Some Tests for Comparing Cumulative Incidence
Functions and Cause-Specific Hazard Rates
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We consider the competing rsks problem with the avaalable dala in the form of omes and caoses of failure. In many practical
situations (o.z.. in reliabilivy festingd it iz important to know whether owo risks ave equal or whether one is “more gerious” than the
other, Wi propose some distihation-free tests for comparing cumulativie ingidengs: functions and cawvsc-specific hazand rates against
ordeced altermatives withoul makiong any assumplicns vn the paluce f dependence hetween the tsks. Both the consorcd and the
uneensored cases avc studied, The perlormance of the proposed lesls 15 assessed m a simulation study. As an dllustrabion, we compars
the risks of tan types of cancer mortality (thyenic lymphama and reticulue ool carcinomat in a srain of Taboratory mice.
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1. INTRCDUCTION

[r1 the competing risks model, a unit is exposed Lo several
risks st the same time, but it is assumed that the eventual
failure of the wnil is due 10 only one of these nsks, which s
called a “cause of failure.” Lat 4 vnit be exposed to two risks
and let the notional {or latent) lifstimes of the unil under
these two nsks be denoted by X and V., In geperal, Yand ¥
are dependent. Also, heing lifetimes, they are nonnegative.
We only observe (T, 48), where T = min(X, T} is the time
af failure and & = 2 — f{4 = ¥)is the cause of flure. 1lere
F(A) is the indicator function of the cvent 4, We assume
that (X = Y)=10.

On the hasis of the compelting risks Jdala, 1115 oflen wsetul
to distinguish between the following alternatives: (a) the two
risks wre cyual. and (B) one risk iy greater than the other,
within the environment in which the two risks are acting
simultansously. Such compansons can be made in terms of
the ensmtdaiive incidence funciion,

Kty =P T=1,d=]],

corresponding Lo cach canse f.

Such comparisons are useful in many practical situaticons
i1 industrial enginecring and reliahility life 1esting. Suppose
that either of two compaonents in a series system can be re-
placed Lo improve overall sysiemn reliabiliny. A reasonable
approach is to compare estimates of F| and £ and to replace
the second component in preference Lo Lhe first, say, if there
is evidence to rgject I = £ in favor of Fy < F., Similarly,
o ecompare the guality of two types of components, they
may be tested in pairs {cf. Froda 19871, The experiment is
lerminated as soon as either component [ails. This esperi-
mental design identifies weak components early on, thus
saving valuable ime and aceelerating the experiment. From
the competing risks data, one would like to test whether the
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two components are of the same quality (Le., £ = F3 ) apainst
the ordered alternative that the first componant (say) is of
better quality (i.e., & < £4). In the biomedical scuing, Lthe
comparison of cumulative incidence among different tvpes
of failure may be useful when selecting 1he appropriale treai-
ment for a patient {see Gray 1988). Benichou and Gail (1990)
stressed the importance of cumulative incidence est{inadion
n this conlexl.

In this article we propose some tests for comparing cue-
mulative incidence functioms, Our tests are less subjective
than inspection of estimates of the cumulative incidence
[uncuons alone. We Aratl consider a test of the null hypothesis
Hy Fi(e) = Falry, ¢ = 0 against the ordered alternative

Hy Fi(ey = Faln, t=1,

with strict inequality for some !, Llere ff| says that risk ¥ is
“more serions” than risk Y. Note that there is often no reason
1o expect a priort thal the cumulative incidence lunelions
Fyand F. are equal {except, sav, when thev represent twao
identical components in a series sysiem), but this is the nat-
ural choige of the null hypothesis tor the ordered alterna-
live H,.

