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Abstract

In this paper g pnified denivation of the wpper and Jower bounds (in terms of the
meany al” an TTR, DFR, TFRA, DFRA, MR or WWILT reliability function is
presented. The method al proof pravides a simpler alternative o the varigus proofs
known in the literature. Morcover, this method can be used to generalize the existing
results in two ways, as demonstrated here, First, the bounds for the reliabality
function are oblained in terms of gav Gmiwe moment in all these cases. Subscquently
we provide a moment bound on a eeliabilivy Function which ages fasier or slower than
& known onc in some sensc. The caisting literature does not offer any of thess
generalizations, exoepl for a few results which ane available 1o an unnecessarily
complicated focm.

CONYEXITY: STAR-SHATEDNESS, SUPERADDITIVITY, RELIABILITY BOUNDS, HHAZART
FUNCTLIOMN IFR: DER; IFRA; DFRA, NRU; WL
AMS 199 SUBJECT CLASSIFICATION! FRIMARY B1KID

1. Introduction

Mormenl bounds on the reliability of a unit have been a topic of great interest in the
reliability hierature. The problem tyvpically consists of computing the sharpest possible
upper and lower bound on the reliability, assuming that the lifetime distribution belongs
to a common family {e.p. IFR, IFRA, NBLI) with a2 known moment. Various results in
this area are available in Barlow and Proschan (1975), Other results may be found in
Marshall and Proschan (1972), Korzeniowski and Opawsk {1976 and Klefsjd (1982),
The results are proved using different technigues. Often the sharpness of the bound has
to be proved separately.

In this paper. the upper and lower bounds on the reliability of IFR, IFRA, NBU, DFR.
DFEA and NWU ¢lasses of life distnibutions are rederived in a unified way. The
advantages of the new approach are as follows:

1. All the proofs involve essentially the same type of arguments.

2. The scope of the known bounds can be broadened in some cases,

3. Sharpnegss of the bounds follows automatically from the denivation.,

4, The results for the known first moment generalize naturally to other positive
moments. Many of these generalizations are not available in the literature,
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3. The derivation generalizes to the case of relative ageing with respect to a known
distribution {cther than exponential).

&, The derivation cnhances understanding of the limiting cases by means of the
geornetry of hazard funclions.

7. Results for the negatively ageing classes follow by the argument of symmetry,
although the resulis are not symmetric,

Suppose £ is a hfe distribution on [0, =) with mean y. Instead of inding a lower
bound on the reliability F{ =1 — F), we pose the problem in terms of the hazard
function A, defined as — log F. We assume F(0 —)=1. Thus A, is a non-decreasing
tunction with Ag(0 — ) =0 and taking values in [0, =0} U {1}, It may be recalled that F
i5 IFR, IFRA or NBU if and only if Ar 1s convex, star-shaped or superadditive,
respectively, A similar set of characterizations can b made for the DFR, DFRA and
NWLI distributions. The properties of the hazard function are used here 10 deriving the
bounds.

We illustrate the procedure by deriving the lower and upper bhounds of a NBLI
distribution with known first moment. In Section 3 a general procedure for the other
classes is suggested. Generalizations are provided in the subsequent sections.

Z. Moment bounds on the NBU reliability

2.1, Lower bound in terms of mean.  Lel F be an NBU distnbution with mean g,
Thus Aris superadditive. that 15, Az{x + 1) = Ag(x) + AP for cach x, » = 0. Define
the class € as

W= {ﬁﬁ : Ar Is 2 superadditive harard funclion, f ' expl — Aplxhdx = n} ;
a
The objective here is to find sup, - Alx) for every x. As a matter of fact, we only need to

consider the case x <y, since the trivial bound in the other case is attained by the
degenerate distribution having mass at .

