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Abstract

The paper reviews and merges optimality properties of block designs in the approximale theery and it the exact
theory, Emphasis 15 on balanced incomplete block designs, although more general block designs are also treated.
A correct version of an erroneons statement in Pokelsheim §1993) is given.
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1. Introductien

The paper is an attempt to understand and extend some known resulis on optimal block designs (rom the
viewpoint of the approximate optimality theory, as well as the exact optimality theory. An in-depth
discussion of the exact theory is given by Shah and Sinha {1989), while the approximate theory is presented in
Pukelsheim (1993},

Use of the approximate optimality theory for regression designs is an established lact. To the contrary, in
exact (combinatorial] desipgns it appears to be more natural to employ discrete optimization technigues.
Huowever, the juxtaposition of the two approaches is much less pronounced than would seem at first plance,
and Section 14.% of Pukelsheim (1993) makes an attempt towards deriving optimality properties of block
designs within the approximate theory.

This note has the primary objective 1< have a fresh look inte the technical proof of optimality of balanced
incomplete block desipns (BI1BIDs) and related block designs from the two different viewpoints, and develop
from this a wider appreciation for such optimality properties. We strengthen some known optimality
slatements on BIBDs, and discuss their domain of validity. We alse correct an erroneous statement in
Scetion 14.9 of Pukelsheim (1993).
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2. Optimality of BIBDs in the approximate theory

The classical proof of universal optimality of 2 BIBD rests on two properties. Firstly, the associated
contrast information matrix (also known as C-matrnix) is completely symmetric, that is, the on-diagonal
elements are the same and the off-diagonal elements are the same. Secondly, the contrast information matrix
has maximum trace among the competing C-matrices, The prool uses the fact that the frequencies n, for
observing treatment { in block j trivially satisfy

ﬂi,?fﬂij. {1]

In the approximate theory, the frequencies ny; are replaced by weights w;; that are nonnegative and add to
one. However, inequality (1) no longer holds true with arbitrary w;; (0, 1) replacing »;;. This is the first
obstacle towards a direct derivation of optimality properties of BIBDs using the approximate theory.

In an attempt to circumvent this difficulty, Pukelsheim (1993, Scction 14.9) makes the total support
assumpiion to resirict the class of competing designs to those which have the same or a smaller support than
the given BIBD.

The technical effect is the following. Every BIBID is binary. that is its frequencics ny; are either or 1. Let
w;; be the weights of a competing design that satisfies the total support assumption, that is

=0 = w;=0 i2)

Then the given BIBD and the competing design are tied together through the relation wy = njw. This
seems to lead the rescue operation in the approximate theory,

We begin by relaxing the total support assumption {2) while dealing with the approximate theory. Instead
we impose the block support assurpeion that no sore than k entries in any biock ave positive. Within this class,
a given BIBD with parameters b, v, r, k, A remains universally optimal. The concept of umiversal optfinality is
discussed io detail by Shah and Sinha (1983, Ch. 2}, while Pukelsheim (1993, Section 14.9) subsumes it under
the more general notion of Kigfer optimality.

Theorem 1. Let & = ((n;)} be the incidence matrix of a BIBD for v varieties in b blocks, with replication number
v, block size k, and cercurrence number A, for awotal of r = bk = vr observations. Let %#7(k) be the class of those
v » Bweight matrices W that have an arbitrary member B of columns each of which has af most k positive entries.
Then the approximate version of the BIBD, N /n, lies in the set % (k), and is universally optimal for inference on
the varieial contrasts within the class % (k).

Proofl. First observe that the approximate BIBD allocates uniform weight | /n over the nonvamshing entries
in N. For a competing design with B blocks, let W be the weight matrix of order ¢ = B. The block support
assumption means that the number ¢; of positive entries in column j of W satisfies r; <k forj=1, ..., B

The trace of the C-matrix that belongs to W is given by | — T %, T, wjj/w j, where w  is the sum of the
entries in column j of W. For each j, the Cauchy inequality yields w’ < ¢, ¥, wi. This is vsed to bound the
trace of the C-matrix from above,