In some apphcations it is of interest to base the comparison
of risks on the cause-specific fazard rate (CS1IR),

24 = 0/ SHD.

where the F) are assumed to have subdensities S0/ and Sr( ¢}
=P[F=t]=1—F{r— Fi1 is the survival function of
1CSHRS provade detailed mnbformation on the extent of
each tvpe of nisk at each time ¢, In the case where ¥ and ¥
are independent, g, and g reduce o Lthe hazard tates cor-
responding to the marginal distributions of X and Y. Prentice
el al. (1978} showed that in gencral only probabilities ex-
pressible as functions of £, and £; may be estimated {rom
the abservable data | T, §). Becavse the cumulative inaidence
functions can be expressed as F.{r) = I"; gl u)Sy(n) du, the
oull hypothesis 14, 05 equivalent o g {1 = g6, 1 = L

We introduce a second test of Hy that is tailored to the
orderad allernative

g (1} = ;(f), Pzt
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with strict inequality for some £, H is more resifictive than
Iy, vet the commaon pararmeiric models satisfy I whenever
thoy savisfy 1. Such a test might be wseful in rehiabilicy
testing: In the foregoing example, suppose that the second
component consists of another component of the same Lype
as the first component and a third component in series. Then,
because it 1s known a prion that gy = g0 forall £ f;
is & more natural choice of ordered alternative than A, {which
includes the possibility that gz() <2 g (€} For some ).

Various aulhors have proposed tests of Ay in the case that
X and ¥ are independeni- Bagai, Deshpand?, and Kochar
{19891 developed distribution-fres rank tests against sto-
chastic ondering and farlure rate ondenng allernatives;, Neu-
haus (1991} constructad asvmptotically optimal rank tests
against stochssdc ordenng: and ¥ip and Lam (1992) sog-
gested a class of weighied logrank-1y pe statistics. The case of
dependent X, ¥ has been considered only recently: Aras and
Dvshpand® (1992 denved locally most powerful rank tesis
tor H; against varions parametric alternatives gxpressed in
lerms of M and 5. But none of these tests allow for the
possibilily of censoning, and they are sensilive o only a rel-
alively small range of departures from Hy. The tests intro-
duced m this arlicle are asymptolcally distnibolbon-Tree,
consistent against f7,, If;, and applicable to right-censored
dalg and dependenl X, ¥

This article is organized as follows, In Section 2 we intro-
duce our test slatistes and give lormuolas for their exacl oudl
distributions. We also derive the asymptotic noll distribu-
tonsg In Scelion 3 we develop the extension of our approach
to right-censored data and explain how to deal with multiple
{rather han just two) compeung rsks, We also diseuss com-
patrisons oo foile time intervals, Finally, we present the re-
sults of 4 simulation study and an exampls in Scction 4.

2. UNCENSCRED DATA

The tests of the null hypolhesis Wy introduced in this
section are based on the uncensored competing risk duta
T 60 i =1,..., n} for # independent and identical
units.

First, consider o test of Haovs, M) Note that £ 15 cqoive
alent to 413 = O for all = O, with strict inequality for some
fowhere Y0 = Fali) — #(0). Thus a natural 1est statistic
for detecting the alternative i given by

'F

Dln = sup 19!'}1({'}!

G"-'l' L

where ,(1) = Fo, (1) — F{t)and F,.(¢£) = n™ 2P, Iid
= j, T =t} is the empirical cumulabive incidence function
for cause {. Positive values of Iy, provide evidence in favor
of H,;. Mote that

where
Wy =1 ildecorresponding o T {the ith ordered T is 1

=0 otherwise,

b

p=mt o b, FH o0, and g, = 1 2W . Kochar
and Proschan (1991} proved that T and & are independent
under Ly, Consequently, under fq, 2, 15 a symmettic simple
random walk starting at 0, and by lemma 4.8.1 of Rénvi
{1970,

i
1

P{HDU,—.-E}‘? e | k=0.1,...,n.

