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For Caussian proceaacs there is a simple and well-known relationship
helwesn the fractal dimension of sample paths and the fractal index of the
covarianee funelion. This property is of considerable proelical inlaresl,
zince il forms the basiz of several celimalors of ftaclal dimension. Moti-
vated by statiztical applications invelving non-(Gaussian processcs, we
diacusz the relationship in a wider context, We show that the relationship
fails in aome cirenmetances, bot nevertheless does bold in a variety of
(4=t

1. Introduction and summary., The mathematical notion of fractal
dimension provides a scale-free measure of roughness, with a rich variety of
practical applicationa. For example, it may be used to rank surfaces in tcrms
of increasing roughness, for purposes of quality management or wear maoni-
toring. These applicationa often require ealimates of the fractal dimension, I?,
of linear “sectiona” of the surface by vertical plancs. (We shall call these
geclions Ine {ransects.) SBuch estimates can be difficull to produce directly, by
appealing to the definition of I). An alternative approach is to calculate an
eglimate of a quantity ealled [ractal index, «, which [a determined by the
behaviour of a covariance function at the origin and is gonerally more
aecesaible than D ilsell, and then compute an estimate of I} by using a
formula that expreases I} as a function of «. Relatively simple estimates of o
may be bascd on the variogram or the periodogram of a line transect trace, or
on the length or level crosgings of a smoolthed version of Lhat trace. If the
trace can be modelled by a stationary Gausaian process, then I} and « arc
rclated by the formula

(1.1) D-2 la

[son, c.g., Adler (1981), Chapter 8], and so an estimate of a loads immediately
Lo an estimale of D.

Equatien {1.1) ia erueial to mueh of the applied work that has been denc
in the contoxt of estimation of fractal propertics. That work revolves around
the issue of so-called scaling laws, which describe the way in which rather
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elementary physical measurements vary with the size of the measuring unit.
We shall have more to say about this in Section 3, whoere wo shall diseuss Lhe
role of {1.1) in explicit mathematical detail. However, let us note here two of
the simplest scaling laws, those based on the length of an approximating
polygonal path and on Lthe wariogram. The first of these i perhaps Lhe
“classical” scaling law, very commonly associated with physical fractal prop-
orties., It declares that if (1.1) holds, then the length i(s) of a polygonal
approximation to a fractal curve, constructed on a grid of edge width s,
should vary in such a way that log [(s) incroases ke (D Dflog s as =
decreasea: '

(1.2) logi(s) = (D - 1)llog 5| + constant + o(1)

as 5 — 0. In practice, { may be estimated from data, and D eatimated by
fitting a simple linear regression model to a sequence of observed valucs of
the pair (log I, log 5). For a rich and varied discussion of the applications of
such length-based scaling laws to real data, ranging from measuring the
roughness of polished metal, oxidized metal and brick surfaces Lo measure-
ments of the roughness of coastlines, the reader is referred to Ling (1987,
1989, 1990) and Brown, Charles, Johnsen and Chestor (1893). Relatod work
of Majumdar and Bhushan {1991) discusses two-dimensional scaling lawa.

The variogram method of estimating fractal dimension is founded on the
cbservation that if v{s) cquals the mean square of the difference between Lwo
values of a fraclal process al points diglanee s apart, then in the presence of
(1.1}, log v} should inerease like 2(2 — D)llog s) as s decrcascs:

(1.3) flog v(s)| = 2(2 — Mlog =| + constant + o(1)

ag % — 0. Onee again thias equation forms the basis for many practi-
cal estimates of fractal dimension, For example, ilg applications to data on
mineralogy, rainfall, geography and the measurement of gurface roughness
have been discussed by Serra (1968), Delfiner and Delhomme (1875), Journcl
and Huijbregts (1978), Burrough (1981), Constantine and Hall (1933) and
authors eited in these arlicles.

The importance of {1.1) to the validity of results such as (1.2) and (1.3), and
hence to the physical application of such sealing laws, eannot be understated.
The latter two formulae hold if and only if (1.1} is valid. In particular, they
arc valid for many processes that toend to have heavier tails than Gaussian,
but not [or processes that tend to have shorter taila, such as poweors of
Gaussian processes when the exponent is less than 3, as we shall prove.

