiplicity and
ToeslA) = o(AY~o4(A) {1,2,3,4]. The 0,45 (A) is stable under compsct

perturbatiens., More precisely
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Theorem 1.6 (Kato-Weyl) [1,2,3,7] Let A be self adjoint. If B is
symmetric with D(8) THD(A) and B(A-l—i)-'I is compact then A+B is self adjoint
with D(A+B) = D(A) and o (A+B) = o___(A).

To decide the compactness of F(Q)g(P) we have

Theorem 1.7 Let Idx(lf(x)[2 + |g(x)]2)(l+|x!)u <« for some u > n. Then
the operator f(Q)g(P} on Lz(Rn) is a trace class apsratoer.

The sbove theorem is Theorem X1.21 of [6].

Corollary 1.8 Let f,g be bounded (real valued) functions on R" vanishing

at ». Then f(Q)g(P) is a compact operator.

Proof : Let f&(x) = F(|x] < m)f(x), g_(k) = F(}k| < m)g(k) where F stends
for the indicator function. Then by Theorgm 1.7 fm(Q)gm(P) is compact.
Since lim llfm(ﬂ)gm(P)-f(Q)g(P)i! = G, f(Q)g(P) is compact.

mo o

Q-E-D-

Note that, hcwever, by Weyl-von Neumann Theorem [1,2] that
even when A does not have any eigenvalue at all, one can choose a Hilbert-
Schmidt operator B such that A+B has only eigenvalues in its spectrum.

i = -3 =f0,=). If | 3 ions

The operator H_ 50 has o (H )} =t0, ) wj are bounded functions
vanishing at « for j = 0,1,...n, then {ZNJ(Q)PJ+WO(Q)}(HO+1)"1 is compact
by Corollary 1.8. By Theorem 1.6 H = -LA+ wj(Q)Pj+wo(Q) has UESS(H):[G,m);
consequently all the negative eigenvalues of H, if any, are of finite
multiplicity and they can accqu1ete, possibly, only at zero. For positive
eigenvaluecs the same result is true when Wj(x) are bounded and behave like

[xldl*e at » for some € > 0 and all j = 0,1,2,... n [E].
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regarding the finiteness or infiniteness, positivity or negativity,
degenerate or nondegenerate properties of - %A + W(Q) and about propertiss of
eigen vectors we rcfer to [7],

Let T4 (AN 1 L (RY, 7 (R), T (A E(A), E(R), E_(A), E__(A);

A Aac’ Asc be the point, continuous, absolutely continuous,singularly

0 B

continuous space; the respective orthogonal projections on these spaces;
For 2\.21% G.A.dc:;mr A.

and AEp(A), AE_(A), RE_ (A}, AESC(A) respectively, Let op(ﬂ) be the

A

eigenvalues of A, cC(A), Oac(A)’ gsc(A) the spectrum of Als Ao -

respectively. For all these refer [1,2,3,4). Note the inclusion UC(A)(“”

- - ey -
Gess(A) so that UC(H)L__{D, ) where H QA+ENJ(Q)Pj+w0(Q) where Wj are
bounded and vanish at = for every J =0,1,...,n.

The operator H, == %A in the momentum representation is given by tho
polynomial % kz and so has absolutely copﬁinuous spectrum; in other words
Eac(Ho) =¥ L

Using the idea of dilation analyticity [9] - A + WO(Q) is shown to
have no singular continuous spectrum where wo is the physically important
Coulomb potential i.e., Wo(x) = k/|x|. The same result is proved for N-body

case in {107.

Scattering Theory (short range) One way, viz, the Physicist's way of

proving that two self adjoint operators are unitarily equivalent is to use
the notion of wave operators. For any two self adjoint operators A and B
define the wave operators

0.(B,A) = s-lim o0 o7ItA E
-+ ac

n Eopon
if it exists. If ﬂ+ exists, it is clear that Q+ is an isometry onr?{ac(A)

Fa

ihto?*LaC(B) and satisfies the intertwining property:
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H B

s.E-G-ABC

or 91 Ao B @ . If further Range Q= :}{ac(B) (or Range Q_

1]

then Q, (or 2) ig—gnitary betweeni}{ac(A) and :}{aC(B) and BacQ+
(or Bacﬂ- = g_AaC). In other words Bac and Aac are unitarily equivalent,

For an example where Q_ (B,A) exists but Range Q,, Range Q—’t}{ac(B) are
all distinct refer [11]. ]

We say that asymptotic completeness holds for the pair (B,A) if
Range Q+(B,A) zZ}{ac(B) = Range o _(B,A).

If Q+(A,B) exists then asymptotic completeness holds. Thus showing
Bac is un;£arily equivalent to Aac seems to be an easy work. But in practice
only one of the operators A or B is simple about which lot of details are
available, ‘

If all the Wj j=0,1,...,n are bounded with 0(|x|™"),y > 1 at = then using
Cook's method [12,13,1,2,3,6] it is easy férshow that Q+ = Q+ (H,HO) exist
where H0 = BA, B = H0 + ijia)Pj + WO(Q). Using eigé: fuﬁgiion expansions
Agmon [14], Kureda [15] have proved (i) oSC(H) is empty (ii)i}{ac(H) =
Range q_ (iii) the positive eigenvalues cof H are of finite multiplicity and
can acc;ﬁulate only at zero. When Wj =0 for j = 1,2,...,n questions (i)
and (ii) above have been proved to be in the affirmative by using stationary

methods or eigenfunction expansions or smooth perturbations by various authors.

The literature is too vast and a qood reference is [2,6,7].

Trace method (time~dependent, short range) A typical theorem of this method
will be "If ¢(A,B) [which is antisymmetric in A and B] is of trace class for
two self adjoint operators A,B then the wave operators Q+(B,A) exist and
asymptotic completeness holds"., While Kato takes w(A,B)m; A-B ,Kato-Kuroda
take @(A,B) = (A-a-i)_1 - (8+i)_1. Birman's Theorem is stated in § 7.

The advantage of trace method is that it is abstract. The disadvantages

are: (i) no information is given about the singular continuous spectrum, (ii)
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even for the simplest model where Ho = - %A, H = H, + WO(Q) with WD
bounded one reguires ﬁo(x) = 0({x|™™) where p > n (Theorem X1.30{6]).
However, if WD is assumed to be spherically symmetric, i.e., a function

of |x| only, p > 1 would be enough {Theorem X1.31[6]}.

Time dependent "Geometric' method : let H = H0+WO(Q), HD = = %A, Wo

bounded with W _(x) = a(|xI™), u> 1.

Recently Engs [16] has proved (i) USC(H) = empty and (ii) asymptotic
completeness for H using e geometric method. tet F(A ¢ E) or F(E|A) denote,
for any Borel subset £ of R and any self adjoint A the spectral projection
of A on E. (This notation F(A £ E) or F(E|A) we shall follow throught this
thesis). Choose f&:}£C(H) such that i spectral support of f is compact
in (0,=). Then one finds a ¢ ¢ Cz(ﬂ,m) such that (H)f = f. Next one
chooses a sequence f _ increasing to = so that [o(HM)-(t )TV, f and
F(1Q < n)V, f both converge to zero strongly where V. = ex;(—itH). Put

n

f =V, f. Thep the space S5(n} = {{Q,P) : {Q] > n, @(%Pz) # 0} is split
n

into S*(n) and 57(n); on 57 (n), "Q.P" is >0 and on S™(n) "Q.P" < 0.
Corresponding to this splitting Enss is able to construct fn (out) and fn (in)
so that (i) (Q+ ~-1) 7 (out), (Q_-l)fn(in) both converge to zero strongly

and (ii) fn = fn (in) + fn (out) + fn {waste) where fn (waste) =

{1-g(H )3}f_ + F(iGj< n)f . So one concludes that}ﬁic(H)<::;Range Qﬁ which

at one stoke proves absence of singular continuous spectrum and asymptotic
completeness for H,

Simon [8) extended the techniques of Enss to a large class of
operators; H = - %A + ij(Q)Pj + WO(Q) where wj,wo are bounded and of
0(|x|™), u > 1 is only a particular case of his work.

Mourre [17] soon got the same results as in [16] by putting the ideas
of Enss in the more eleqgant form (Qi -1) w(HO) F(PQ+p z Q) is compact for

every q;éitz(ﬁ,m); here H and Hu are as in the case of Enss. To get the

necessary estimates Mourre uses certain differential inequalities.
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- 13
% 2 .

Ferry [18] also gets, for the same i, H0 as in Mourre,

(s2; -l)¢(Hd) F(PO+QP » 0) is compact; he uses the idea of Mellin's

transform to get the necessary estimsates.
Sinha [19] gets the same result as of Perry by noting that log HO and
(PQ + QP)/4 can be considered to be canonical conjugate variables and using
integration by parts.
Since s~lim F(|Q| > n} = 0, by results of [17,18,19] it is clear
n o+

that one can expect lim i|{ﬂ+ -1F(QP+PQ > 0, [G] >0y a < [P} <bY[] =1

p— it
for every a,b & (0,»). That it is so was proved by Davies [20] in the form,
where 1 is as in § 3,
oo [Jg, -1 T{l,k) 2 a < k| <by  kx 3 0,]x| 2 n}j =0
o B i
using the notion of generalised coherant states from {21, 22] and by the
method of stationary phase.
By using the techniques of [20] it is not hard to show (Lemma 4.3 |
Theorem 4.6) that for every ¢ e_C: {0,») therc exists an a > 0 such that
lim H -DueH DF(|e] < alt])|} =0 .
L+ +w =
This together with the "folk theorem” Vt Ut {3 Uz Vt
strongly on i}{C(H) as |t| » = (proved as Theorem 2.1l ir [23]) gives

J_iC(H}(::;Range Q.

/|t] converges to 0

Long range {existence} For the “Hamiltonians H, and H let U, = exp(—itHo),

+ k‘Qiﬂi it was known that Vt Ut

does not have a strong limit as t + + =« or as t + - «. Dollard [24]

= ~itH) = -k =
Vt = exp(-itH). When H0 sA, H HO

proved that £ = s- lim V* Z exists whers
+ t "t
o [
s i 1
. exp(-1X(t,P)y, X{t,P) = %th + kisign t)|P} "~ 10@(—2!t]lplz)-

Alsc he proved, Sy the mcthod of eigenfunction evxpansions; asymptotic

4

completeness i.e. 14 (H) = Range 2 3e
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Let W be a C” potential on R such that [D%_(x)} < ka(l-pjx])“d‘hl
for every multi-index ¢ and for some § in (3,1); H, = =%, H = H (&),
: t :
Define I(0,t,P} = 0, I(1,t,P) = | dti (P), ..., I(m,t,P) =
0

t
i dTWD(TP+BI(m*l,T,P)/3P) inductively; X(m,t,P) = %th + I{m,t,P).
0

Buslaev-Matveev [25],Alsholm [26] have shown that given § > O there
exists a m depending on § such that if Zy zexp(~-iX(m,t,P)} then

Q, = s-lim ngt exist. While Buslaev-Metveev use stationary phase methods,
- t+4w

Alsholm uses meen value theorem for operator valued functions.
Bertheir-Collet [27] prove,using stationary phase,existence of
wave operators for H = -%A + T where T is a suitable pseudo differential
operator which includes as a particular case T = WO(Q) with § > %.
Finally Hormander [28) has proved the.existence of wave operators for

a large class of pseudo differential operators. For a statement refer § 2.

Long range (completeness-eigenfunction methods). Spectral properties and

completeness for H = - %A + WU(Q) have been studied by Lavine [29], Kitada [30],

Saito [31]. Agmon [32] has proved asymptotic completeness for a large

class of operators of the form H = hO(P) + I WQ(Q)PQ where ho(P) is an elliptic
o

operator and the Wa‘s are long range smooth potentials.

Long range (algebraic thcory) Amrein-Martin-Misra {33] have proved

asymptotic completeness for H = - %A + i~:|(§)|"(S for § in (%,1], k constant.
Thomas [34] has proved asymptotic completeness for H = - %A + W,(Q) where

W, is spherically symmetric and is of U(IXI—S) at « for some § > O,

Long range (completeness-time dependent theory): Enss [35,36] extended his

ideas of [16] to prove absence of singular continuaus spectrum and asymptotic
completeness for H = - %A + W_(Q) where 0% _(x) = O(fxl"lal-a) where
8 > (2n+2)/(2m3)., He also proved that the positive eigenvalues of H,if any

are of finite multiplicity and accumulate, possibly, only at zero.
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s 11 :

Perty [37] proved the same results as of Cnss [35] for & > % when
HO is assumed to be dilation analytic. His method consists in showing
(1) given ¢ &,C:(G,m) there exist a,b (depending on ¢} such that for every

B <4

0= lim sup |[[(Vy_ -2, Z9)F(|Q-sP| < sB)¢(H0)F(PQ+QP¢5 (sa,sb)||
8+ot>s

and (ii) V§ U, Q U%VtitlnY converges to O strongly on}{.c(H) for every
y > 1-48.
Muthuramalingam and Sinha have proved similar results in [38] without
agsuming dilation analyticity. They also have estimates similar to (i)
of Perry.
All of [35, 37,38] use Alsohlm2 construction of Zyjs
Recently Kitada-Yajima [39] have proved the above resulis for &§ > 0.
Their method extends to time dependent Hamiitonians. While they achieve
the maximum, their estimates are complicated. The method émployed in this

thesis are reassnably simple. However we are not able to get to & > 0 because

the theory of asymptotic evolution of observables is in its infancy.