2 /

This gives the exact oull distribution of I3, The asymptotic

null distribution is oblained vsing the invaranes principle

for partial sums (see, for example, Csored and Révész 1951,

chap, 2): under My,

P{VnDy, = x) — P{sup W(f} > x} = 21 — Bix),

Drrl
x =1,

where | B{1), ¢ = O 15 a standand Brownian motion and €
is the standard nonnal disteibution functicon.

Mexl, consider lesting )y versus £ The allernative £
is equivalent to  increasing (assume that the g, are contin-
uous]. This s a conscquence of Lhe ddentily ()
= ﬁ, S ey — (1)) ou and provides a rationale for
the test statistic

Il = sup

e respaiaz

1 ¥all} — Wuls) ]

Positive values of Mk, provide evidence that g-{(t) is lareer
than g (¢} for some 1. The exael null distribution of 4, is

given by
g 2 jro 1. [Jwte+ 1)
Lt lJ_Zﬁ[mszx ' 1}51"[' BT

jm =T d o
ol e sin —— (1
[ ““2.:+1H 2 ]/ﬁ'n2z+1 -
fort = 1...., 4+ 1. This follows {rom the identity
iy, = max (£, — min Z;). (2

L=~k L~f

and equaticns (1), (43, and {5} of Page (19553,
The asympiotic aull distribution can be obtained from
{2} and the invanance principle for partal sums: under Hy.
i i}
¥nh, — sup |H{x)}.

P e |
Consequently, Tor ¢ = 0,
P{VaD,, = ¢} -»

i3 il S expl — =12k + 1378’ (3)
LSt I £

The exact formuola (1) can casily be used 1o generate a table
of critical values. Using (3}, the asvmgptotic .50, .23, and .59
guantiles of Y, are found w be 196, 2.241, and 2.807.

YWhen an ordered altermative is unsuitable, it can be of
interest 10 test fy against the general alternative, (¢}
# F.{ 1) for some ¢, which is equivalent to () # g:(0) for
some £, 1n thal case it 5 nalural o wse the Kolmogorov-
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Smirnov test statistic 2, — sup.e |¥.(f)]. Under £,
¥uh, comverges in distribution 0 supg.. | W{.x)|. This
gives an omnibus tesl—consistenl apainst arbitrary depar-
tures [rom Iy (see the proof of Theorem 3.1 in the Ap-
pendix).

3. CENSORED DATA AND OTHER EXTENS|IONS

In this section we consider various extensions of our Lests
that will make them more widely applicable. We study the
censored dala case, additional causes of failure bevond those
due to X and ¥, and comparisons on subintervals.

3.1 Censored Datg

Censoring arises when an item is removed [rom obser-
vation before failure duc to X or ¥V, Denote the censoring
urme by £ and its survival function by 5. Assume that S.{¢)
= 0 for all ¢ and that € is independent of X and Y. Under
right censoring, we observe # iid copies, (/5. 6,7 =1,...,
roof T=min{f, Cyand § = 51T = O,

Our apprivach is to seek a suitable generalization of the
function + = #5 — ¥, Congider the function

i) = J; Sedw— )2 e Fy  Fy(m),

which coincides with ¢ when there is no consoring, The in-
tegrand Se(#—}"? tums out to be precisely what is necded
L compensate for the censoring [or our eyl slalistics to re-
main (asymplolically) distobution free, [ is equivalent o
@(t) =0 forall ¢ = 0, but under £, (¢} = U for some 7 (see
Lemma | in the Appendix), Thus positive values of the west
statistic
Dy, = sup galt).
LI EXELT

where ¢, 15 an estimator of ¢, give evidence of a departure
from H; in the direction of . Boeguse

a1 = J; Sr{u—)38:0n Y3 @l — e1(10)) du,

H; iz equivalent w ¢ increasing, Thus positive values of

D= sup  {daltd — dalw)}

Chez vazdozion
give evidenoe of a departure from Hy in the direction of M-,
An ohvipus choice of ¢, 1%

Bl J;. Sr{u—)Sclu= Y7 dl &, — L),

where 5_; and 8, arc the producl-limil estimators of Sy and
Seand A, is the Aalen estimator of the cumulative CSHR
function A,(2) = [} gilu) du:
Adry= 3 Ith; = IR,
[1Fan
where R, — #{k: T, = 1;} is the size of the risk set at
time F—.