The purpose of this note is to determine the validity of (1.1} for certain
processes that are not Gaussian but may be expréssed as functions of
Gaussian processes. The study was motivated by a problem concerning wear
of rollers uscd to produce aluminum sheet. Figure 1 depicts a line transect
trace from the surface of an unused roller, and above it, a nonparametric
estimaie of the distribution of roller height above its mean. A Gaussian
density with the same mean and variance as the data is also plotted, for the
sake of comparison; it is strikingly close to the nonparametrie estimate. The
data llustrated in Figure 2 are from the same roller, but are recorded aftor
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Fie. 1. Burface trace and height density for wnworn roller. The trace ot the bottom represents o
line transect sample obtained by drowing a stvius eerass o very small port of the surfuce of o new,
unused rolfer. The trace i3 4 mm wide aond the standord deviation of e Auetuotions equoels
045 mm, The unbroben bell-whoped curee ahove the troce v a Gernel estimote of the mengiioed
denzity of heipht of the surface ohove [y mean, compated gsing bandoddth equod o the fraction
0,03 of the length of the troce and ermploying the stondard normal Bernel, (The density estimate
ey obtoined by dntedraling the condinaons race, akalogeus to sumining for discrete data.) The
brofken bell-shaped curve is the Goussion densfry with the saome meon and verionce o8 dhe deto.
The fractal index was estimated from the periodogram to be & = 0.3, leading to an estimate of
frectal dimension equal fo D = 2 L& = 1.85,

a period of wear. Note the asymmetry of both the line transect and the
nonparametric estimate of the density of height for this new data zet. This
time the fitted density is chi-squared rather than Gaussian,

Fitting distributions to data such as those in Figures 1 and 2 is an
cescntial part of studying the propertics of roller surfaces. Among other
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Fic. 2. Surfoce trace and heipht dersity for worn voller. The roller was the rame one sitdied i
Fig. 1, except that it was mevsured ofter o period of seating, All other spreifications, ineluding
handwifth and bernel, are the some as for Figree 1, except that e Grvkett curpe represents o i,
dersity with fitted locotion and seale. Fractal index and fraciel dimension for these date were
estimated fo be & = 05 and F} = 2 — 4 = 175, respectively,

things, it provides a means of asaessing the validity of formula (1.1}, on which
an estimate of I¥ would most likely bc based, and yielda valuable information
about proportions of the roller surface that exceed various lovals. OF eourse,
modelling real data tracea by deterministic funclions of Gaussian processes is
restrictive, but there arc fow alternatives if the data are, for all praectieal
purposes, continuous. This is particularly so when il iz desired to draw
inferenices about surface roughness rom properties of covariance, as i [re-
quently the case when fractal dimension is being estimated. An assump-
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Liom cloge to that of “Gaussianity” is necessary to draw a connection between
moment and sample path properties.

If the recorded line transect were exactly Gaussian, or a known function of
a Gaussian process, then both the ecovariance funetion and the fractal dimen-
sion of sample patha could, with probability 1, be determined without error
from an arbilrarily short section of trace. However, the assumption that an
empirical data trace ig a realization of 3 funclion of a Gaussian procesa ia
only a convenient mathematical abstraction, as also is tho notion that the
proceas is genuinely self-gimilar. Nevertheleas, provided we do not analyae
the data at s level that reveals tho imperfections, for example, by cxamining
the trace on too fine a scale, the preacriptions for model-fitting outlined in the
forcgoing toxt can produce valuable statisties] information about the strmc-
ture of a roller zsurface and the effect of wear on Lthal surface.