Arrangement of the aricle. In § 2, we take as in Hormander [28]

= pt = P i
L hg(P) + i Wa(Q). X Ho ho(.) where each Wa is a sum of a short range

L

potential WS and a smocth long range potential e with DOW;(x)xﬂ([x[_5_lef)

for ail multiindices 6 with 0 < & < 1; h K" + R is & pclynomial such that
= {g:|Vh0(g)| + ]det(aho/agi agj)l # 0} is an open set whose complement
hag lLebesgue measure zero. Following [28], we solve the ramilton Jaccbi

equation §X(t,£)/3t = n (g) + W (ax( ,E)/3E,E) where wL(x,g} = 7 w:;(x)g“.
48

Because of our stronger assumptions on the decay of the W;'s we get stronger
decay rates for X{t,f£} and all its derivatives, fcllowing [28]. Also the

- ~3im FYE 3 Lt
wave cperators Qi = :.fimm Vi Zt’ft

are introduced and its various properties stated.

TR 0

7 '«** 'L’aa' TN
”“ O ogeqam s Ty mepyes ﬁ

= exp(-itH), Z, = exp(—iX(t,P)LUt:exp(—itHG)
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: 12 ¢ ,

In § 3, using ths ideas of [20,21,22] we introduce the positive operator

valued measure T on R" x R". It will help us to "sharply" localite in the '
momentum space and localise in the position space. Also we get some clementary

' but useful results about T.

In § 4, with H, HO etc. as in § 2, we prove that 2, is "near" 1 in the
distance future or past respectively. More precisely for Qe C§(G),

B < (n+ 48)/(2n+4), a > 0

0= Lin {|(q, 2%, U-~1Z, oP) F(|Q] < a]t]|®)(]

t++ o
Proof of this result depends on T of § 3, stationary phase method and thc

existence proof of wave operators in [28].

In 8 5, we state a theorem of Kalf [40] on the absence of positive

eigenvalues and apply it to our model.

In § 6, we take HD = %A, H = H, +Z WE(Q)PJ + WE(Q) and prove ,follewing
[23];that‘on:?{c(H), V, and U, are indistinguishable; more precisely, for
8>1-6,a>0 we gst i—jimm FCia) 2 alt® ur v, =0 on P (). This
together with § 4 gives (i) absence of singular continucus spectrum vy d G:)
asymptotic completeness for H where § > %,

In § 7, we show that we can allownon-smooth wj's (i.e. short range).

In the appendix we collect lot of results, mostly from (28], which

were used in § 2 and § 4,
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§ 2. SOLUTION OF A HAMILTON-JACOBI EQUATION AND THE
EXISTENCE OF WAVE OPERATORS
Let P = (Pl’PZ""’Pn)’ Pj = - iD‘j =-ia/axj, Q= (Gl,...,ﬂn) be the
self adjoint operators dencting the momentum and position on the Hilbert

space‘EMQ = Lz(ﬁn), Let hoéﬁn + R be a polynomial such that

6= (£ 2 RV, (8)] + [det (ah (£)/3€;3E,) | # O} (2.1)

. N e il .
is an open set whose complement in R has Lebesque measure zero. Define

the free Hamiltenian Ho by

H = hO(F) (2.2)

3
€learly HO has only absolutely continunus spectrum.
tet o = (al"“’“n) be & multi-index with all the entries nonnegative
‘integers; and length |af given Ly |af = a+ Gyt ... + o . Fora fixedm >0

let Wz, wt For'}al < m, be real valued measurable functions on R" satisfying

5

the following pruperties.

There exists an e > 0 and a positive integer N such that for all

laj < m the operator
wi(ﬂ)(l+|Q[)l+€ (l+{F’l)-M is compact (2.3)
For each |a] < m, W; is a C” function and therc exists a & in (0,1)
such that for all multi-indices 8
08 w;(x)i < Kq (1+jx[)‘]9|"6 (2.4)

for suitable constants KB'

Throughout this thesis K will stand for a generic constant.

Let H:S(R™) - Lz(Rn) be given by

Ha=H o+ § W@P%e T w@p®. (2.5)
jof<m @ lalam @
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We make the following

Hypothesis 1 H has a self adjoint extension. We shall denote the

3

extension also by the same letter H. Denote W°, W~ by

W (x,E) = Ewi(x)g“ )

a !
L N b a |
Wo(x,E) = E i (x)E \\

and (’ (2.6)
W(Q,P) = § W (QPY
o

° |
W-(a,P) = § WE(Q)P® ‘

A LT

Lemma 2,1 : Let C be a compact subset of G. If t;l and ¢ are sufficiently

small, then the Hamilton's equaticns

dE/dt - b (x,E)/ax 5

13

- d)(/dt

i (2.7)

(3 /3E) + M (x,E)/9E

have solutions for all t > to with arbitrary Cauchy-data

g(t) =n, x(t) =t vy, ‘2
where MJ (2.8)
ne € oand fy-h!(n)| < g
Denote the solution by £(t,y,n), x(t,y,n}. Then there exist constantg

K., K such that

g’
|D3’n{€(tsY’n)-n}| < Kg t;é, la] <1, (2.9
IX(t,ysn)t'l - hé(gt,y,n))| <K TR I (2.18)
Moreover
lesﬂ (g(t,y,n), x(t,y,n)t“l)] 5-Ke tu(|9|) for all @, (2.11)
where u(0) = 8, u(k) = (k-1) p(2) for k > 1, u(2) is arbitrary subject to

D < u(2) < min{%,8,1-8%.
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Proof : We follow [28]. Refer [28) for the proof of (2.7), (2.8), (2.9},
(2.10) and (2.11) for feo] < 1.

Let us now consider a derivative of order k of the Hamilton's equations
with respect to the varisbles (y,n), assuming that k > 1 and that (2.11)

has already been proved for derivatives of order < k., Let

b
olt,y,8) = (Vx W) (ty,k)
si thet for suitable constants KG

gt e eiling

four all g,
Note that {u(k)} is a convex sequence and therefore, by Lemma A.l, in
the derivatives of order k of VXWL(x,g) = oltyx/t,8) wor.t. (y,n) the

terms where ¢ is differentiated et least twice can be bounded by t raised

tc the power

max{-1-8+pu(k-1);-1-§} = -1-§+pu(k-1) . (2.12)
Say for |6 =k

2

49 ¢ _pf & g
Gt Yy, B =%, @t gt 206,80 byt @a7)

8
y:n

i 8 : 6 ~1-84+1:(k=1) .
= - ¢z(t,z,E)Dy,n(x/t)-¢g(t,z,g)Dy’ng + 0(t Je (2.13)
Let
plt,y,8) = (VE WL)(tV!E)
8o that
8 1 .-'6
IDY:E | < Kg t for all 6. (2.14)

Now Lemma A.1 shows that in the derivatives of order k of (Vg WL)(x,g) =
ylt,x/t,8) w.r.t. (y,n), the terms where { is differentiated at least

twice can be bounded by t raised tc the power

max -8+ (k-1),-8} = - §+u(k-1) . (2.15)
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Thus, for |8| = k, as in the derivation of (2.13), using (2.13), we get

g_ e = 8 LI ] 6 ' 8 "6 ‘(k*l)
G Oy, X = Dy, hEEa) (62,000 (x/t)+py(t,2,0000 gao(e o k-1))

i 8 p(k-1) : 0 ' 8
ho(g)oy,ng + 0(t )+ wz(t,Z,E)Dy’n(X/t)+w£(t,z,g)Dy9n£+

; 0 : 8 nlk-1)y |
{h2(g) + wé(t,z,g)}oy,ng + wz(t,z,g)Dy,n(x/t)+ o(t )
® s (2-16)
From (2.13) and (2.16) the k-th order derivatives of £,x w.r.t. (y,n) are

bounded by solutions of differential inequalities:

~-1-6 -1-8+ulk-1)

dz/dt > K(£™ 40 4+ ¢80 z) 4 ¢

dx/dt > K(Z + g~ 178wy, gu(k-1) K

b

& s X = tK

which 8fe bounds initially. Taking = = t Kl with a,b > 0 ,

we see that the.above inequalities are satisfied iff

2

a - 1> maw{b-2-8,-1-8+a, -1-&+p(k-1)}
and
b - 1> max{a , -1-§+b, plk=-13} .

It is easily seen that for a = p(k), b = a+l the above inequalities are

satisfied.
Q.E.D.

Using thc above lemma we snlve the Hamilton Jacobi equations in a

natural way in

Theorem 2.2 : There existsaf function X = X(t,E), X:® x &« + R such that
for § in any compact subset of G, we have for large |t]

L
(

ax/at = h (€) + W (BX/GE,E) (2.17)
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R

og K(te)| < kg el gy (2.18)
|og{t‘1 X6 €)Y ¢ kU8 (2.19)
iD?{wL(ax/aa,&:)}l < Ky goiieD , (2.20)
where
vik) = ulk) - § .
Proof : Similar to Theorem 3.8 of [28]. L b

Let Vt, Ut’ Zt be the total, free, modified evolutions given by

vt = exp{-itH) )
Uy = exp(—itHo) ;
Zt = exp(~iX{t,P)) . .

Then we have the following
Theorem 2.3  The modified wave operators

2, = s-lim VX 7, (2.21)
- t++ ®

exist on Lz(Rn). They are isometries and satisfy the intertwining relations
Ve, =oq U . (2.22)

Also,

~ — ‘! - 2
Range 91ﬁ=¢ “yac(H) ' (2.23)
Further Zt is feebly osciilating; i.e. for svery real s

s~lim Fi = i (2.24)

if
tot+ @ t's

Z-)(-
t+s

Proof : Refer [28]. Q E-D.
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Definition 2.4 : The system (H,HO) is said to have

(1) weak asymptotic completeness if Range £, = Range §_ ,
(ii) asymptotic completeness if Range Q, =:}{GC(H) = Range Q_,
(iii)  strong asymptotic completeness if Range @ ;}{C(H) = Range @ .

Certainly strong asymptotic completeness is equivalent to asymptotic

(H) = {0}.

completeness together with E{Sc

The following Lemma on Range Q, follows from (2.21).
Lemma 2.5 (i) Range £, 1is closed,

(ii) Range Q, = {f € Fl o s-lim (@, 2§ Ug - DV, F =0},

t++ @ t

(iii) If f £ Range i, » then for every a> 0 and every 8 > 0

b ]

Lin  [IFCQ) 2 aft!®yzp v, £]] = 0 : (2.25)

to+
A partial cqnverse of (2.25) shall be proved in Corollary 4.7, To
achieve this we require some technicalities presented in § 3.
The next Lemmz shows that £ £ Range ¢, iff "every H-part of f" is in

Range Qt .

: . @ -1
Lemma 2.6 : Let ¢, be any sequence in CO(G) such that 0 2 ¢ <1and B {1)
increases to G. let & ]{_. Then f £ Range Q+ iff there exists a sequence

f, in Range Qi such that s;;imm f, = f and for every k, it}imm{l-mk(P)}thk:D.

Proof : Since Range {i_ is closed,sufficiency is clear. Necessity part

will be proved only for the positive sign. If f & Range Siyo define

e, T - .
fo=a Fla (1)]P)g wheref: 2,9, so that i_ilz fi, = f. Further
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|1{1- PV, £l

< |[{1-g (PYYV, f T4 Fla (DIP)g}| + ||(1-¢k(P)}F(¢E1(1)}P)Ztgli

< 2] |Vg Fi-2, Flog () {Pgljs 0 .

Thus s-1im (l-—cpk(P)) Vt fk = 0.

t+ @

Q.E .D L
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§ 3. A POSITIVE OPERATOR VALUED MEASURE

Choose and fix ¢ in (0, 1/3), n & 5{R™), such that H—the Fourier

transform of n defined by

r0 = (202 fdx e K i)
has
supp ﬁ C ke R™ & |k| < c/8)} . (3.1)

Yo further normalize n as

2 2
Hnll™ = [, dx InGOl" =21 . (3.2)
R
f n n
Define, for (x,k)g R x R, Nyic by

{exp(+i x.p))ﬂ(p—k) (3.3)

rd
(n) (P)
s that

nxk(y) = (exp ix.{(y+x))n(y-x) » (3.4)

Tyl is called a generalized coherent state,
For any Borel subset M of R" x Rn, define an operator R(M) on Lz(Rn)
hv *he woak integral
-
T(M) = (2m) j’M dx dk <y > Ny (3.5)

where «<,> denctes the inner product in LZ(Rn), linear in the second

variable. Then T is a positive operator valued measure defined on the

Borel subsets of R x 7" sc that for Sorel subsets Mys Mo of R™ x R"
D < T(M) U My) < T(M;) + T(My) (3.6)
T(Ml u MZ) = T(Ml) + T(Mz) if My, M, are disjoint (3.7)

0 < TMy) < T(My) if MyT7 My . (3.8)


http://www.cvisiontech.com

| 2

Furthermore, for any M,

0« 1900 < T0 « TRT x 87) = 1 ¢ (3.9)

Gf special interest is when M = Bl x k™" or # = R" x Bz, Bl’BZ Borel in R".

n

In such a case, T(Bl x R [ TR x Bz}] is a multiplication operator in the

position [momentum] space and is given by

Tia, xR/ 2 (XBI * Inl®) @, (3.13)
TR x B,) = (Xﬂz s inlh @ - (3.11)

All the above can be found in [20,21,22].