The estimator L 15 a special case of an cstiniator discussad
by Aalen and Johansen { [978) in connection with inference
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for the transition probabilities of a non—time-haomogeneous
Markow chain with finitely many states. Our approach could
easily be generalized Lo deal with comparisons between such
transitiom prababilities. The prablem al hand concerns a
three-state chain with two absorbing states corresponding to
the two types of failure,

The estimate () is similar in spirit to a weighted log
rank slatistic of the form

et = J; wii) dl A — Ao )u),

where w is a locally bounded, predictable weight function.
The weight w( ) retlects the relative importance attached to
the difference between the CSHRs al time #. Our choice of
w, which essentiglly controls instability in the wils, is de-
signed to give an asymplotically distribution-free test. Yip
and Lam [ 1992) have suggested test statistics based on nor-
malized L {2 ) for various other chaices of w. They consid-
ercd only Lthe case of vncensored data and independent X
and Y, but their approach readily extends to the present
selling,

The following resull, proved in the Appendix, shows that
P and Dy, are asvinptotically disteibution free with the
same limiting distribulions as in the uncensored case,

Theorem 310 Under Hy,

== n — i
Vi, = sup] Wi{xy aond Vuly,— nSL;l:p1 WX
LT X
Moreover, the tests are consislent wguingt their respective
allernatives.
The omuibus test siatistic £, has a similar extension o
the censored data setting.

3.2 Additional Competing Risks

Omr approach [urther exiends tw the case of muliiple
{rather than just two) competing risks in which any two of
the cause-specilic risks are 10 be compared. No structure
need be imposed on the dependency belween the multiple
risks, although the corresponding latent failure imes must
be independent of the censoring. Let T be the minimum of
a fnite collection of latent fadlure times that include X and
¥ {but not the censoring), and lel & denole the comesponding
cause of failure. The cumulative ingidence functions of ¥
and ¥ and the vanous hypotheses are defined as before, Fx-
tensions of D, and £y, thatl preserve the foregoing asymp-
lotic distributions are obtained by using ¢.(/ )/ V p, in place
of ¢, (£}, where

b, _J SHu=Y 4R + R
u

is a consislenl estimator of P[& =
are given in the Appendis.

1 or 2]. Further details

3.3 Camparisons on Subintervals

I i often usetul to compare curnulative incidence func-
tions {or CSIIRsY in a given ime interval, sav [#;, 22), rather
than at all vmey. An example will be piven in the next seetion,
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[1 1% struightforaand (o generalize our tests to deal with such
comparisons. Defining £#7 (i) = P, < T =1, § = f], the
null hypothesis s now FY{ = Fi(g), 1 =t < =, which 15
equivalent ta g () — g {8, £ = = s,

Lxtensions of our carlicr test statistion are obtained by
using

S = (8700 ) = Srla) T (0 — d.00 1)

um Lhe interval [4), &) instead of ¢,{z) on [, oo }. Theorem
3.1 readily extends to this case.

4, SIMULATION STUDY AND AN EXAMFLE

Our lest procedures ure consistent against their respective
alternatives; however, we would hike 1o know whether they
are powerlul cnough for practical purposss. 1n this seetion
wa report the results ol a simulation study designed to address
this gquestion and apply our methods to a set of real data.