=R N,
! J';I Wy £I Z I: &l

(3
The second inequality in (3} uses the block support assumpticn ¢, = k. [
We find it remarkable that, in the presence of the block support assumption, no restriction is placed on the

number of blocks B The block support assumption itsell cannot be entircly omitted as, otherwise, a design
with uniform weight 1/{Bo) will tum out to be better than a BIBD whenever B > h.
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Equality throughout (3) forces each block to have & weights equal to w /&, and ¢ — & weights equal to
zerd. This is not encugh to characterize BIBDs, and other designs may perform just as well. For instance, the
BIBD>

b0 1 1 0
.f"u."=|l 011 01
r1 N A VA O

leads to the approximate desipn &/12 € #7°(2) 11 has the same C-matrix as the competing approximate
design

I."z 20 11 o
W=ﬁ‘2 021 0 I‘E*#’[QL
002 20 1 1

which does not arise from a BIBD! The approximate design W is interpreted as taking 18 observations on
3 varieties in 6 blocks, where block 1 { = columm 1) contains 2 abservations on cach treatment 1 and 2, block
2 contains 2 observations on treatments 1 and 3, efe.

3. Opidmality of BIBDs in the exact theory

The exact version of Theorem 1 says that a BIBD 13 universaily optimal within the ¢lasgs of those block
designs for which each block is at most of size k.

In the exact theory the block support assumption can be dispensed with provided the number of blocks
B of the competing designs is greater than or equal to the number of blocks & of the given BIBID. This
minitively plausible relation means that more blocks are detrimental to the information that is available on
the treatments. The precize result 1s contained in the following theorem.

Theorem 2. Let N = ((#;;)) be the incidence matvix of @ BIBD for v varieties in b Mlocks, with replication number
¥, block size &, amd concurrence mumber A, for a total of n = bk = pr observations. Let S(b) be the class of those
exact destgns for 1 observations on v varieties that have B = b Mocks (and each block has at least one positive
EHTF V),

Then the BIBD N fies in the set 22(h), and ix wniversally optimal for inference on the varietal conirasts within
the elass (k).

Proof. The usual argument based on the tnvial inequality (1) immediately yields the upper boond 1 — B/f#
for the trace of the C-matrix of a (standardized) competing design. This is further dominated by the
corresponding quantity 1 — &/» for the (standardized) BIBI>. [

Theorem 2 does not permil & statement on unigueness. All we can say 1s that a block design which is
universally optimal in @(b) must be binary, and must be supported on exactly b blocks. But il need not
necessarily be a BIBD! A counterexample is design N, of Exhibit 14.2 in Pukelsheim (1993, p. 3700

A more general family of counterexamples occurs with the BIBDs in the Yates' orthogonal series of Section
39 in Raghavarao (1971), having the parameters

v=52 b=st+4s r=5+1, k=5 i=1
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Note that n = bk = 3(s* = 5} = 30 + 5% Therefore, as a competitor design, we may have one with s complete
blocks and an additional set of 52 blocks each of size 1 with entirely arbitrary composition, This provides
a completely symmetric C-matrx with trace | — #/n. Hence all such designs are equivalent to the BIBDY

4. Nonoptimality of BIBDs in the exact theory

We now express more serious concern when the number of blocks B is allowed to be strictly less thao the
number of blocks b in the candidate BIBD, Optimality of the BIBD fails immediately when B is as small as
possible, B = 1. For gxample, in Exhibit 14.2 of Pukelsheim (1993, p. 370) the one-block desipn Ny is better
than the BIBD N..

But even if B is just somewhat smaller than b, at best B = & — 1, we can no longer claim optimality of the
BIBD. This disappointing fact 15 brought out by the following example, with parameler values

=4, b=12, r=6 k=2, i=2

It is readily scen that two copies of the unreduced BIBID composed of four treatments taken two al a time
provides a BIBD with parameters ag given above, We now opt for B = 11. Following Chenp (1979) the blocks
of our compeiing design are taken to be

(L2J{L 3 (LA 23 206,40 (L3 (LA {231 {2.41{1.2.3,4).

It is easy to venfy that the C-matrix of the competitor design has posilive eigenvalues 4, 4,5, while the
C-matrix of the BIBIDD has eigenvalues 4.4,4. Henee the competitor uniformly dominates the BIRD!

It must be noted that in the case of a binary design for n observations in B blocks, the trace of the C-matrix
is given by n — B. This is larger than the correspooding quantity # — b of the BIBD whenever B is smaller
than b, The example above further shows that the competing design has uniform dominance over the BIBD
even though s C-mmatnx s not completely symmetric,

It is also possible to construct examples of binary desipns with B smaller than b thal do possess
a completely symmetric C-matrix. Interesting examples are built from component designs which have
uncqgual block sizes. The C-matrix of such components is far from being completely symmetric. One such
example is the foliowing.