——

Ltemma 3.1 (i) For My s M2 Borel subsets of R" x R" and fz J—t

TG 5 MIEE < (T e T FID L,

(ii) If Y is any bounded operator onfiwithen for every #,,H,

+

TGy U MY < (Y]] + [TGY DY

~ then

[

L~

{11i) If My, and f &
reeil® < [HToeL (e,
{iv) for any bounded voperator Y on—}{'and Ml = M2
TGV < HTCOYIL YL,
(v) If o is any bounded continuous real valued function on R"
such that dist (supp g, Bz) > ¢/8 then for every By in 8"

@(?) T(Bl X BZ) E M= T(Bl X 82)¢(P);

(vi) There exist constants K , © > 1 such that for t > t

FOGl <) < (K /) + T{{x,k) « x| < 2t}
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Proof (i) Follows from (3.6), (3.9) and Cauchy-Schwartz inequality.
(ii) Follows from {i).
(iii) Follow. from (3.8), (3.9) and Cauchy-Schwartz inequality.
{iv) Follows from (iii)

(v) Case 1. let By = R". Then by (3.11) T(R" x B,) is &
multiplication operator in the momentum space with support in a

¢/8 neighbourhood of B2 and so the result is clear.

ey
|

Case 2. Let Bl be any Borel subset of R". Then for f& f%,;

by (3.9), (3.8)
||T(le82)(p(P)F||2 & <T(R" x Bz)@(P)f,w(P)f> = 0 by case (i)~
So T(B; x BZ)Q(P) = 0. Taking adjoints one gets @(P)T(leﬂz) = Th

(vi) By (3.18) there exist constants Kor ty 21 such that for all trt,

0 < Tilxak) = [xj >t} < F({Q] > t/2) + (K /t) » (3.12)
FOIQ] < t/2)
= 1-F(|Q} > t/2)
S IT{OGK) 5 ix] 2 b} + (K /t) by (3.12)
= T{{xk) & x| <t} + (K /t) by (3.7) and (3.9).
g.E.D.

Corollary 3.2 :+ Let Y, be a norm bounded sequence of operators; Mj(k)

Borel subset of R x R" for k = Yopwvny F 2 1p2 0., 0% IF
kl_i;mm |§Yk T(Mj(kl)li =0 for j=1,2,...,r then for any sequence M(k)
such that M(k)7”U M.(k} we have 1lim {|Y,  T(M(k))|| = O.
j=1 TR
Proof Follows by noting [|A]] = |{A"|| for any operator A and using

Lemma 3.1 (i1), (iv). G.E.D
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§ &, REDUCTION 70 THE EVOLUTION OF ASYMPTOTIC OBSERVABLES.

. . | . p—
"Lemma 4.1 (i) (Interpocletion) Let‘fﬁ_be any Hilbert space, J:}{a+ }4 a
bounded vperator; A,B8 poesitive self adjoint operators (not necessarily
bounded} on j‘L . Let for two numbers a,b with 0 < a < b, B® JA™ and

b

B JA"b be bourded.  Then for every ¢ in [a,b] the operator B® A7 is

bounded and I 'BCJA-C} If_‘ IBEJA—E{‘ I (b-c)/(b—a)l leJA"bI l (c-a)/(b—-a)

(ii) Let ¢ & S(R™) and M an integer > 0. Then for every

v (0,13, (1+PHM (214637 o(P)(140%)Y is a bounded operator.

Proof (i) Similar to Proposition 9, page 44 [5].

(ii) Step (i) M = 0. By interpolation, it is enough to prove
the result for y = 0 and y = 1. For y = 0 it is trivisl; for y = 1 write
(l+02)'1 @(P)(1+Q2) = o(P) + (1+02)-l [m(P),Qz] and use the commutaticn

relatiocns betweeh P and (.

step (ii) For arbitrary M expand (1+P2)M by Binomial Theorem, usc
commutation rules, the result fer M = 0 and the fact that if g ¢ S(R™M) then

for every polynomial f, fy & s(R™M).
0.e.D,

Lemma 4.2 (Stationary phase) Let G, h, be as in § 2. let ¢ & C:(G)
have support in the compact set U and Gl any open set containing
{Vho(g) : £ & C}. Then given any integer M > 0 there exists e constant

_KH (independent of t,¢) such that
[f dg o(g) exp(i{x.g-th (£)})

. . - NI A
< KM(1+{x; « |th | 2 ' | {579}, whenever x/t‘F,u .
101 <M

T
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Proof Similar to Lemma 2, page 336 of [6]. ©:& -I-
Let E be any subset of R” and b > 0. Then {x:dist(x,E) < b} will
be called the b neighbourhood of E and {x:dist(x,E) < b} will be called the

closed b neighbourhood of E.

Lemma 4.3 Let Zt, X, G, h0 be as in § 2; T as in § 3. Let

B(t) = {x ¢ R": [x| < t} be the closed ball of radius t with origin as
center; let £ be a bounded subset of G such that for some c in (0,1/3) the
¢ neighbourhood of E is in G and in that neighbourhood £+ th(g) is 8
diffeomorphism. let ¢ < C(G). Then there exists an a > O such that

() Lim [ dt] [T o)z, T(B(as) x B)|] = 0

8+ O

(i) dm dt{]WS(Q,P)w(P)Zt+S T(B(as) x E)|| = O

S+ @ 0

Proof  Let y 2 C_(G) be such that y = 1 in the 3c/(16) neigtbourhood of E
and 0 out side the 7¢/(32) neighbourhood of E, Then by Lemma 3.1(v) ,
{1-y(P)}T(B(as) x E) = 0 for all a > 0 so that o(P)T(B(as) x E) =
e(PIP(PIT(B(as)xf). So replacing ¢ by @) if necessary, we can, and shall,

assume that ¢ vanistes out side the 7¢/(32) neighbourhood of E.

(i) The result follows if, for some b > O,
o

lim § dt]|F(je] < b(t+s)o(P)z,,  T(B(as) x E)|| = 0

S <+ @wQ

Choose 4a = 4b = inf{gvhe(g)[:dist(g,a) < c/4}. By (2.19) there exists

- 8, > 0 such that for all s > So+ t > 0 and all £ in the closed c/4

neighbourhood of E

ng{X(t+s,€)w(t+s)h0(£)}] S_Ke(t+s)l+v(lel) for all 8. (4.1)
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Take £

H

{£:dist(£,E) < o/8}

G,
1

i

iy Iyl > /2

and apply stationary phase Lemma 4.2 so that whenever |Qwx| < 2b(t+s) with

tzﬂ,sisoandkg &

] dE G(E)N(E-K) exp(il(Gex) -E-X(t+s,E)])|

< KM(1+'iQ+xf+|t+s])“M IE ][Dg{(p(g)ﬁ(g-k)exp(i[(t+s)h0(§)-x(t+s,g)J)}|]m
6| <
< KM(t+s)"M5 by (4.1) and Lemma A.2 » (4.2)

Now as in [20],denoting by[Y|the Lebesgue messure of Y,

HE(a] < bltesho(#)Z, ,  T(B(as) x E)||

1L

< [B(b(t+s))|” sup { { dx dk | T{Q,x,k,t+s)|
(] <b(t+s) Blas)xE °*

where

10,x,k,t+8) = fdE o(E)N(E-K) exp(i[(Q4x) -E-X(t+s,E)]).

Using (4.2)

HF( Q] ib(t+s))qg(P)Zt+8 T(8(as) x £}{|
Ln =
< KM(t+S)" s’ (t+s) M§ for every M.

The result follows by choosing M large enough,
(ii) We deduce (ii) from (i) using Lemma 4.1 (ii). Let |al < m, J any

bounded operator and ¢ ¢ C{;(G) be such that y = ler supp ¢. Then
( lw(‘q;m)P%f:Pm |
K@ e |- |(l+|Pi)N(1+Q2)"’15(1+E)paw(P)(l_'_lQ]‘)l-} m

|1+l ™¢ (P3|

'"1‘€cp(P}J|l by (2.3) and Lemma 4.1 (ii).

< K[jG+jap)
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The above inequality yields
S
| W (Q,P) (P2, T(B(as) x E)]]

-]l-¢

< KA TPz, T(B(as) x E)|

and the result follows from (i).
8.E.D.
Lemma 4.4 Let ¢,E,B(t),T be as in Lemma 4.3. Then for every a > 0
and for every g in (0, (m+48)/(2n+4))
. w L L., 8

Lim  [7 at][{W (Q,P)-W (X2 (t+s,P) ,P) }o(P)Z,  T(B(as®) x E)|| = 0

S e IG £ +5
Proof The proof closely follows the existence proof of wave aperaters
in [28].

As in Lemma 4.3 we can assume that ¢ vanishes outside the 7c/(32)
neighbourhood of E. Choose, by Theorem 2.2, B > 1 such that for all

s2>s, t>0 and g in the closed 3c/4 neighbourhood of E

ax(t+s,£)/ot = h (£) + wL(Xé(t+s,g),g) ’ (43)

|DS X(t+s,8) | E.Ke(t+s)l+u(lel_l) for || > 1, (4.4)

]Dg{(t+s)"l X(t+s,£)-h_(£)}] 5_K6(t+s)“(]9|) , (4.5)
and

IDg WL(Xé(t+s,E),E)I < Ky (tsayV10D) (4.6) .

Unless otherwise specified, in what follows, we always assume t >0,

B

s >8,, k& Fand |x| < as”,

Let f ¢ L2(R™ with ||f]] = 1. Then
L L 8
L0 (@,P) HE (X3 (b40,P) P }o(PI 2, T@B(as®) x E)F1(R)

= dx dk <n_, 4f> I(Q,x,k,t+s) (4.7)
xk
B(ass)xE ‘


http://www.cvisiontech.com

2 2w .
where
1(Q,x,k, t+s)
= § dE{wL(Q,E)*WL(Xé(“SsE):E)}@(E)G(E-k)exp(i[(mw.g-X(t+9,£)}). (4.8)
Further for all 0 <« bl < bz < w
1= F(ja+x[/(t+s)§ (Bysby 1) + F{j@x|/(trs) = [b),b,]) (4.3)
where F stands for the indicator function.

We shall estimate the norm of L.H.5. of (4.7) by using the intcgrals
on R.H.S. For this purpose following [28], we shall split the space "
into various regions and make computations in each region. (4.9) is only
the beqinning of such splitting. Since the proof of this Lemma is rather

L]

lengthys we present it in nine steps.
Step (1)  ((G+x)/(t+s) is out side an annulus). Choose

inf{{h!(z)] dist(E,E) < c/4}

Bbl =

b, = 8 sup{]hé(&)]:dist(g,E) < c/4)
C = {£: dist(g,£) < e/4}

Gl 3 {y:2b1<’yl<%b2}

and apply stationary phase Lemma 4.2 so that whenever ks £ and

[G#x|/{t+s ) é [b;sb,1, one gets

[T(Qyx,k,t48) |
< KM{1+|Q+XI+it+S)}'M IEI iiUg{WL(Q9£)¢(E)ﬁ(£-k)exp(i[(t+s)ho(g)-x(t+s,g)])}|im
6<M &
Kyglis (G |+ (0403 T DSt (2 (b4, 8) , £ () RCEK) -
joTa & T E

exp(i{{t+s)h_(£)-X(t+s,£) D} i

< KM{1+]Q+X[+(t+s)}"H{(t+s)M(1-G) + (t+s)?} where by Leibnitz rule, (4.€)

and Lemma A.2
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o
1

max{v(j)+k(1-§) : 0 <j + k < M}

u

- & + M(1-8).

Or in other words,

F(|Q+Q<|/(t+s)gi,f [by,b,DF (k € E)[1(Q,x,k,t+s)|

< Kylle [+ (t9)} ™ (bas)8) F(jgan]/(tre) ¢ 1b),0,DF (k€ £)+ (4.20)

Step (ii) (A partition of unity) Let X be a lattice point in Rn, i.e.,

all the n coordinates of ) are integers and let A be the set of all lattice
i n n

points of R, Llet y ¢ E;’(R Y, Xo 2 0» XD(O) > 0, supp x (. {y:ly] <n}

be such that if y, is defined by x, (x) = y (x-A) then Z{y,(x):x¢ A} =1

for each x, i.e., {y.¢)d ¢ A} is a partition of unity for the space RE

X!