4.1 Simulation Results

For the disiributiom of (X, ), we used Block and Basu™
{1974} absolutely continuous bivanale cxponential (ACBYE)
distribulion with density

Jlr{ X _}.":| 2 }\]P\[.}“_?:J’k_n} E'_:"i""_i:".!—:\o}}:

ifx =y
.}L| o -}'-2 I
R ) P R T
.:'\| + -:'\2

where (hg. &y, Az) are parameters and h = Xg — &y F A,
The CSIIR's

Vo

gl 2

Tatie T, Obsened Levels and Powers of Tast for Equality
of Cumlative incidence Functions Based on D,

at an Asymptatic Level of 5%
h =&t n— 10 n = 5tk
A =0 Ay = ho — @3 M — 7 =0 hp=1T
Uncensored
1.4 4,90 490 444 4.44 4,63 4.63
1.5 30 46 %45 81.05 81.05 a3 71 ag.71
2n 74.495 7495 4511 9511 100 100
2.5 91.96 a1.98 8978 99,78 100 100
Lightly censored {18-33%)
1.0 3.64 KE Y 416 4,06 471 4 64
1.5 27 64 30.00 47 .97 61.22 a7 .84 88.52
20 6052 B3.64 A7 .64 BTG 100 100
25 azo1 B4 80 94,57 3875 100 100
Heavily consored {40-60%)
1.0 220 2.82 281 3.64 3.74 427
1.5 16.02 19.749 2012 3585 BA.7E 9342
2.0 3376 46 7h GE.7TY 7649 o098 100
25 63.73 T0.27 o4 72 100 100

91,57

MOTE:  The urkierlying disirbution of (¥, 71 1 Blook and Baow's {187 4) ACBVE with 4, = 1. The
data wete creied usng Be LNRORT rANdOM AUMCer @anevatar of Marsayia, Zaman ard Tsang
(18580 and an algaritbm of Frday and Panl (1557, cor, 3.9 10,000 sarnples were uaed to obilain
eash amiy in lhe b,

Qo7
Tatile 2. Obsenad Laveds and Powers of Test for Equality
of Cumuiative incidence Functions Basad on 0,
af an Asympialic Level of 5%
1 =50 n— 100 n =500
ha hy =10 by 7 hy O d=1 =4 by — 1
Uncansorad
1.0 388 386 .68 3.68 416 416
1.5 237 3238 2441 04.43 29.48 99,48
2.0 67 46 67 46 82.59 82,59 100 100
25 87.66 A7 .66 g94.4 949.40 100 100
Lightly censored {18-353%)
1. 2.8% 2498 5.45 3.37 4.28 4 53
1.5 2195 2419 41.32 4486 98,73 9778
20 51.85 G540 B3.31 85,57 100 100
245 76.35 75.449 97 47 97497 1040 100
Hearvily cangored (40-60%%)

1.4 1.44 216 1.80 279 i am
15 11.09 14.76 22.88 29.24 B4.18 90.81
20 30.33 3726 G0.59 £8.23 g99.92 98 9%
25 5311 B80.73 BE.49 a1 100 100

deie wera crested ueing 1ha uallics i andom awnter genermator of Marsagla, #aman ard Teeng
(1950} and an aigodthr of Frday ard Patil (1677, cor 3.3 102000 sampins werg used 1o obiein
a8ch &y e bk,

are proportional, and the alternative hypotheses M, and
ffyare cquivalent to &y < A, The parameter A, controls
the degree ol dependence between X and ¥, with inde-
pendence if and only ifhy = 0, Weset &; = | and consid-
cred various higher values of Az corrgsponding to increas-
ing departures from Hy. The censoring wus taken to be
exponential with parameter values | and 3, corresponding
to “light” and “heavy™ censoriog (about 25% and 308
censored). For comparson, we included results for the
uncensored case as well. We used asymptotic critical levels
ol 3%.

Inspection of Tables 1 and 2 shows that use of the asymp-
titic critical levels gives somewhual conservative tests, and
thal this cifect increases as the censoring hecomes more se-
vere. Bul the st based on £y, appears wo be less comnservative
{and more powertul) than the one hased on £y, and both
tests become less conservabive as the sample size increases.
The levels of the tests are close Lo ther nominal 5% values
for samnple size 500, except under heavy censoring. There is
no apparent adverse effcet on the levels or the power duc 1
lack of independence of X and Y, {Pearson’s correlation be-
tween X and Yis about 15 for the wble entries corresponding
Wwhy=1.)