We shall show that formula (1.1) fails in some instanees, but that there do
cxist simple conditions undoer which it is valid. In particular, it is valid under
the chi-squared process model suggested for the data in Figure 2. Our results
also demonstrate that {1.1) is valid for convolutions of squares of Gaussian
processes with dilfereni centers and seales; such convolutions are used in
practice to model heavily worn roller surfaces, whose marginal densitics have
“shoulders™ on the lefi-hand side. These results are stated in Section 3 and
proved in Section 4. Brief definitions of fractal dimension and fractal index
are given in Section 2. All our results have direct analogs in higher dimen-
giong, with virtually identical prools. However, sinee we do not have strong
practical motivation for the higher dimensional case, we shall not treat il
here,

The notion of a fractal or Hausdorff dimension for a stochastic funetion
goes back at least to work of Taylor (1955). Ity applications in the physical
and engineering sciences have been discussed by, among others, Berry and
Hannay (1978), Sayles and Thomas (1978), Coster and Chermant (1985},
Mandelbrot, Passojan and Paullay (1984} and Thomas and Thomas (1888).
Statistical propertiea have been the aubject of increasing rocont intorest; see,
for example, Taylor and Taylor (1891) and Smith (1992).

3. Definitions of fractal dimension and fractal index. Lel [ denote
a function defined on an interval .7, Lracing out the path 5= [(¢, flz)k
t =.7}. The fractal or Hausdorft' dimension of % may be defined as follows,
Given £ > 0, an e-covering of & is defined to be a eountable collection & of
diska S; with reapective diamelers §; > £, whoze union covers % For d > {0,
define
— Tien o
Al d) Ll,mu Jgf§ 82,
where the infimum is taken over all scoverings of .. Tt may be shown that
thore exists a unique number I with the property that Afd) =« for all
d <D and Ald) =0 for all d > D. Necessarily, 1 = I? < 2. We call D the
fractal dimension of 5%,
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Therc is a variety of other definitions of fractal dimension, for example,
that based on capacity. However, in the context of the stochastie sample path
examples considered in this paper, the definitiona produce identical values of
D with probability 1.

A function f iz said to satisfy a Lipachitz condition of order £ on .7 if

(2.1) sup | f(s) — F(£)] = Ou),

g lEFls—t =u
as g -» (). In thia eventi the fractal dimension of .5 satisfies D =2 — L.
Furthermore, I = d if

-l

2.2 s — 1| +|f1: t dadt < =.

22) A |£(s) — (D))

Thus, the notion of fractal dimension is closely related to that of Lipschitz
continuity.

Let X, denete a stationary square-integrable stochastic procesa, with
variogram

(2.3) = E(X, - X,;)" = 2{1 — cov(X,, X,}}.
If there exists o = (0, 2] satisfying
o= sup{ﬁ: v, =0(+%) as t(pﬂ} = i.nf{,[i.‘f:"‘fl = (¥ ) as H,ﬂ},

then « is called the fractal index or fractional index of the process X,.

Formula (1.1) may be proved by noting that if X, is Gaussian with fractal
index «, then with probability 1 the sample paths of f{¢) = X, satisfy (2.1)
for each L < o and satisfy (2.2) for each d < 2 — la. All results mentioned
in this section arc clucidated by Adler [(1981), Chapter 8].

In many cases of practical or theoretical interest, the variogram of a
process X, with fractal index o satisfies v, ~ conat.|{|® as ¢ — 0. Of course,
two processes X, and Z, whose variograms satisfy E(X, — X)® ~ const.
B(Z, — Z,)?, will share the same fractal index. However, this close rolation-
ship between thc processes’ eovariances is only sufficient, not necessary,
for commonality of fractal dimension, as is plain from the definition of
dimengion.

3. Relationship between fractal dimension and fraetal index., Gen-
erally speaking, the sample paths of a smooth function g of a stochastic
process Z have the aamc fractal dimension as the paths of Z. This may be
seen by gimple Taylor expansion, as follows. If £ has a continuous derivative,
then there exists a point £* = (0, £} such that '

(3.1) 8(Z) —8(Zy) =8'(Z0 02, — Zy) ~ 8(Zo)(E, — Zy)

‘as t — 0. It follows that, provided Plg'(Z,) = 0} = 0, the process X =pg(Z)
has the same Lipachitz behaviour, and hence the samo fractal dimension D,
as Z,. For example, it may be shown from (3.1) that if the process Z, has
fractal index f €(0,2) and if we define f{#) = X,, then with probability 1,
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(2.1} holds for all L < 18 and (2.2) holds for all d < 2 — ;8. This ensures
that sample paths of X, share the fractal dimension D = 2 — 3 of the paths
of Z,. However, the fractal index « of the process X, can be different from its
eounterpart for Z,, so that the relationship I! = 2 — ;o may not be valid.