Theorem 2.1, If & 15 defined as above, then for x <lp

H
sup Afx)=1 .
.';EE { } Ogﬂ — X
Proof. Pick a member A of €. For a fixed x =24, construct a new hazard function
J"'IL| a5
Myi=ne rx=Zv-<in-+ D, =012+

where & = Alx). Superadditivity of A guarantees that it uniformly dominates A, so that
Ty expl — Ay Ddy = g, On the other hand, A, is itsell a superadditive function. 1f e is
increased monotonically from Afx) to a very large number, the value of the above
integral reduces monotonically and continuously to some number close to x, which is
less than g, Therefore there is some o in [Adx), xo) which makes the integral exactly
equal to 4. Let A, be the corresponding varation of A,. [t is clear that the latier is a
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member of ¥ satisfying A.(x) = Afx). The stated result is oblained by solving for o from
i, expl — A p)Ndy = .

It follows from the abowe theorem that the lower bound on Fix) in the range
0 =« =" u, when Fis NBU, is 1 — x/. This result was first proved by Marshall and
Proschan (19723 In fact the same bound holds for the NBUE class.

2.2, Upper hound in terms gf mean. The formuolation of this problem is identical to
the one discussed above, Here we want to find inf., - Alx) where % is defined as before.
In this case the trivial upper bound in the range x < g is attained by the degeneratc
distribution with point mass at g.

Theorem 2.2 1F % 15 defined as above, then for x = pu

inf Afx) o,
AW

where o satisfes |, e ~dy = .

The following two lemmas are useful in proving the above theorem. They establish
certain interesting properties of the superadditive hazard function.

Lemima 2.1, IfAis asuperadditive hazard function and A{a) is finite, then there is a
subinterval {0, &), of {0, a) such that A{p) = Aay/a for all p E{0, b).

Proaf. Suppose. for contradiction, that for cach & = 0 there 15 a ¥ (0, &) such that
ALY = Alaipfa. [t will be shown that the graphs of the functions A(p) and Malv/a
interesect cach other in every subinterval of {0, al.

Let f =[x —e, x, + ] be such a subinterval. Choose &, = x /2. Then by hypothesis
thére 1% a point 1, 1o the interval (0, x,/N.) such that Alx,) = Alaixv/a. Let N, be the
unigque number( = N ) satisfving x AN, + 1)< x, Z 1, /N, Then the point » = ¥, v, lving
in £ satisfes Av) = Ada)yie. Now choose N,>={z —x }e. Let x; be a point In
(0. (g — x,)N,) such that Alx) = Adadx/a. Supposc N salisfies (@ — x W&, + 1) =
Xy =da — x, N, Clearly the point y = a — ¥ax; lies in 7 and satisfies ALp) =< Ala)ria.

Since A is non-decreasing and right-conlinuous, @ limiting argurment shows that 1t is
identical to Ada /e over the interval (6, @), which is g contradiction,

Thus we find that a superadditive hazard function bchaves somewhat like a star-
shaped hazard function in a neighborhood of the origin,

femmg 220 Suppose A is a superadditive hazard function and Afa) is fnite. Then
For any positive integer 1

[ texot — a0+ expl— Aday27 + APy
I

= (1 +exp{ — Alak2") [., fexpl — Al +expl  Afa)2" + Ap)]dy.

Proaf, Break up the range of integration of the lefi-hand side into two parts. The
second part can be written as
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f [expl — Ada/2" — ¥)) +expl — AMa W21 4+ Alal2® — vildy.
i

The mtecgrand is of the form P 4+ RYP where P=expi — Ala/2" —§)) and R =
cxpl = A(a)/27). Using the superadditivitv of Awecanwrite 0 Z R =2 = F = 1, where
Q = exp{ — AlaW2" + A(p)). It follows that £ + BR3P = 0 4+ R3/ Q. A rearrangement of
the terms of the resulting expression gives the required ineguality,

We now return to the proof of the stated theorem,

Proaf of Theorem 2.2, Let A€ %. For a given x = y construct
el ify < x
Aly)= .

0, ify =z ux,

where « = A{x )y, Clearly A, 15 a superadditive hazard function. We shall show that
A I
(1) [ expt— Atpnay = [ " exot - Aynay.
Indeed, the left-hand side can be writlen as
w? o2
LHS = J; expl — AU Dy + J; cxpl — Alx — Wy

ik
= L fexpl — AL)) + exp( — Afx) + ALldy.