Choose ¢ in (0,%), A € A, L > 0, t > 0 and define

Mo tL) = {x & R™: x|/t € [by,b, ), Ix-Xp(tAt™) ] > Leloy

u

Foshstsl) = {x€ R':|x|/t € [b,b,0} =~ I(o,),t,L),

A(Ustsl—) Fi{J(O,A;t,L) : X g4},

e g K
Ao,t,L) =1 [{I(ou),tL) A€ AL

Since for every fixed g,A,t,L the sets J,J* form a partition of the annulus

[tby,tb,] (in R™) the samc is true for sets A and A*. Now

F(|Q4x|/(t+s) & [bl,sz) 1(Q,x,k,t+s) = first term + second term (4.11)
where first term
= § [ dg F(tx & Ao, tes,L)) (tes) ™0 x}‘(g)cp(z(tw)”ﬁ)ﬁ(‘—k+£(t+8)'°)-

Aeh
{wL(a,g(t+s)“°)—w“(Xé(t+sgg(t+s)“’),e;(t+s)‘0)}-

exp(i(t+e) 17200 (Gex)tO L - £297L (trs,£(t4s)0) ])

= § fdg Flawx ¢ A(o,t+s,L))(t+s)"”°ﬂ(x,g,o,k,ﬂ,x,tﬂ;)
A&eAh
and second term

= F(@x £ A(o,t+s,L)) 1(Q,x,k,t+s) .
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Step 3 ((Q+x)/(t+s) is inside the annulus [bl,bZ] but away from critical
points). We analyse the first summand of R.H.S5. of (4.11). Now
XA(5)¢(E(t+3)-0) + 0 only if A(t+s)™ is in a fixed neighbourhood of
support ¢. Thus the sum is over only K(t+s)"C terms, where K depends only
on the volume of supp ¢. |

We can choose L large so that whenever x}\(g)cp(g(t+s)-0) 0 and
(4x & I(ag,r,t+s) then by (4.4),{Q+x-)('(t+s,g(t+s)"°)| > % L(t+s)l“°. Now

£
we can apply Lemma A.3, to get, for all M >1

1§ dE F(Qx € 30,0, t48)) J 0,0k, 8, %, t49) |
< Ky(tre) M2 £ (i /(trs) 2 [by,b, ).

S0 modulus of the first term of R.H.S5. of (4.11)

B KM(t+s)“M(lh20) FOlQ#x | /(tes) & [bl,bzi) ‘ (4.12)

Step 4 (A finiteness condition for the second term of (4.11) and an expansion)
By choosing s, large, if necessary, we can assume by (4.5) that

£+ (t+s)_l Xé(t+s,g) is a diffecmorphism on {f:dist(f,E) < 15¢/(16)}; and on
this set ](t+s)_l{Xé(t+s,gl)—Xé(t+s,gz)}| nehaves like Kg -£,| with K
independent of t+s; and the range contains {ha(g):dist(g,E) < 7c/8} for

allt > 0, s > s . If Gxc A*(o,t+s,L) then for some A, |Q+x-Xé(t+s,A(t+s)'°)]

i[1t+s)l_0. Because of the presence of ﬁ(-—k) in the integral, we can

always assume that dist{A(t+s) ,E) < 3c/(16). So, we can find a unique £,

with dist(g_,E) < 7¢/(32) such that G4x = x;; t+s,E ). Since
£+ (t-+s)“l Xé(t+s,g) is a diffeomorphorm it follows that |A(t+s)”g-50|

< KL(t+s) ™. Thus A has at the most I' choices where T is independent of

l;‘?,\, TG SO,
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second term of R.H.5. of (4.11)

< Tsup | [ df FlQsxg J*(U,A,t+s,L))¢(E)ﬁ(€—k) d
A

{wL(ng)~wL(Xé(t+s,g),g)}exp(i((u+x)-g-x(t+s,g)])[* (4.123)

Now For-Q+xq§ A*(c,t+s,L) choose go,A ag above with Q4x = Xé(t+s’€o)'

Now apply Lemma A.6 to the function £+ {{G+x)E-X(t+8,E)}/(t+s) to get a

diffeomorphism ¢ in a neighbourhood of O such that

TONEES
{(@r)y(y) X (t+a,p(y) )}/ (t+s)

= [{@0g ) - X(t+s,E )}/ (t+s) ] + <j§y,y>/2 (4.13)

—~_~“\\//“*~*—-~J

- where

f& z Xg(t+5’£o)/(t+s) .

jQis a metrix depending on t+s,go but under the assumptions on t,s
and g03UA varies only over a compact subset of GL(n,R) - the set of all
n x n invertible matrices with real entries.

Further by Lemma A.€ we get

%@ < KesayulloD (4.14)
If we define

gly) = |[det y'(y)!, ; (4.15)
then

(0%)(0) | < K (tae)ulIBIF) (4.16)

_ Define

vik,y) = oplydn(ply)-¥) (4.17)

and

w(tss,k,y) = wL(X£ 45,9(y)) 4 (y))v(ic,y) . (4.18)
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New applying Lemma A.5 and thsn Lemma A.4. *

[] de F(GQex Q;J*(G,l,t+s,L))@(g)ﬁ(g,k).

{WL(Q,g)-wL(Xé(t+s,£),E)}exp(i[(Q+x)€—X(t+s,E)])I

< Ky, )™ ], e s, L)
ol <m

“M-%n .. =
Ky, p () " |[NL(Xé(t+s,g),g)¢(g)n(g-k)|lp,m +

M-1

K § (t+a) 97" 1 e 47 0,053 4 v g1(0) | WL (Q) [F (exe 3*(...))
el s 0 0 e

M1 . : .
o 1L 00 r o0 w st Fance 37C) -

M-1

' R lsz (tes) ™340 rj{fj_"lo,o>j g}(0) ] |W}(Q,§0)¢WL(Q+x,§O)iF(Q+x =3,

ceeos (4,19)

3!

where (i) for any function b which also depends on g, |b sup{[DEbi L},

lp’mFle}sp

(i) p> M+ % n  (iii) KM I‘J. are all bounded functions of t+s

,p' ’EG’
. a L 1 Cln ) .
(iv) ¢* = Yy eee ¥, where y = (wl,...,q}n) and g = (al,...an) (v) <;3 denctes

that y* v of yPvglor w of w g) is differentiated at least once.

step 5 (first and second terms of R.H.S. of (4.19)). By (4.6), taking
P = 2Men with M > 1

sum of the first two terms of R.H.5. of (4.19)

< Ky (teg) Mo BMn)(2) (4.20)

Step 6 (Third term of R.H.S. of (4.19)) Since hy our assumptions x| < asP
with B < 1 and presently |G+x| > b,(t+s) one gets |G > % bl(t«»-s). So

W@ F (@ g 3°(..00) < K(tes) ™S (4.21)

Further for all o with |a] < m and all g3epy Lemma A.1 and (4.14)
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| %) (@)] < K (esayilIOD), (4.22)
Using Leibnitz rule for differentiation, (4.16) and (4.22)

I(<d&*lD,D>i Y v g)(0)]

in

K (tag)™@x{u(@)u(bsl) = a > 1, a+h = 2j}
3

Kj(t+s)“(2j) for j>1 o (4.23)

Third term of R.H.S. of (4.19)

b A

KM(t+S)max{-j—6*%n+u(2j): 1<j<M-1}

I

- . :
KM(t‘i‘S)—luG*‘“(Z)h%n t"(gTI{:j (r.D) if M 2_ 2 " (a.za)

Step 7 (Fourth term of R.H.S5. of (4.19)) As in step 6,

fourth term of R.H.S. of (4.15)

~1-g+u(2)-%n

< Kyltes) Flar=<es"¢-) ¢ myo (4.25)

Step 8 (fifth term of R.H.S. of (4.19)) As in step 6 we get for all r in
(0,11, |@Q+rx] > % bl(t+s). SO)

W (@ex,E ) - WE(Q,E,) |

' 6wl =
R < G%EW 16617 1H (Qex) - W (@) ]
£ 3" Il e W @mo| : 0<r <l
laf<m © :
< Kx} ()™ (4.26)

By (4.26) and (4.16) we see that
last term of R.H.S5. of {4.19)

=1-8-%n {4.27)

~
e

R
< Kylbxl(t+s) Fla+tx ¢ T ¢ os
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Step 9 (Estimation of the norm in the Lenme) ¢ Collecting (4.10), (4.12),
(4,128) (4.20), (4.24), (4.25) and (4.27) we have for all |x| < as®, kg E

end M > 2
11€Q,x,k, tea) |

< Kyl1+Gax |+ (tes)) ™" (t+6)" 8 (| 0ax)/(tes) (by.5, 1) ¢
Ky (e 29 ¢ (Jaux/(tas) ¢ [5,,5,1) +

M-%r (2040 ) 1u(2)

Ky(tre) F(Jamxj/(tes) g [55,0,) #

K, (£48) 17870 (o g)H(2) «Ix{) F(lax-z_| < L(t+s)?0) (4.28)

where z, = xE(t+s, A(t+8)79) for some i .

Applying Cauchy's inequality and then a change of vasriable, one yets

I daa{ | dx dki<f&k|f>lf(]0+x-zoj §_L(t+s)1'oxz

BlasP )xE
< fdaf dx dk F(IQ?XEZDI g;L(t+s)1ﬁ°)-f'dx dk |<nxk|f>}g

B(asB)xE
= [diFEla-z ] < L)1) § o fo dc by the change of variable

" ' B
Blan) (@,x) + (G+x,x)

< K(tss)"1-0) g8 - (%,29)
Similarly,
fdag @ dfeng |f>] Ix] FQUsx-z,| < L(tss)! )

B(as®)xE
5_'K(t+s)n(1'd) o(m2)8 (4.30)

By choosing ¥ large erough in (4.28) and using (4,29), (4.30) and (4.7), (4.8)

we have
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[]{WL(Q,P)-NL(Xé(t+s,P),P)}m(P)Zt+S T(B(as®)xE) ||

< K{t+s)-2 + (t+s)b}

where
b= -1-¢-%n + 4n(l-c) + max{u(2) + 4n8, H(n+2)8} .

The result follows if b < -1 . This can be achieved when B < (n+48)/(2n+4)
by choosing ¢ close to %, ¢ < % and 1 (2) near 0, p(2) > 0.

QoEoDo

Lemna 4.5 Let ¢,B8,E be as in Lemma 4.4. Then

lin {|(n, 2U_-1)Z_o(P)T(5(als|®) x )]| = 0 .
|2 g oty —

Proof We prove only for the positive sign. As in Lemma 4.3 and 4.4 we can

assume that ¢ C: (6).. In such a case for s large and t > 0, by (2.17)

d *
It {v

trs Lewg®(P)} = 1V O5(@PIHEQ,P) 0T (X (Ee3,P) P12, 0(P)

This together with Lemma 4.3 and 4.4 yislds

*
Lin sup |V 7, - VZ)eP)T(B(asP) x E)[] =
S+w t>0 !I t+s "t+s s°g’® |I
so that
Lin |[(2,-V.Z )¢(P)THas®) x E)|| = ©
g+ @

Since ¥ @ = § U the result foliows.
8 + -+ S

Q.E.D.
Theorem 4.6 Let ¢ %.CZ(G), B & (0,(n+48)/(2n+4)) and a > 0. Then

Lin | [ (0,026 (0] <alti®)]] = 0.

R
Proof We prove only for the positive sign and write ) for Q+. Since
supp ¢ is compact we can find (E,c,), (EZ’CZ)’ von (Er’cr) such that Ej

is bounded,open, the c; neighbourhood of Ej is in G for c; in (0,1/3);
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on this reighbourhecod § - vho(g) is a diffeomorphism; and
supp W’:El U E2 U...UE, =E. Now choose c:min{cl,cz,...,c’r,diBt(an £,
supp @)} which is in (0,1/2). Then by Lemma 4,5 and Corollary 3.2 we get

Un 1R U-Z)oP)TB:®) x ) = 0 - (4.31)

L + o

By the choice of ¢,E,c and using Lemma 3.1(v) one sees
BB n
pP) T(B(at") x R ~E) = G .
Since T is a measure this together with (4.31) vields

L |[(0 U2 )oP) T@Gt?) x R[] = 0 .
t+o
An applicaticn of Lemma 3.1 (vi) yields the result.
Q.E.D.