It is often possible to express a non-Gaussian process, say X,, in terms of a
stationary Gaussian process Z, by the relationship

(3.2) X, =g(Z,),

where g is a smooth function. For example, ift X is a stationary procesa with
g continuous marginal distribution F, then we may choose to define Z, =
(b~ LFX X,), where & denotes the standard normal distribution function. This
guarantees that at least the one-dimensional marginals of Z, are Gaussian
and that (3.2) holds with g = F '®, but of course not that Z, iz actually
(Jaussian. We may assume without loss of gemerality that F(Z) =0 and
E(Z%) = 1, and we do so in the following text.

We suppose that
for some £> 0, BE(X, - X, = O(t*) as t > 0, g’ exists
and is continuous almost cverywhere, g’ is not identically
zero and, with probability 1, £, is a continuous funetion
of ¢,

Our first result states conditions on g that are sufficient to ensure that the
processes X, and Z, have identical eovariance behaviour near the origin, and
20 have identical fraetal index. Since the sample paths of X, and Z, have
identical fractal dimension [see the argument following (3.1)], then the rela-
tionship between fractal dimension and fractal index for X is, under the
eonditions of Theorem 3.1, tho same aa for a Gaussian procesa:

(3.4) fractal dimension of X, paths — 2 — § (fractal index of X, ).
Let N denote a random variable having the standard normal distribution.

(3.3)

THEORFM 3.1. Assume condition (3.3) and that for some £> 0 and all
A0,

(3.5) E{g' (NN} < =, }_a,{ sup |g'(z;.|2'*} %,
|z < AlN|
Then

(36) E(X,—X,)° = E(Z, — Z,) Elg(Z,)"} + o] B(Z, - Z,)")

as §— 0.

We noted in Section 2 that a very close relationship, such as that in (3.6),
. between the covariances of X, and Z, is not essential for us to be able to
oquate the fractal indices of these processes. Our next theorem shows that
condition (3.5) may be slightly relaxcd, to sueh an extent that (3.6) may fail to
hold [see the casc » = 1 in (3.10)], et not so much as to invalidate (3.4).
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THECKREM 3.2. Assume condition {3.3) and that for all 0 < £ < 2 and all
A0,

(3.7) E{ sup lg'(z)f "} <o,

EE
Suppose too that all moments of X, are finite. Then
(3.8) Tim infE( X, - X,V B(Z, - Z,) > 0
E-
and forall 0 < £<1,

(3.9) lmE(X, - X,)*/{E(Z, - 7z} 7 0.
I-

In view of our definition of fractal index in Scction 2, formulac (3.8) and
(3.9} imply that the processes X, and Z, have the same fractal index. Bince,
by (3.1), theoir sample paths have the same fractal dimension, then tho
clagaical Gaussiun process relationsghip between fractal index and fraetal
dimension is valid; that is, the identity (3.4} holds.

Theorem 3.2 has a corollary that applics to convolutions of funcliona of
(Gaussian processea, such as the chi-aquared process used to model the data
depicted in Figure £, To apprecate this point, ot Z,,,.... Z,,, denote inde-
pendent, stationary, continuous Gaussian procesaes and let g,,...,g, be
functions such that each g exists and is continuous almost everywhere, g7 ia
not identically zero,

max E{ SR |g}{z]§z_t} < o forall 0 < & < 2,

l=f=m lz]< Al
and
max Blg(Z,) - g(Zo)}  O(zf) forall £>0,

as f— 0. Put X, = ¥, #,(Z..). Then by Theorem 3.2,

lim inf (X, - X,)" / { ¥ B(7, - ZJ-J} >0,
: P

and forall 0 < £« 1,

mn 1-£
lim £( X, — Xir}i/{ 3 E{Z, - Zm)z} =4
toel =1
Ii follyws that (3.4) holds, and the fractal dimension of X cquals the greatesi
of the fractal dimensions of Z,,..., Z, . Hence, if the data in Figure 2 are
chi-squared, then an estimate of the fractal dimension, I}, of the trace may
be obtained as 2 minus half the value of an estimate of the fractal index of
the process generating the trace. The value of ) guoted for Figurc 2 was
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ohtained in preeisely this manner, using an estimate of fractal index based on
the periodogram.