Censider the design o, with n = 1530 observations spread over 51 copies of a BIBD with parameters

v=6 b=13% r=35 k=2 i=1l.

The competitor design #; consists of 10 copies of the component design 5 given by 2 copies of the
subcomponent design o+, 6 copies of the subcomponent design J;;, and 3 copies of the subcomponent
design d33. The subcomponent designs are defined through their blocks:

dy: (L4 (L, 5)(1.8}
(2,4){2.5){2.8)
(3,4){3.5) (3.6).

@330 (4,4)(5,5)(n,6).

dazr (1,2,41413,4(2,3,4
(1,2,50(1,3,51{2.3,5)
(1,2,6) {1,3,6) (2, 3,6).

The C-matrices of the designe 4, and o, are of the form p, K, where K, = [, — 1,1;/6. The coefficients are
found to be p, = 153 and p; = 180, respectively, so that the design 4, is dominated by J; cutright!
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5. Monoptimality of BIBDs in the approximate theory

In ouor final analysis of optimality of the BIBDs, we turn to the approzimate theory to reexamime some of
the results established in the exact theory. Theorem 2 states that, for B = &, the BIBDs are optimal in the
class of all competing designs with B blocks, irrespective of the block compositions. In the exact theory, it is
clear that when we speak of the presence of 8 blocks, we then mean that each block contains at least one
observation. In the approximate theory, there are at least three distinct ways of expressing this phenomenon.

Firstly, we may demand that each column of a ¢ x B weight matrix B should have at least one positive
entry. This immediately negates the optimality of the BIBD since the design with uniform weight 1/{Br) is
better.

Secondly, we may demand that every entry w;; must salisly the requiremenl thal nwy; 1s a nonnegative
integer. This retains the unique optimality property of the BIBDs, for the evident reason that it is just
a disguised form of embedding the exact theory into the approximate theory.

Thirdly, we may demand lor every column j of W that swy,, ; = | where wo,, ; stands for the largest
weight among wyp, ..., wyy. This ensures that cach of the B Blocks of W contains at Jeast one observation.
Even with this understanding, it tarns out that there are competing designs with larger traces unless B is
really large, We examined this situation for & = 2 and & = 3, only to find that we need B = # — 2 at least. This
comes as a highly discouraging fact.

What all this amounts to, in our eyes, is that the exact optimality theory and the approximate optimality
theory for block designs are not entirely identical. Both approaches contribute to our understanding of
optimal block designs, but in a complementary fashion. The approximate theory emphasizes the optimality
properties which are shared between block designs and regression designs, oo the grounds that both are
instunces of the general design problem. As soon as the inherent discreteness of block designs enters into the
discussion, the approximate theory comes to an end and the exact theory takes aver.

6. A counterexample

Two of the five parameters that are uwsually quoted with 4 BIBD are redundant in that they can be
expressed as functions of the ather three. For example, the common treatment replication number and the
commoen block size can be expressed as r—=niy and & =n/h Hence we can speak of a BIBD for
1 observations on v vareties in b blocks. These three parameters are also sufficient to formuolate the
aptimality resull in our Theorem | There are ¢ — 1 varietal contrasts, and the class of competing designs in
Wnib).

In contrast, the optimality statement in Pukelsheim (1993, p. 368) refates optimality of a given BIBD to
a set of competing block designs that is restricted by the support of the given BIBLY. On p, 369 an attemnpt is
made to extend optimality from a class of designs restricted by the location of their support points, to a larger
class for which the characterization does notl require more knowledge than is supplied by the three
parameters #,t, b, '

The following counterexample shows why that optimality extension is in error. Consider the following twa
BIBIDs N and N for 6 observations on 3 varieties in 3 blocks,

110y i ol 1
NT|1 ) 1|. .-*‘J‘:‘ﬂ | 1||.
11 110 ;'

The unicn of the support sets of ¥ and N is the full set of &! variety block combinations. The statement in the
first printing of Pukelsheim {1993, p. 369 then asserts optimality of the given BIBDs among alf block designs.
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and this is apparently false, The appropriate optimality extension is Theorern 1 of the present paper, as
included in the second and subsequent printings of Pukelsheim (1993).
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