»

Corollary 4,7 : Let fg& jf-(. be such that for some ¢g C:(G),salim {l-(p(P)}VtF:O.

t+r4+@

hen f~ Range 2, iff for every a > 0 and for some B in (0, (n+48)/(2n+4))

we have

s~lim F(|G] » altIB)Z* v, f=z0
£ T ket
+:oo

’roof : We prove only for the positive sign and write {0 for S Necessity
follows from temma 2.5(iii). for sufficiency, note that by hypothesis and
Theorem 4.6

s-lin (@, Z~Dg(P)V, F =0 -

b+ o

Since 8-lim (l—q)(P))Vt f =0 we get
. b+ o

- *
s-lim (L U zt*l)vt flz®y 17

L+

t

The result follows by Lemma 2.5 (ii) -
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Lemma 4.8 {et f be such that for some real valued g¢ C:(G)s

s-1lim {l-cp(P)}th = 0; for some 8 > 1-§ and for svery a » 0
|
#

By
s-lin F(|a] » at?)U} v, F = 0. Then s-lin F(|Q] > at 1)ZV,f = 0 for

t» = L » >
every 81 > g and for every a > 0.

B
Proof : Certainly it is sufficient to prove s-lim f(|Q| > 2at l)
£t +

B
which will follow if 1lim |{F(}Q} > 2at l)(p(P)Z::Ut Foial < atB)H z 0.

t +»

o(P )z:v F=0

B
NFUB) 2 2at Hp®)Zy u, FOa) < at)])

d
Kt T jalFqel 2 2zt D oe)zy Uy Flle] < at)]]

[ Y

. B

Kzt '[Fa] > 2t ) [stcp(P)Z: u. 1 FClal < ath)] +
J

KZ t-
j

B B .
IRl > 20t DeP)zy U, 0, F((a] < at? ||

-B
KLt =t |8<p(P)/3PJ.§| + ]%cp(P)a{X(t,P)—tho(P)}/apJ_|| + 18y
] .

-B

< Kt 1{1+t1_6 + tP} by (2.19) for t large .

A

The result follows since B; > B > 1-4. Q.E.D.

Remark 4.9: The results of this section can be easily seen to be trus when
(1) ho(g) is a real valued C~ function with polynomial growth in £ and

6= {E: |Vh0(£)i + |det h;(5)| £ D}is an open set whose complement

has Lebesgue measure zero and (ii) £ for la| <m are replaced by C*

functions of E.
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§ 5. ABSENCE OF POSITIVE EIGENVALYUES

Let bl,...,bn:Rn + R be n functions each of which are C'1 and let
b = (bl,...,bn). Define curl b to be the matrix whose (j,k)th element

is Djbk . Dkbj i.e.,
curl b = ((Djbk = Dkbj)). (5.1)

For our static electro-magnetic model, one can show, using the results

of [40] that there are no positive eigenvalues.

Theorem 5.1 : Let q,bJ.:Rn + R be bounded, Cl'Functions such that their

derivatives are also bhounded. Furtﬁermore,'assume that for some A in R
there exist B,e,lL such that 0 <B< %—, 0<ec< §-~ By L >0 so that

ZEijjq + a(l~3-g)q+-éi(cur1 b)xiz_g 4{1-B-g)A for all x| > L«(5.2)

Then
(i) = 5(P-b)% + q is self adjoint with D(H) = D(32),
(ii) H bhas no eigenvalues in (A,®).

In particular if

n n
iTTm {{a(x)]| + |x] 321 [D; ()] + |x] ; ) . [(0b 3D} = 0

g K=

s (5.3)
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R s
then (iii) H does not have any eigenvalue in (0,)

Proof (i) is trivial.
(ii) Refer [(40].

(iii) follows from (i).
Q.E.D.

Corollary 5.2 : Let ho(g) = X% gz, H=hg+ T Wq(Q)Pu where Wu are

|a1 1

¥ —

n
real valued potentials on R satisfying (2.4) and §

aW (x}/ax. = 0. Then
PR ]

(1) A & M (Q)P%)(H -+-l)"1 is compact ,
lof<l © ) ‘

(ii) H is self adjoint on n(H) = D(HO),

(iii} OC(H)(:;[U,W),
(iv) H does not have any positive non-zero eigenvalue 1.e.

(0900) COC(H)-

Proof : (i) follows from Corollory 1.8.

(11) By (1) and rewmark 1.7 the relative bound of £ ngajPa

wikh tespect to HD ig zera. The result follows by

Tneorem 1.1.
(iii) By Theorem 1.6, o_ (H) = Gess(Ho} z [0,=). The result

follows by noting ab(H)(’*”oéss(H).
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(iv) If we write H in the form in Theorem 5.1 we get

Using (2.4) it is easily seen that (5.3) is satisfied and so the result

follows from Theorem 5.1 (iii).

Q.E.D.


http://www.cvisiontech.com

5 &, ASYMPTOTIC EVOLUTIUN AND STRONG ASYMPTOTIC COMPLETENESS FOR
LONG RANGE HAMILTONIAN WITH STATIC ELECTRO-MAGNETIC FIELD

The materiel of this section closely follows [23]. Let

HQ = - 580 = X P2 on Lz(Rn),

and
H = H_ + W (Q)P°
S a%il =

be as in Corollary 5.2. for potentials aj and V the operator

5L (PJ.—aJ.(Q))2 + v(Q) is the Hamiltonian for a particle in a static electro-
J

magnetic field and can be reduced to #_ + 2 WG(Q)PG-
. fal<l

The aim of this section is to prove i
(i) for g > 1-5, F(Ja] > |t/®)upv,f > 0 strongly as t » + @ for f in
1.0,
(ii) strong as;ﬁptotic completeness for H by using (i) and the results of
§ 4.
For proving (i) the techniques of [23] will be employed.

Define the unitary group of dilations on LZ(Rn) by

(th)(x) = exp(~nt/4)f(x exp(-% t)) for f in Lz(Rn).

It is clear that Yt is a unitary strongly continuous representation of the

dilation group. Let A be its generator so that

Yy = exp(-itA) for t in R.

A simple calculation shows that

A = (PQ+@P)/4 on S(R™).

Also A and log H0 are Weyl conjugate to each other;i.e., for all g,t in R

itA _—la log HO _itA -ig log Ho elat

- == =
15 .« r g =)
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which formally implies

[A,Ho] = iHO s [A, lcg Ho] =ik}

Further it is easy to see that

4t -t

*P = *
Yt Yt = Pe *7, ¥tHDYt = Hoe 5

We have seen in Corcllary 5.2 that

.

(0w ¢ GH) = specH, T [0,=). (6.1)

[y
i

So we Al
G, = (0,%)

By (6.1}, {f e,};C(H) ¢ n spectral supp f is compact in Go}
 is easily seen to be dense ir:}ie(H). rurther for any bounded continuous real
valued function Q&th support in GO one gets o(H) = ¢(HC).

Since D(H) = D(HO), it follows that CH+i)-l(HO+i), (H0+i;1(H+i),
(H+i)(HD+i)—l, (H0+i)(H+i)'l are all bounded operators.

For real t, {(Up(A/£)U,H }f = (A/E)f + 0 as to + - if FE SR). i.o.
we can expect the scaled observable A/t under the free evolution to behaves
like the free Hamiltonian as t + + ®, A similar result may be expected for
Hamiltonians with potentials vanishing at =, only if we look at the continuous
subspace of that Hamiltoniaﬁ.

A look at (6.2) (below) together with RAGE Theorem [6] gives that
VO(A/E)V,f > HF if £ € D(A) (\D(H,). We can (and infact do) show that
D(A)fkﬁﬁ(Hc) is dense in D(HC). iIf further the eigenvectors of H are in
D(A) then it is clear that V:(A/t)vt f - Hcf. Since we do not have any
infaormation about eigenvectors of H we go in a round about manner viz  prove

-iv Ha

- . * »
that s-1im ¥, Yv/t Vt = e . For this we need

t - > v
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Lemma 6.1 Let f D(H)rﬂ"{(H ) and ug R, Then
e

(i) sup sup JJ(H+i)™ {(V

e ) ] <o
Itlil sg[0,u] L)

t+s
(ii) sup f[(Hed) VAV LT YD) TN <
t

AVt+S-A)t_1-H}f|i 5

. S
(iii) lim - sup P| (H+1) (Vt+s

|t|""°° s¢ [O,u]

Furthar, for any g & Lz(Rn) and any t & R

(iv)  [HHHD™ Y (H+D-Dgl| < K{le®-1] [lal| + [[(¥,-Da} |},
V) [HHFDY, H D™ 13g] | < Kile™ 1] Ylal| + {1 (E-Da] |}

Proof By the fundamental theorem of calculus

t ViR

t -
if dy V*{[H AL+ ) [w P Al + [ A]}\
o j=1

t n n n

) jsk=1 j=1 39 =1 J

Sa, VtAVt—A —tH

% n
& - WP, P .
% g dy V_{ éz qk(oka)PJ + JZ WP, + Z QDN+ W }v

gg I b d o

t *
dy V ] P. 4 v
g y Y{§ I (@P; + T (@,
where rj’ I, are some potentials satisfying {(2.4).

(i) follows from (6.3)-
(ii) follows from (i) -

; N
(iii) [z Tj(Qj)Pj + TO(Q)](H+1) is compact.

The result follows by RAGE Theorem [6] and (6.3} -

*
= L 3 A
tH- | VO G g0, WP+ ) WP, + % il QD W, + W IV

(6.2)

(6.3)
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(iv) LD ¥ (D) -13g]]
< D™ Y HADY-1H (gl | + [KY,-Da]]
< HHLEFD™ (5 HaD)-131] lof] + (Y -Dgl]

< lef1f flalf + [1(Y,-D)gl]

{v) Similar to (iv) .

Q.E.D.

. -*' [] N
Theorem 6.2 s;llm ,Vt Yu/t Vt = exp(-iu Hc) for ué& R.
> + @

Proof : Since the limit is unitary and the sequence of operators are
contractions, it suffices to prove weak convergence on a total set. This
too we prove only for t » o, the other casé being similar,
2,00 . . *
If £ t"{R") is an eigenvector for H, then HVt Yu/t Vp f=
exp(-itH )F| = [[(Yu/t—l)F|! and the result follows for f. So the result

is proved on TEEP(H),

Now let f& D(H)ﬂ}{c(H). Then ,

Lim | (Hei) (Y, ¥ (e VeV )Pl

t +

< lim || (H+i)" (V Y W/t VY, Y /t)F!] + tlimoo |!(Yu/t-l)f[[

t + @

< e H D || dim | H ) Y,/ D]
: trw>
; -1 *
tllm H(Ho+l) (vt—Yu/t Vot Yu/t)rli
< K tlimmfi(H +1)" (V -y u/t Vu+t u/t)fll by D(H)zD(HO) and Lemma €.1(iv)
< K tlimm[;(ﬂou) j ds D (vs/t sst's/tT) 1 vhere D = d/ds

= K lin III as( +1) 1 ¥ v (v, Avs+t-A)t’l-H}Y3/thI
-+ @ [x}
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Klu| lim sup |j(Ha+l)-l Y:/t(Ho+l)'|‘
t+o s & [0,u]

lim sup (H +1)" {(V “A¥t” ~H}Y £
tse 8¢ [0,u] H 0 s+t s t s/t |
Klu| 1im sup | {(H +1)‘1{(v: t AV t-A)t“l-H}FI{ +
t+ o s ¢ [0,u] 2 = *
K|uf Jan e (4 +1)" {(vS+t Vo o A ETHICY,  -DF |
S ’
by Lemma 6.1 (iv)

-1
| (H+1)™ {(vs+t st~ -H}(HO+1) H -

Kluf lim sup
t+ e s¢ [0,u]
lim sup FICH +2)(Y /t“l)(H +1) "1 (H HDf| | by Lomma 6.1(iii)
L+ 8 ¢[0,u] amd 3CHI= (R
< Klu} 1lim sup JHH +1)Y /t(HO+1)_l~1}(HO+l)F|| by Lemma 6.1(i)
t+= s € [O,u] g BCH) = D)
< 0 by Lemma 6.1 (v) Q.E.D.
Corollary 6.3  1f fe M _(H), then w-lim v, f=0
t++
Proof Refer [36]7. Qe
Further we have
*U '*
VeleQiUgVy - 84
t ¥
= ds V [ WP +W , G.-sP. ]V
% g 8 k' k o' 5§ T j''s
t »*
{ ds VoW, + s E(Djwk)Pk +8 Djwo}vs
(6.4)

t %
{ ds V_{W. + si Z(kajwk) +s Z Pk(ojwk) + SDjwo}vs ]
; 02 Y <A+

or

If ||(l+{Q|ff ) for some “"nice" f, then by (6.4),

=27
stll = D(S
= &
fl} = o(t” ), from which, we can deduce that

R = *
we have ||(|Pi+l) |Q‘Ut Vv


http://www.cvisiontech.com

: 45

for all f in - _(H) and for all § > 1-5, F(]a] > alt[PWLv,F+ 0 strongly
as t -+ + @ In Lemna 6.4 we reduce the problem of proving
TRE vofll = 0651 ) ko proving [1Csla) T v fi] = 0= 7).