Finally, we consider a number of examples that elucidate our main resulis
and show that eondition (3.7} is close to being necessary and sufficient for
{3.4). In broad torma, each of {3.4), (3.5) and (3.7) i very nearly equivalent to
the condition that #{g'(Z,)*) < = The exeeptional cases arc those where
E{g'(Z,)"] ia either “just finite” or “just infinite.” To appreciate thia point, let
glxt =z + al"Ax) or g(x) =sgn{z + allx + a|/"A{x), where o is any real
number, » > — 3 and the function A satisfies A(a) + 0 and haa two deriva-
tives that are bounded on compact intervals and inerease no faster than
polynomially on unbounded intervals. [The assumption that r > — 3 is nec-
essary to ensure that X, = g(Z,} has finite variance.] Then it may be proved
by elementary caleulus that as ¢ — 0,

E(Z, - Z,)", ifr> 1,

(3.10)  E(X,—X,)" ~const.{ B(Z, - Z,)"|log B(Z,— Z,)*|, ifr=1,
gyl (LAE}

{B(Z, -z, ifr<i,

where the constant is positive and depends on g. 3imilarly it may be shown
that (3.5} holds if and only if » > %, and (3.7 s true (for all 0 < £ < 2)if and
only if r = 1. From these facts it may be seen that the three conditiona (3.4),
(37 and r = & are all equivalent, and that the three conditions (3.6),
Elg(Z,F} < = and r > 1 are all equivalent. We may deduce from (3.10) that
when r < 1, the fractal index of X, equals r + ; times the fractal index of Z,.
Therefore, (3.4), which is not true for » < §, should be replaced by the
formula

fractal dimension of X, paths
=2 — (2r + 1) ' (fractal index of X,).

The examples just treated include many instances where g = F~!®, and ¥
and @ are the respective marginal distributions of X, and Z,. In particular,
this is the case when g is increasing, for example, it g(x) = sgnl(x + allx +
a|"h{x), where r > 0 and A is symmetric about ¢ and increasing on (e, ).

In conclusion, we briefly refer to the iasue of scaling laws discussed in
Section 1. The reader will remember our point that formula (3.4) is erucial to
statistical analyses based on those laws, and our claim that if (3.4) is invalid
(as it is, for example, if » < 1), then many traditional estimators of fractal
praperties are not statistically eonsistent. We arc now in a position to be
explicit about this matter. Suppose that r < ,, so that (3.11) holds instead of
(3.4). Then it may be proved -that in place of the fundamental equations (1.2)
. and (1.3}, wo have, respectively, the following formulae:

log I(s) = {3(2r + 1)D — 2r}log s + constant + o(1),
|log w{s)| = (2r + 12 — D)llog 5| + constant + o(1).

(3.11)
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If one ignores the differences betweon these formulae and their counterparts
when (3.4) holds, and tries to estimate D by lincar regression of log i(s) or
logids) on log s, then the cstimates will be inconsistent.

4, Proofs of Theorems 3.1 and 3.2.

Proor OF THroreM 3.1. There exists ¢* < (0, ¢) with the property that
X —X,=g"ZINZ, - Z,) Let ¥ ={r',5") denote any interval that does
not contain a zere of g’ and let .7 = (r, s) be any interval interior to .7
r'<r<s<g, Put ’

0= ini;gf{z)” > 0.