Because T and & are independent whenever the CSHEs
are proportional, it follows that under the ACBYVE distri-
butiom, the sign test (based on the proportion of failures from
cause 13 is the locally most powarful rank est of £, against
proporticnal CSHR™ i the gbsence of censoring (see Aras
and Deshpandé 1992). Qur simulations indicated the power
of the sign test to be 44%, T9%, and 94% for 7 = 30 and A5
= 1.5, 240, and 2.5 (Ag = 0 and 1, uncensored datad Com-
paring these [gures with the second and third eolumas n
Table 1{uncensored}, we find al most a 3% loss of power for
our test compared to the sign (st
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Figure 1. Cumuiative Incidence for Lymphoma (---] and Sarcoma
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4.2 Application to Real Datq

We have analyzed a set of mortality data piven in Hoel
{1972}, These data were oblaned from a Taboratory exper-
iment on 9% EMF strain male mice that had received a ra-
diation dose of 300 rads at 5-6 weeks of age and were kept
i a conventional laboratory environment, Causes of death
were classificd into thvmic lymphoma. reticulum cel] sar-
comma, and other causes. We shall treat “other causes™ as
censoring {39% were in this category), and take the two types
of cancer mortality as the two causes of failure that we wish
to compare; that 15, F; amed £ are the comulative incidence
functions for death from sarcoma and lymphoma in the ab-
sence of msk from other cawses of death. Our analvas depends
on the assumption that the two diseases are lethal and in-

dependent of other causes of death (which s biologically -

reasonable, according to Hoel}. We do not need to assume
that the two diseases are mdependent of one another, An
alternative analysis of the data would be to treat other canses
of death as a competing nsk (of. Sec, 3.2),

Plots of estimates of the comulative incidence fanctions
(Fig. 1) supgest that up to about 500 days, then: is moderate
probability of ideath from) brmphoma and small probability
of sarcoma. After 300 daws, the situation reverses, with neg-
ligible probability of [vmphoma but high probability of sar-
coma, This 1s reflected 1n the plots of the smoothed CSHR
estimates in Fipure 2, which were obtained nsing an Epa-
nechnikov kernel function and a bandwidth of 80 days ap-
plicd 10 the cumulative CSHE estimates {of Ramlau-Hansen
1983).

Our tests offer a less subjective comparison thar can be
made from visual mspection of such plots. We obtained
the highly sipnificant ‘I.";D;ﬂ = 3.0% (resp. 5.58) when test-

9.015
.
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Figure 2. Cauze Speciic Hazard for Lymphioma (- --
)

| and Sarcoma
i
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Figure 3. Piot of ¥ng, (Solid Line) and Correspanding Asymptotic 5%
Crittcal Lovels fDashad Lings) for the Ormnitus Test Based on 0.

ing whether the cumulative incidence for lymphoma 15 larger
{resp. smaller) than the cumulative ineidence for sarcoma
betore (resp. atter) 300 days. (Both P values were less than
D003 The wsts based on £, gave similar results. But the
omnibus test of ') = & gave a considerably less significant
result, We obtained Yo, = 2,77 fwhich 1s significant at the
3% level, but not at the 1% level); see Figure 3. This illusirates
an advanlape of testing against an appropriate ordered al-
ternative on a suitable subinterval, as opposed Lo using the
ommibus Lesl,

APPENDIX; PROCFS
Froot of Theorem 3.1
Suppose we can show that
Ut b = WCEL), (A1)

Then the fitst part of the theeremn 3s clear by the continuous mapping
theorem, For the second part,