We give a heuristic argument how one can expect these results.
By Theorem 6.2, v: AV/t behaves like H on T4 _(H). So it is reasonable to
expect that, for f ¢ i (W) (TOWH™) 6Y V] A7Y v,  behaves like H™F
for 0 < y < 2. That it is =so will be proved rigorously for (i) 0 <yx<l
in Lemma 6.5,{ii) 0 < y < 1+§ in Lemmez 5.4 by developing s Taylor's
expansion around t = + «,

Recall that A2+P2+1, A4+P6+l have self adjoint extensicns by

Theorem 1.5.

Lemma 6.4 let & S5{R;,-k real, < Res(H) = resolvent set of . Then
. 2 52 145 .
(i) Ap(H) (A"+P%+1)7 is bounded,
-3
(11) A% (A%PE)™F  is bounded,
(111)  AHek) ™ (1+|Q])-l is bounded,

(iv) A(H+k)_z (l+]Q}}_l is bounded,

(v) AZ(H+R)‘Z (1+32)*l is bounded,

(vi)  The family (1+|Q])7" o(H)(1+[A])Y is uniformly bounded for G < vy < 2,
o ‘Y o 5

(vii) The family (1+]a]) ¥y ij(H)(1+|A]) is uniformly bounded for

0 <y <1 and for each j,

=
(viii) Qj@(H)(QZ+P2+l) ? is bounded for each j.

Proof : B will denote any bounded operator; B{(j,t) any operator family
depending on t with |[B(j,t)]| ijj(l+}t|)J; T sTyse. for functions of x
which are bounded with all their derivatives. Further we shall very

5
frequently use the formula XY = [X,Y]+ YX and that H_,H as well as |P|,|#]"
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are bounded with respect to each other.
(1) ApH) ;

= fdt a(t)[A,v:} + B(A+i)

"

fdt G(t){-thv, + B(1,t)(|P]+1)] + B(A+1) by (6.3)
=B + B(JP] + 1) + B(A+i)

2z -k
The result follows immediately since |Pi(;"+“'+F’2+l)"35 and A(A2+P2+l) * are

both bounded.

(31) AZe(H)
= Jdt GOALVLT + A . (6.5)

(A%, V)

= ALA, V] + [A,V DA

.
= tAVH + g ds AVt_S{§ P (@P +T (Q IV +tV HAB(L, £) (JP|+1)A by (6.3)
coovoe - (646)
t
é AVp 1E TP+ T (@)}
J
t t
= g ds[A,Vt_S]{§ rj(Q)Pj+ro(a)}vS + i ds v, __[A, grj(D)Pj+r0(Q)]Vs e
t _ ,
f o e o2 I5@P 5 + T(R)IA,V T + B0 (JPl+1)A

t
= i de(t-s)V, H{§ Fi@P; + T (@v, +

t t-s
g ds é du Vt~s—u{§ PJ(Q)PJ+FO(Q)}VU{§ rj(a)Pj B ro(a)}vS + B(1,t)(|{F|+1)+
t s
£ ds vt_s{§ rj(a)Pj+rO(a)}{sHvS+g du vs_u{§ P5(R)P T (D)}, +
B(1,t)(|P+1)A  by(6.3)
= 6{2,0)(IPi%+1) + B(1,t)(|P|+DA 6.7) .
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(In the last step we have used (i) by commutation rules the boundedness

of R{Z T (0P, + TO(QH(IP[3+1)"1;(11) Pl vu({P|)+1)“l is uniformly bounded
ij
in u) Substituting (6.7) in (6.6),

= EAYH + tVHA 4 B(2,0)(JPPPD) + B(LO([PI+DA . (6.8)

substituting (6.8) in (5.5) and carrying out the integration, we get for
some ¢ in 5(R),
2 2 3 }
Ap(H) = (H)AT + Ay(H) + w(HXA + B([P| +1) + B(|P|+1)A .
The result follows as in (i), by using (i}, if we can show the boundedness
, % 4 .6 . -% Mo
of (H0+1) A(AT+P +1)} 7. For this it is enough to show the boundedness of

(a%,06.1)7% | 6 06 Y . )
+07 1) A(HO+1)A(A +77+1) " which is clear.since [A,H_] = iH_.

(H+k)'1£A,H}(H+k)”1

G TR, k) ™)

(k)" 3+ I T QP+ T (@) (i)™

J
B (6.9)

11

A T+ gD™ = B e ol AL+ JADTY by (6.9)

it

B + B(H_+)"" A0

= B -

H

(iv) 1A, (H+) "4 (k) L0, i) ™1 ) + [A, (i) " 3 (Hek) T
= B by (6.9) :

The result follows as in (iii) -

{v) 1In what follows absolute constants will not matter; for example we shall
write H_ for iH_ . In the first step we use D(Hz) = J(Hg)ooﬂuéh, 1o F#Q\fiéf

L L S oy & ‘27‘ %o
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AZ(Hat) ™2 (1409) 7L

A2, (k)27 (1agd)L o a(HO+1)‘2 A2 (1401

H

= (Hel) 72 (A, (k)2 (i)~ (1egD)) 4 a

2, -

= (0™ [a%H] i 206D 7Y ek 2 [AZH] (k) L (10g2) )

- -1 -2 2,-1
= (H+k) {HHHA + 2 FJ(Q)Pj + @Fj(Q)PjA+PD(Q)+FO(Q)A}(H+k) (1+Q7) 7 +

J J
(Hek) "M ot A+ TGP+ 2 TP+ T (@41, @A) ™ (1409) hum

Ll e : -2
= (H+k)™*{s PJ(Q)PJ + I FJ(Q)Pj8}+B+(H+k) {z FJ(G)Pj+Z PJ(Q)PJB}

by (iii) and (iv)

h

(H+k)*l 5 Pj B+B + (H+k)'2(z PjB + B)+B [by using commutation relaticns
J between P,Q]

B .

(vi) It is enough to prove the boundedness (1+Q2)_l Q(H)Rz and then

interpolate.Choose k as in (v). Then

A2o(H) (14g%) ™1

A2¢(H)(H+k)2(Aq+P6+l)-% (A4+P6+1)+%(H+k)_2(l+uz)—l

' A = u
By (ii) it is enough to prove the boundedness of (Aa+96+l)2(H+k) 2(1+Q2) ]
This is so if

(1+02)"1(H+k)—2(Aa+P6+l)(H+k)_2(l+Q2)—l is bounded.

Certainly it is enough to prove (l+Q2)"1(H+k)-2A2 is bounded which is
guaranteed by (v).

(viii) Similar to (vi). Let k be as in (vi)

AgHIP (iefa]) !

2.2 ..%

= Ap(H) (H+k) (a%p2i1) % (a2,p2,1) G0 TP (a7
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As in (vi),by using (i), it is sufficient to prove the boundedness of
(1+jap! Pj(H+k)“l(az+92+1)(H+k)“l Pj(1+ia{)”1 which follows if

A(H+k)‘1 PJ(1+!Q])—1 is bounded. Now

ACHak) ™1 P, (1+ja])™!

[A,(H+k)'1PJJ(1+[Qi)‘1 + B(IP+1) ™ A1e]qd

(i)™ CaLHT Gt P (L+]Q))7T + (Hak) [P 5] (a7 +
= B .

(viii) Similar to (i) by noting [uj,vt} = B(1,t)(|r|+1).

G.EB.
Lemma €.5 let ¢ €, (G} and u,te R.
(1) If u,t are of the asemo sign and |t > 1, then
¥} #* '.* ; \ . R 2 N ""l
H(.U/t Ve Yo Ye-Voe ] < K ut(Q+]e [y,
(ii) If u,t are of opposite signs, [t| > 1 and t, € (0,t], then
. ") x ¥ : 2 A
|| (H+1) Yu/t}(Yu/t Ve Yuze VYo < Kot (4t
pd -3
(iii) AV, oD (% P2l TH| < K(1+]t]),
a i -1 * 2 - 2 "12 2 "l
(iv) For |t > l,|](H0+l) (v, yu/t VeV 2o (A% %) 72 | K (1+u®) Q1+t |) 7,
- * e o
(V) For g SR, D™ VEwA/E-p0n0 v, o) (050 21) 7| |k (1efe] )7L,

(vi) For 0 <y <1, [{(1+]G])7Y Vt@(H)(A2+Pz+1)'%|] < KQQ+[t])7Y,

(vii) For 0 <y <1 and each j, ||Q1+|0})"Y P Vt@(H)(A2+P2+l)'4}['5 K+ |t])™Y
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Proof (i) Since ¢ glcz (GO), o(H) = @(Hc). So, by Theorem 6.2

- * * -
::}imm Yu/t Vt yu/t Vt g(H) = Vu o{H). By the.Fundaméntal Theorem of

calculus, dencting d/ds by D

(Yu/t Ve ¥ wt VeV o)

e { ds D (Y, /e Vo Y, /0 Vo) gtH)

t

" { ds DS[{exp(isY:/S HYU/S)}VS} @(H)

D, {exp(isH_ oS iSY:/s[ ? WP N TY, o).V )

i

i
o

[= N

]

- * n
= —1{ ds exp(...)DS{SHO exp(—u/u)usHD+sYu/S(§ Wij+w0)Yu/9-s(§ Wij+hO)}VS¢Gi

* L]
= —i{ ds Y Yo/s V Y o Ds(s[exp(—u/s)—l])HDQ(H)VS -
i ds Y, vy P,
1{ s Y. /s Vi Yuss P (s[vu/s % Wi Py Yise = ? Wy Py1VgotH) -

. d * * * v
1[+ s Yuss Vs Yuss s S0Yyss Yo Yuss = W1V o(H) .
(6.10)
We now assume u > 0 and t > 0. The proof when u <0and t <0 is similar.

We handle (6.10) term by term - Yov the 00U Grnn

DS {s{(exp~u/s)~11}

u
D, {s g dp Dp exp(-p/s)}

u
2 dp p exp(-p/s) . (6.11)
0
Since u > 0, s > £t > O » DY (6.11) we have

|0, (s[exp(-u/s)-17)] < o 57E (6.12)
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Norm of the first term of R.M Se of (6.10)

X

< e e s on|

J
t

5 (1+)£])7L,

for the second term,

[ o
USQS[YU/S ; WJP. v

5 Yass < Wy P

id

Dy s j dp D (vp/S WPy

5 p/s)

u *
i i : WP,
i, £ dp »p/S (A, § JPJ]Yp/S

-3 * _
- d f} .P. e
s g p p vp/s [, [A, f wJ J]]vp/s (5.13)
Foliowing the gsneric notation T as in Lemma 6.4
\] k!J u
G T faf o ™ Ly [ ] i
2{A, Z thJ) = k24 erQk,WJPj] = ; EJ Fj(qj + Tc(j).
J 2 J
S0
A, ZWP. I =2 5 r.e)r. (r. generic) - (6.14)
: JdJ ] J J
J J
and
[A,[A, § WJPJJJ = § Pirj{ﬁ)+Fg(Q) (rj, I', gencric) (6.15)

By using (6.13) and (6.14), we have,

norm of the second temm of R.H.S. of

(6.19)

exp(-p/(23)Jij(H)lf

w 2 ¥
< K[ dss™f dppg P, Vore @M
t o J J el
ety
= Kg de s dp p jlY
jt 0 P/
w0
= K { ds s™% 2 <K uz(1+|i:|)*i
t
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(We have used the fact that under the assumptions exp(-p/(2s)) .17

Regarding the third term, as proceeding for the second term
*
DB(S[YU/S HO Yu/s - WD])
=P *
= 8 £ dp p Yp/s [Aa[A:wO]]Yp/S

*

I
= s £ dp p vp/s PO(Q)YP/S N (6.16)

Norm of the third term of R.H.S. of (6.10), using (4.16),

o

u
< K| ds 572 | dpp 5_Ku2(l+|t])-l.
t 0

Since all the three terms of R.H.S. of (6.10) have been shown to have the

desired growth rate in u and decay rate in t, the proof of (i) is complete.

(ii) As proceeding in (i) one gets,

(H -1~y RV
ot u/t, Yzt Ve Yose VerVy)olH)
(04
21 . - "1 b >3 vt]
= ~- 1 { dS(HD-’-l) Yu/tl-u/s VS YU/S HO Ds(b{cxp(-u/s)-l])cp(H)VS -
1k nty VY D (siY" WP.Y WP
1 { 8(H,+1) u/t-u/s 's u/s g(al u/s ? Jjjus” § j j])vsw(H)'
L[ g -1y * D YWy
i { s(H_+1) e Ve Yusa De(SI¥, /g Wy Yo/e = W DV g(H). (6.17)

We assume u £ 0, t > 0; the proof for the other case is similar. As in (i)
the terms of R.H.S. of (6.17) will be handled one by one. Using (6.11),
norm of the first term of R.H.S5. of (6.17)

@

u
< K[ dss? f dp exp((u-p)/sni@10+l)'1 Y
(9]

*
i u/tl-u/s vs Ho Yu/sH

A

i =T | *
K { ds s g dp p!](HO+1) Yu/tl-u/s VS HGj| since (u-p)/s < 0-

v 2 oa . s (6.18)
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=
[ (H_+1) L s/ s Ho!
< ity 301 419G +D) 7 V(e (He2) T H
£ Wity u/tl—u/s)"o L T gyt o
< Klieant oy (K +1)} 1
- ‘Yo u/tl—u/ a
= K{JEDT B I explu/t —u/s) + | [ <D M|}
PiADgT ‘@il ™ 1 0 !
< K{1+ exp(u/tl-u/s)} < K. (6.29)

In the last step, since s > t 3-t1 >0 and u < 0 we have (u/tl-u/s) < i
Substituting (6.19) in (6.18) one gets the result for the first term of
R.H.5. of (5.17).