Then
Gy IE{Xe T Xﬂ)g = U;lE{gr(Zz*}E(ze T Zu]z}
=E{(Z - 2,)°' (2, €.5,0 su = t))
E[1{Z, e N E|(Z, - 2,)*12,)]
- E[1(2, .7)
XE{(Z, - Z,)' 1(Z, .5, some 0 < u = t)|Z, ]
(4.1) = B[1(Z, . 7)E{(Z, - Z5)}|%,)]
_ E[I{Zu ) E{(Z, — Z,)"124)

XKP(Z, &7 gome() <u < tlzu]]lfz)
= .E‘[I{ZﬂI e.F) E{{.Z.' - Zn)gizﬂ}]
s [j_.-_,[j( Z, €.5) E{{Z; zu}dlzﬂ”

172
XPZ, e Z, &7, somel < u = t}] .
Since the procesa £ ia continuous, then
P(Z,e7Z, ¢.7,s0me0 <u<t)—>0

as ¢ — 0. There exist conastants C,,C; > 0, depending on .#, with the prop-
erty that for all sufficiently amall £,

E((Z, - 2,)"1Z, = 2} > C,E(Z, - Z,)%,
4 2
E((Z, - Z,)"1Z, = 2} < C,{E(Z, - Z,)"}
uniformly in z =.# Hence, by (4.1),
(4.2) E(X, - X3)" 2 C,C5{1 + o(1)}E(Z, - Z,)"

aa & — 0.
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Result (4.2) implics that E(Z, — Z,)* = O(t‘) as ¢t — 0, for some £ > 0.
Hence, by Fernique's lemma [e.g., Leadbetter, Lindgren and Rootzén {1953),
page 219], for constants C,,C; > O and all = > 0,

(4.3} P[ sup (Z,| > x} =< Cexp( —Csx®).

LA |

Thercfore, by the assumptions on g,

E{ sup |g'_{Zb}[2+2°’} < e

TR

for some # > 0. The dominated convergence theorem and continuity of £ now
imply that

. @ ; gltn
o= &f o le(2) -z} 0

Oeag it

ag £ — 0. Hence,
E(X, - X,)" = E[g'(2.)"(Z, - Z,)")

(44] 2 2
= E{E‘{zﬁ} (2, — Z4) } + R,

where, with p =1+ nandg=1+ 57",

IR :F_-‘E'[{gr‘{z.”p}2 —g'(zu}ﬂ}(zr = 30}2”
< 812(E|Z, - Z,P7)""
= of(B1Z, - Z,*)""") = o[ E(2Z, - 2,)%}.
With y = , = cov(Z,, Z,), we have
Ble'(20)(Z, - Z,)'} = E| 2 (2, E{( 2, - Z,)*|Z,}]
= (1 -+ nEe(z))
+(1 - ) E{g'(Z,)" 23|

~2(1 - v)E{g'(Z,)%}

as ¢ — 0. More simply, E(Z, — Z,)® = 2(1 — y}. Combining the results from
{4.4) down, we conclude that, as £ — 0,

B(X, — X, ~ %1 ~ y) E{g'(Z,)"). a

PRoOF OF THEOREM 3.2. The proof of Theorem 3.1, up to (4.2) and (4.3),
may be followed as before, In particular, we have

limiﬂnfE{'X, - X/ E(Z, - Z,) > 0.
F AT
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In place of the argument leading to (4.4), we note that, W0 < ¢ < 2 and § is
very amall, then for each p,,. py > 1 and ¢, = {1 — p_i,-_i ¥,

E(X, - X,) = E{|g(2)[ 712, - 2, F1X, - X,°}

S gy Lip L 145
(4.5) = {E|§r(zr'}(zr _zn”u E } l{Elxr _Xul'q} >

LA pyipg}

e LA n -
o= {E|g'(z£.}|[i i?ﬂﬂ-"u} e J[EIZ, _ znlu 5“;1.-..3}

Ligy

x{Ei X, - X,|*)
Choose p,, p, 50 close to 1 that pyp, =2 — 3£ X2 — £)7L In view of (4.3)
and the assumptions on g,
sup F’{
Gl
for each 0 < ¢ < 4. Therefore, by (4.5),

B(X, - X,)° D{{EIZJ zﬂ|f-2—znp.q..}l.fm%}

T <o

: gy 1- (120
=a[{ﬁr{zf—z,])} ]
Since E(Z, — Z,)% = 0, then for all ¢ = 0,

1 ; O Tt 4
E(X, —X,)' /{E(Z, - 2,)') -0
as ¢t — 0. 0
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