Vi sup (0= (513 -

sup SW{FH— W Fr(a))}
AT BT L
= sup {W{u)— Wie)l = sup Firh
LIER TN =Tzl
where F () = supgges, W 0 — W00, The second part now follows

from the well-known result of Lévy (1948) that the progesses F(-)
and | #(-)] are identically distributed. 1L remains 10 prove (A1),
[ which we use (he counling process approach developed by Aalen
(19783, Mote thal we can whte ;i.J in the form

: )
.’LI.{I:I = [I "-LH}

Fruy *
o E ¥.. a"\_"_. . "\_‘ N,

where 1700 =),

Y(w)=HF =w), Ny=1(Fi=nb=5,
for j = 1, 2, and the summations are over { = 1, ., &, Lel
r
Myt = N0 - J: ¥olud ddadald.
3
Then Af, = 1,.. ., narc orthogonal martingales under the natuwral

filtration gencrated by the forcgoing processes. Let &, 2 M.
The predictable variation process of 87, is [, Fiu) dadu), By
F(E ¥y =0, the counting processes &, and & almost surely
have nd simultansous jurmgps, so M, and A ane orthogonal mar-
fingales (this is a2 standard result from counting prowvess theory),
Thus the prediciable vardation process of A, — M, i f,;, Fiwy
dAnl 1), where Ay = A, + A, Under H,

fbm{f}_‘[ 5 I:u J“‘r{” J

Fiu L

RTINS
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Because Selu—) und'_i—( r—1arc left continucus and adapted, they
arc predictable, so0 Vi, 1s 2 martingale with predictable variation
ProCuss
FSe(n—) Selnm)
] Yiulin
By the (_?1iv‘¢nku—(..'ﬂnlﬁﬂi theorem, Fiw)/n converges uniformly
in it lo P{T = u) = Slu—15:{ u— ) almost surcly. Henee, by the
unitorm vonsislenyy of the product-limit cetimator on [, 1], the
fonwoing vadalon provess convergces in probakility o J‘If_, Salu—1}
el 1) = Fr(e). Here we have used the fact that the cumulative
hazard function of T 15 A, (scc Prentice et al. 1978}, The appropriate
Lindcberg condition is casily checkad. {A. 1) follows by Reballedo's
(1980% martingale convergence thaarem.
We now lurn (g the proal that our tests aoe consistent against
their respeative alternatives, In general,
Vi () = £u8) + Ynd, () + 0e(1)
2 i & 4 A
aniformly in ¢, where £, — B0 F00- 1) as belore and

adAplar).

(A2

it} = £ Bl =) 50— i As — & Muh

Mow ¢, converges in probability uniformly over hounded intervals
to ¢ Under Hy, a7} = 0 for some 1) by the lemma thal [ollews
this proal, so Vs, = o from (A.2). Under £z, 6(¢) — ¢(5) > 0
for some 5 +< 1, 50 ¥nDay > oo lrom (4.2},

feprma !0 Under the alternative ff;, (¢} = 0 [or all i wilh
strict inequality [or some f,

Frogf.  The nonncgativity of ¢ follows from a result of Rarow
and Proschan {1975, lemm. 7.1{1). n. 120, Decause .'_-.‘!_-’7 I% PIT-
increasing and &5 — &, is noonegative under ff,, Tor the sioel
ineguality, if the noneegative ¢ were 1o vanish everpwiers, then so
woukd F2 — Py (we assumed that 5 never vumashes), but this pos-
sibilily 15 excluded under &, .

We conclude by indicating how to cxtend the proof of Theorem
3.1 to deal with mare than two campeting risks. In this setting the
prediciable variation process of Vngh, converpges in probability w
£+ Fh. Because g, i congstent lor £ (4= 1 or 2], it follows that

J
.' ;ﬂ;' G = W{F(- ),
where Fia 1s the conditional distribution function of ming ¥, ¥
given that &
the proof are identical,

[ Reveived fuly 1ORF Revived Moy 1904
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