Norm of the sccond term of R.H.5. of (6.17), by (6.13) and (6.15),

o« u
g4 =¥ * TR
< Kz f dss™ [ dp p{l{MH+DT Y e Ve 75 PJ]| + K}
jt 0 L
© - _2 u K L
£ K § [ dss g dp plexp[(u-p)/(2s;]] | (H_+1) ~ Yu/thu/s v5P3|g + K}
< K u2(1+1t!)"1 using (u-p)/s < O and (6.19).

The third term is handled as in (1).

Ghil g;Avt¢(H)(A2+P2+1)"%;|

S .
= ’liAth]@(H)(A2+ P2+l)—‘§; + K by Lemma 6.4(i)
< K] e ] + [t [P+ M) || + 1} by (6.7)
g R

{iv) Putting tl = t in (ii), from (i) and (ii} it is clear that

i 2 3
LD TR Y VoY YoM ] < ku® Q)
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S0 the result will follow if

[0 D) ¥, o) @22 75| <k uBaefep -

which is guaranteed by (iii}.

(v) When |t > 1,

L.H.S5.

2+l)

. ~, 1, % % * . -k,
| 1fdu By H D) TTOVE Y VYT o) (a%e ¥

K {du |$(u)}(1+u2) (1+|t|)‘l by (dv)

[A

K(1+|t]) L,

[ A

When [t] < 1, the result is obvious.

(vi) We need to choose Y appropriately in (v) and use Lemma 6.4 (vi). Chouse
P& Ciﬂ*) sach that 0 < ¢ < 1, y(0) = 1 in some neighbourhood of § and h=0

on support of ¢. For such a , we bave P(H)e(H) = 0 and by (v}

|10 " Ca/e)v o) (24P %e1) F | < k(e e (6.26)
and clearly

PC]AD) ™Y {1-9A/E) ] < KQA+[E])TY « (6.21)
Now choose 9 & CS(R) such that 0 < ¢; < 1 and 0 = 1 on supp ¢
so that ¢ P = ¢ - then we have

H(l-r~|!'.1|)“Y Vtm(ﬁ)(ﬁ2+92+l)?%||

|1 C+A1D7Y g G (i) () hp (/v ) (W2 2o ) H] o

[ A

{1+ ]Q]) Yo, (H) (1+]ADY (1+)A|)'Y{l—w(A/t)}Vt¢(H)(A2+P2+1)"%I|

kI Ge) L pOare) VootH) (AZep2e1) 3| 4

A

KEH AT o () A+ ADYRIGHAD T (1-p(A/t) 3],

b
"
The result follows by (£.20); lLemma 6.4 (vi) and {(6.21).
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(vii) Similer to (vi). Instead of lLemma 6.4 (vi) use Lemma 6.4 (vii),

q.£.D.
By using, fundamenial theorem of calculus as in (6.12), ’
D sl (exp(-u/8))-1 1w/ (280} ] < Klul® [s]™ when us >0, (6.22)
and
iexp(u/s)DS{s[exp(—u/s)—l]~(u2/(23))}I E_Kiu]3 !31"3 when us < G (6.23)

¥*
" | . = . 7 o N
We apply fundamental theorem of caleulus repeatedly to DS[S{YU/S\zNj(Q)Pj)fU/SH

b Wj(Q)PJ}] to get (remembering T is a generic neotation)

*
af o - G5
D {s(Y g TWR Y - T ¥ P}
J J
=
= s ap Y N (x F (P . )Yp/b same as (6,13) with (6.14)
o J ’

.y
g dp p (§ iy <n)p ) + s g dp p i D, Yq/s

1

(z T (Q)P )Y ! ciq

2 -2 -3
u's (?,Fj(Q)Pj) + 8 j dp p i Yq/ (i Fj(Q)Pj)Yq/S (iq (6.24)

Similarly using (6.15) instead of (6.14) one gets

V ! =
Pelatiss 95 Py Yurs = 2y Py
J o
2a2 = '

= (J y Ty ¥ Tg) +8 g dp p f dq v/ (L Py Ty (6.25)
Very easlily one gets

D {S(YJ/S 5 /s = Wt
= P @ | ok fda v, T (@Y (6.26)
= s U ?0 + 8 I Stk 4 q Q/S PD Q q/s N Ty

G

Wow we shall find out the second term of Tﬁylor's formula and prove

X

|[(l+|&!)_1‘6 Vegli) (w*p01) o= 9(t71%) . The method of procf is one
of iteraticn. £ven the sequence of results will be similasr to the sequence

of results of Lemma 6.5,
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Lemma 6.6 : Let g C_ (G ) and u,t = R.

(i) If u,t are of the same sign and |t] » 1 ythen

%% R 2.2 -k N i
Y eV Yo eV =i a7 (UMY Yo (AP 2 1) 5| | < K(+u])® Qefef) 7178,
(ii) If u,t are of opposite signs, [t]| > 1 and t; € (G,t] then

- - e ) -k
H (B +1) = Yu/tl{Y:/tV:Yu/tvt—Vu~1(uz/(Zt))HVu}@(H)(A2+P2+i) [
< K(+[u]® et s,
(1id) (A% V) (A%PS1)E || < k(14 ],
(iv) (A2+P2+l) (A4+P6+l)"% is bounded ,’

(v) For |t >1,

D THVEY Yy - (L0A/0)V, -5/ (20) )V, Fo(H) (A %4p6a1) %] |

L

< K(l+|u|)4 (l+]t|)_lmé p
(vi) let ¢ & S(R) be such that $'¢ = 0. Then

D)™V p/8) w1V, o) (A4p8a1) 5] < k(1|71

(vii) For 0 <y < 1+§
N A+EDTY Vo) A% C) TF | < k(1 [t

Proof : We prove the results for t > 0. For t < 0, it is similar.
(i) As proceeding in Lemma 6.5 (i), but using (6.22), (6.24), (6.26) and

writing HO =H - § wj Pj - WO, we get
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( * * )
Yurt Ve Yuze VeV ofH)

o

S - : . ws r ; f2'
= -1 { ds Yu/svg!u/s Dsts[exp(—u!5)~l] - (U™ (2800 How(ﬁ}ve + -

[=+] o

. 2 Y - 8 2 .—2
1{u®/2} { ds (Yu/k s U/SV ~VU)H¢(H) + i(uc/2) { ds @ Vu HelH) ~

o 2 Y * =
i{u®/2) { ds 87" ¥ o Vo Yy (2 WP WV e(H) ~

LA

u? [ ds FE oy Aty (Z . (@p,)
i . U/S 5 U/S 3 Fj j,VS $(H) P

[+ ) ._3 »

{ ds g YU/S vy _ j dp p gqu /s (§ T.(Q)P. )Yq/ p(H)V, -

W [ ds sy
¢

*
l i -
o/s Va Yurs Tof® ¢V

-5 4 P *
£ ds s g dp p i dg vq/s ro(a}vq/s o1V, . (§.27)

Now transfering third term to the left we get

L.H.S. of (i}
o

< K{ ds{DS{s[exp(-u/s)-l} = (uz/(253}|+

&2 -3 %
-7 * 2 02

e
o/s Vs Yu/s VeV Hel (a5 %)™F] |+

2 (s % i i o
Ku® { ds s Z[}(1+|f:[) Sp oy ¢(H)(A2+P2+1) %li e
£ =

[o.2]

Ka? [ ds 878 (1G] 0 v_gt) (WZZen)H|| 4
t )

m -3 u 4 - , :
Kft ds s g dp p | qu4|Fj Yq/s () || +

- P
K { ds ¢~ | dpp ! dg (45.28)
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We show that each term of R.H.S. of (6.28) has the desired growth in u
and decay in t.
For the first term use (6.22); for the second,use Lemma 6.5 (i);
for the third,use Lemma 6.5 (vii); for the fourth use Lemma 6.5 (vi);
f A - N : .
for the fifth note that ||PJ Yq/SQ(H)|| = exp( q/25)|]Yq/8Pj@(H)||‘£ K;

for the sixth term, simply carry out the integration.

(i1) As in (i) we get an expression similar to (6.27) but this time using

(6.25) instead of (6.24). Note that t > 0 and wu % 0.
* *
Ot Ve Yure VeVu) o)

& o8 { ds Y., Vo Yo Mo D (slexp(-u/s)-1] - W%/ (26)) JolH)V, +

£ o »
i(u?/2) { ds s75 (Y], VI YoV Ho(H) +

i(u/2) { ds 572 v, Hg(H) -
N 2 N 2N R
i(u®/2) { ds 877 Y o Vo Ve (§ Wi Psw W )o(H)V, -

2 ‘-I- *
u { ds s~ ¥ /o Ve Yore (§ Pjrj(q)+ro)cp(H)vS .

»*

3y vy, (N ap [, P LY, V_o(H)
{ = u/s 's ‘u/s g PP g Va/s ? jrj T ol q/s eV T

-2 ¥

*
ds 87° Y /0 Vo Y g To(@e(H)V, -

c
ey

* T @YY (6.29)
S

[+s] z 4 p
[ dss 8 f dpp ] dq Yq/
t 0] 2]
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Now transfering third term to the ieft, we get,

= y|(1+1u|)*?Pj¢(H)vS(A2+PZ+1)“%|[ +

L.H.S. of (i)
< K Im dai | (H PR
=) = J 0 u/t
KuZ [ ds 8% (H +1)
i 0
Kuz f
t
=]
Ku2 f -2 [ (1+1a})
t
Ku? § =% 3 IR
t J
[#5]
Ku? [ ds 8™z ||(H +1)7
+ . o
19 J
K f ds e [u]3 .
t

u/q s u/s

¥ /t -u/s i Y

-1
YU/tl(v‘, VY oysVs Vot ]+

=S v _a%eRa) | o

HoH - 1B {s(exp(-u/s)-1] - (uz/(ZS))}]

1eaD 8 v gty (A %p 1) F)

£ Paq v P
Yt -urs Ve b LA Yo gy Pyl

(6.30)

As in (i) we show that each term of R.H.S. of (6.30) has the desired

~

growth in u and decay in t.

for the socond, use Lemma 6.5 (ii); for the third, use Lemma 6.5 (vii); for

the fourth, use Len..a 6.5 (vij; for the fifth, use Yu/n Pj =

For the first term use (6.19) and (6.23);

Pj Yu/Sexp(u/(Zs))

and use (6.19), also use Lemma 6.5 (vi); for the sixth term use (6.19)

and Y(u—q)/s P1

(i

J Y(u—q)/s

carry out the integration.

{iii) Since HA =

-
(iPl+l)Af§(H)(Aa+P6+l) ? is bounded, using (6.8}, and Lemma 6.5 (iii},

we get

-iK o+ T (Q)P,
AH-iK + T lj{ﬁ) ;

J

[A ,V 1 o(H) (A + +l)

= tB(1,t) +tB

The result follows by noting szt

™

+8(2,t) + B(1,r) -

exp({u-g)/28);

= [.i\z

,Vt} + ¥

t

Y FO(Q) and i < e

AA

for the seventh term simply

and using iLemma 6.4 (ii) -

y
H
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{(iv) Obvious.

(v) Similar to Lemma 6.5 (iv). Putting t; =t in (ii) and using (iv),d;f{ﬂy‘
V e 2/
[ (H+1)7 {v YureVeYuseVu -i(u /(Zt))Yu/t H} @(H)(A #81)" 2];

< K (1+|uD® @eft0

The result follows if [|{Y,, ~(1-iup/t)}V, w(H)(A #841)” 2|| and

~1-§

(1Y, ) v, HotH) (*P841) ™| | are bounded by (1+]u])* (1+]t[)™1™% and

u/t
(l+[u])2 (1+Lt])_6 respectively. For the first one ,

[, /p - (L-iuA/tIV g(H) (A% Cr1) ™4 |

v/t
kW/E?) | [A2 v o) (a%epCen) )

KA+ju® aetD™? by (iid).

i

The second one follows similarly by Lemma 6.5 (iii).
(vi) Similar to. Lemma 6.5 (v) noting that if Y'e¢p = 0 then "¢ = O.

(vii) Similar to Lemma 6.5 {vi) -
G.E.D,

Theorem 6.7 Let fé;"P{C(H), a>0and g > 1-§. Then

o

s-1im  F(lg] > alt|®) Ul v, f=

t-)-ioo
. w . * =l
Proof (Step i) Let g ¢ S(R), ¢ ¢ C(G) and f = ¢(H)g. Since ¢ ¢ C,(G,),
e(H) = ¢(HC). So fé:_}fc(H). Further,by Lemma 6.4 (viii), f & D(Qj) for each
je« By Lemma 6.6 (vii) for v in [0,1+8] we get (|(l+iQ[)"YVSf|IEK(1+|S|)—Y.

So by (6.4)

)™ (v e 0 Uy v, - 0,)f|

t
K [ ds{Qels])™ % [s]elshH ™) < k@e|epi®
8]

| A
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Sinece f g:D(Qj) and D{H) = D(HO) we have
. % 8 | =B 3
Lim || (H_+3) ut ¥, [t} fl} =0 for every j - (6.31)
[t ]

A0 |
Since [(H0+1) " ij is a bounded operator, by {6.31},

s-lim |t|” -8 ]P | e g (Hy *1)-2 v, f =0 for every j
It |0
sc that
vin F(la) > alt®) Uy (s TE v Fe 0 (6.32)
(AR . g

.

. . 2
Since f& | i o(H), by Corollary 6.3 w-lim V. f = 0. Since (Ho+i} “o(ried;
B [t}
=k
is compact s~?1m {(Ho+i) 2 o {H+1) 2}Vt f = 0. Then by (6.32)
R

_—_— ] ]

‘ﬁn Filal > sit|Byu, v, =0 - (6.33)
e

(Step 2). The result foliows for F?;14_C(H} since the family
F{la] > alt]®) U£ ¥, is norm bounded and {o{8)gig « CZ(GO)Q g &5@R™M) is a
ot of L Y
total subset uf“ylc(H,.
G.E.D.

iheorem 5,6 let 8 g (%,1). Then the wave operators

]
£ = | ]
Range S, =

Proof (for + ve sign only) Existence is proved in Theorem Z.2 for
§ » 0. For asymptotic completeness it is enough to prove
T« Range i ( where Q= Q) whenever f¢ ?»{C(H} has H-szupport corpact

in (0,»). For such an f choose ¢ ¢ C:(D,m) such that @(H)F =
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Since ¢(H) - @(Ho) is compact, by Corollary 6.3,

s-lim {L-p(H )}V, f = O.

t 4@
Since § = (%,1) we can choose g, B; such that 1-§ < 8 < 8, <(n+48)/(2n+4).

By Theorem 6.7 and Lemma 4.8

B o«
. 1
s-lim F(|Q} > at ") Z, v f =0,
— t 't
t »
The result follows by Corollary 4,7.
Q.E.D.

Remark 6.9 : Lot H_ = p2T L P2, P Wz Ha

. 2 n 0 |a§£2r—]

be self adjoint where WG satisfy-(Z.é). Then taking A=(PQ+GP)/(4r)

o
W (Q)P

one can try to extend the results of this Bsection to prove strong asymptotic

completeness for H when § > %.
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§ 7 ASYMPIGTIC CuMPLETEMESS 7OR TOTAL HAMILTONIAN OF THE
STATIC ELECTROMAGNETIC FIELD WITH SHORT RANGE PGTENTIALS

Let
LIO - - 35 A
Ho = wheg) P2
jo]<1 &
and
Ho o= H o+ ; WS(Q) pQ ¢ R“) ,
S
lo: <1

L]

where the potentials w;, Wz are real valueﬁ and satisfy

-

¢]

(i) awlj‘(x)/axj o,

Hr~~12

Jj=1

i

n
(ii) Y 0 in the sense of distributions,

aﬁ§<x}/ax.
j=1 J J

(iii) wé satisfy (2.4) for each g with § > % ,

(iv) For some A < Z,WE - MR for each j = O,1,.0.,0n.
(for the definition of MA see Theorem 1.7)
(v) For some T > %nle(x)(l+ix})rk5 Lz(Rn) for each j = 0,1,...,n.

Lemma 7.1 : Let the conditions (i), (ii), (iii) and (iv), hcld. Then H

is self adjoint with D(H) = D(H,) = D(HO).

Proof : By Corollory 5.2, H is self adjoint with D(HL) = D(HO). By
condition (ii), (iv) = wg(Q)POl is a symmetric operator on D(Ho).
o

By (iv) and Theorem 1.2 p(Z wi(Q)PG, HD) = 0. 5o,
a
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o (z wg(a)P“, H )

1
G
S50 b
< ol wa(u)?“, H) p(H_,L)
a
g 0.1 since D(Hg) = D(HL)

= 0
Applying Theorem 1.1 the result follows.
Q.E!D.
We prove asymptotic completeness for H by using trace conditions. As

a first step we have
Lemma 7.2 Let (i) and (iii) hold. Then D(H’;} : D(H:i‘) for all integers M> 0.

Proof : By induction on M it is easy verify that

r.(q)p®

H' =z H@ & ;
° <M1 P

M M
L

where T are infinitely differentiable bounded functions with bounded

k]

0
derivatives. The result follows from the above equality.

Q.E.D,

Theorem 7.3  (Birman's theorem) {6]. let A,B be self adjoint operators

with F(E{A), F(€|B) the corresponding spectral projections. If

(i) F(I|A)(A-B)F{I|B) is a trace class operator for every bounded
interval I, and
(ii) there exist real valued functions Fysfosfs,f, such that fj(x)_z 1
for all x, 1im f.(x) =« for j = 1,2,3,4 such that
x|+

fl(A)fz(B)-l and f;(B) f‘a(ﬁ\)"l are bounded , then the wave operators

! _ itA -itB
Qt(A,B) = s-lim e e EBC(B)

t+ 4 ®


http://www.cvisiontech.com

: 65 ¢

exist and asymptotic complsteness holds, i.e.,
Range 9 (A,8) = p%aC(A) = Range ¢ (A,B).
The theorem is the same as Theorem X1.10 of (6).

Corollory 7.4 Suppase A and B are self adjoint operaters gsuch that

(i) (f-\+i)'"1 {A-B) (B+i)*M is trace class for some M>0
(ii) D(A) = D(B)

Then Q+(A,B) exist and asymptotic completeness hclds.

Proof It is sufficient to verify hypothesis of Theorem 7.3. Since for

any bounded interval I, F(1}A)(A+i) and (B+;)M F(IIB) are both bounded (i) of
Corollory 7.4 yields (i) of Theorem 7.3. (%r fj(x) = l+{x| for j = 1,2,3,4,
(i1) of Theorem 7.3 is seen tc hold by using condition (ii) of Cerollory 7.4.

Q.E.D.

»

Thearem 7.5 Let (i), (ii), (iii), {iv)} and {v) hold. Then the wave operators

Q, = s-lim it e";x(t*P)

— iﬁ%i o
oxist and
)
; e LY :
Renge @ = - _ (1)

Proof We prove only for the pusitive sign. Let

itH
Q(HL,HG) = s-lim @

t + @

L _-iX(t,P)

Then by Theorem 6.8 Q(HL,HU) exists and Hange-ﬂ(HL,HG) :-liac(HL)"
M Ly —M
By Lemma 7.1, D(H) = D(HL)° By Lemme 7.2 (Ho+i)J(HL+1) i is bounded.
By condition (v) and Theorem 1.7 (H-HL)(HD+1)“M is trace class for H > %(n+e1).

Se, (h‘-i~lt)(Hl~1~i)'M is trace class. Applying Corollcry 7.4, the wave operator
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= T TRt §
Q(H,HL} = i-ilz e e Eac(HL)

exists and Range Q(H,HL) = jﬂ%ac(H)

By the chain rule {1,2,3,6] for wave operators,

QH,H ) QL) = 2= (@)
and so

Range §i = Range Q(H,HL) = ?{QCCH)'

Remark 7.6 Thearem 7.5 does not say anything about the equelity of
EMiC(H) z L{aC{H). This is a limitation of all proofs of asymptotic

completeness involving trace methods.

Remark 7.7 In § 4 of [23] when Wg = 0 f&r J=1,2,...,0 it has been

proved that for ¢ in (0,1), oz C. (0,=) and t 2 O
PE - 2

=g . ~1-%
[1F (A 2 Crexp( ith ) (i ) (1+{A]717E [|< Qs )H758

In § 6, we could have proved a similar result from which strong asymptotic

completeness would follow for H = HO + I (W;(Q) + Nz(Q)Pa where in
o<l

addition to (i) to (iv) we require that Wg.(Q)(l+]JQ|)l+e (1+§P[)"l is
bounded for some ¢ > 8 and all a(instead of (v)). So as to keep this

thesis with in reasonable length we have not ventured in this direction.
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APPENDIX

In this appendix we state the results on the growth proporties of
compogition of certain functions and on the stationary phase estimates,
which were freguently used in Sectiors? and 4. Proofs of these rosults
can be found in [28].

n

1 n. n n
Lemma A.l : Assume that :R

+ R z'and @:R 2R areC” germs at x
and at y = Y(x), depending on a parameter t, which satisfy estimates of

the form {remembering that K iz a generic constant),

s |
]Du 1{;(!)' S Ka ta(lal) 3 IDB {p(Y)I < KB tb(IBI) t > 1
for all qg,R. If a and b ars convex Sequen%es, it follows that
i

PYw o] <k Uy g0 650

where c(k} = max {b(1) + a(k), (k) + ka(l)}.'

Moreover
where
d(k) = Max {b(2)+a(1l)+a(k-1); b(k)+ka(l)}
Proof Same as Lemma 3.6 of [28] Q.5.0.

{amma A.Z2 Assume that w:Rn +RisatC germ at x depending on a

parameter t satisfying the ectimates
% yix)| < xath“”“” t > 1

where v is as in Theorem 2.2, Let Q:Rn + R be given by g{x)=zexp(iy(x}).

Then the C° germ v satisfies

0% 900 | < K g=8ial
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Proof : If g = O the result is clear. Let a £ 0. Define 910 ¢:R > R
by g (x) = cos X’WZ(X) = sin x. Then by lLemma A.1 x » ml(w(x)) and

x + @,(p(x)) ere germs satisfying

e e 4 (1-8)qf
0% U0} + 9% v} < Kt

The result follows by noting o(x) = ¢1(¢(x)) + 1 ¢2(¢(X)) .

NE.D.

Lemma A.3 tet C be a compact subset of Rn, SO a neighbourhood of € and

fe Dk+l (QO,R) a function with f' £ 0 in €. Then we have for u in R end
Lok

u in CO(C)

i (3 y ~M ¢

| [ dx ulx)explinf(x))| < Ky(1+]w]) y HD™ u] ]

' aj<M
The same constant KM can be used for all f in a compact subset of Ck+l(GG)
satigfying the hypotheses.
Proof Same as Lemmz A.1 of [2B8].
Q.E.D.

temma A.4 Let A be any real symmetric nondegenerate matrix of signature o.

Then the following identity is valid when w > 0, u & s(R™)

- A i : 2 . = "“l
[ dx L) eiwAX /2 |det 2ot |~ oTic/4 [ dE G(E) om1<h™T E,E>/ (20)

For evéry integer k > 0 and every s > Zk+in we have when u ¢ S(Rn)j

. L W . :
[fax wG)el@POx>/2 _gor /o] ™% ™04 5 (2300 (51) e e, podu (0) )

3

K W

-k-%n I
k,s

I

|U||(S) w>1

liere Kk 2 is a continuous function of A and s, =nd
¥

||U=|(S) = {(ZH)*H j dE, !G(E)lz (1+IEIZ)S}%

Proof : Same as Lemma A.2 of [28],
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Lemma A.5 Let fo Cw(GO) be a real valued furction in a neighbourhood &
of 0 in R" and assume that F'(0) = O and that 4 = f'{3) is non-singular.
Then there exist neighbourhoods Gy,C, of 0 in R" and a diffeomorphism

X:G, + 4. such that X{x}-x = G(§x|2) as x + 0 and F(x) = F(O)+<aX,X>/2

1 2

for x = Gl. Further there exist differential operators L. . of order Zj
—-— ¥

such that when u ¢ Ci(C), € compact in Gl,

. k-1 L0 -
| [dx u(x)elwf(x) - 2' |d=t F(0)/2n] " el(mf(0)+no/ﬁ)w—g~gn (Lf L u{)

Jeu LY

s
< K m“k-zn } ||n® uj{_ provided s > 2k+3n and y > 1
al<s

Proof : Same as Lemma 4.3, A.4 of [28]. Q5.0

13

Lemma A.6 let f be 8 € germ at X5 with k’(xo) 0 and A = F*(Q)

non singuler. Assume that for some t > 1
e 34 i G(I(Ii) ‘i
6™ Flx )i < <8 t fal > 1

0, Then there is a

t

where a(k) is a convex sequence with a(l) = a{2)

diffeomorphism § of a neighbourhood of 0 on a neighbourhocd of X, such that

FP(y)) = Flx )} + <Ay,y>/2
0% w0y < K, 8ol

A -1
where KT depends only on the constants K and on a bound for A ~.
&

proof : Same as Lemma A.6 of [28],
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