By repeated application of Lemma 2.2 we have for all positive inleger »
LHS = {1 + exp{ — A{x)2))- - (1 + expl — A{x)W2))
P
X [ lexp(— A + exol — AGI2" + AGIY

={l + exp{ — A{xW2IN- - {1 +expi — Alx V2" Nexpl — AMx)27 1)
LR
e f 2 cosh{A(x W2+ — Al endy.
u}
By virtuc of Lemma 2.1, there is a finite # such that A, completely dominates A in the
interval (0, xf27 4. Thus we have for each y (0, x/27+7]

AR A

2?:1-] 2?:I+I:

— Ay =0
Since cosh is an increasing function and A{x)y = A,(x — ), we can wrile
LHS = {1 +expl — Adx — ¥20 (1 b exp( — Ay{x — W2"Nexpl — Aylx — 2"+
x f:m” 2 cosh(A, (x — ¥2%*' — A (p)dy.

The last expression is equal to the right-hand side of (1), since all the inequalities in the
above derivation become cqualitics when A is replaced by A,. This proves (1), Con-
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sequently [F exp{ — A{y))dy =y, If we now reduce o from the value A(x)ix to D, the
integral mereases continuously and monotonically to x, which is oo less than g There
must be a unique « in {0, A{x¥x] for which the integral equals 2. The resulting funciion

{eall it Agd is & member of % satisfying Ax{v) = Alx), The result stated in the theorem
follows,

The epper bound on any NBLI reliability function with mean g is then ¢~ where o s
as in Theorem 2.2, Although this result was first proved by Korzeniowski and Opawsks
{1978), the proof given here is considerably simpler and more intuitive. The additional
advantage of this proof is that it can be generalized to the case of any known and finite
moment {se¢ Scetion 4). It can also be generalized to the case of relative ageing with
respect 10 a known distoibution and a known moment (see Section 5.2). Note that the
upper bound coincides with the IFRA upper bound {Barlow and Proschan {1975)). The
fact that it actually applies to the WBLJ class is not very well known.

3. A general derivation for apeing classes

3.1. Positively ageing classes.  Following the proofs of the above two theorems, we
can outline a strategy for deriving bounds for the positively ageing classes. The
degenerate distribution with all the mass at ¢ provides the trivial parts of the upper and
lower bounds in each case. The non-trivial parts {x =< u for lower bound and » = u for
upper bound) are ohlained as follows,

Step I Defing %, as the ¢lass of hazard functions having a special property (such as
convexity, star-shapedness or superadditivity). Lel %, be the class of hazard functions A
satisfying the constraini [ exp{ - A{(yDdy = 1. Now pose the problem of minimizing
(maximizing) Fix) for any given x as that of maximizing (minimizing! A{x) while A
must belong to %, 1 %,

Step II. Fix x. For a typical member A of %, N %, ind a piccewise lincar function
A, that satisfies the following properties:

(i) Aux}=Alx)and [" exp{ — Ap)ddy = (Z)p.

{ii) A, belongs 0 a subclass %, of %, which is indexed by one or two shape
parameter(s),

(iif) The integral [ expf — A.(¥¥dy as well as the value A(x) is a monotone and
continuous function of one of these shape parameters (call it e

Step III.  Modify A, by altering o in such a direction that the integral decreases
(increases) as a result while A (x,) increases (decreases). Argue that there exists a value of
e such that [ exp{ — A1)y = u where A, is the corresponding modification of A,

Step IV. Tt is obvious that Aj(xY=( =W () — Alx) where A, 6 C € M
%,. Thercfore it is cnough to search for the maximizer (minimizer) from %, N @, If this
sel is a singleton (which happens if e is the only parameter characterizing %), then A lx)
is the solution. Otherwise one has to maximize (minimize) A{x) with respect to the
cther parameter to obtain the desired result.

Step I is the only one thatl needs inmovation. Table 1 gives a st of appropriate choices
for %, fora given ¥, and x. Yerifving the propertics (1-(111) is also very easy except for
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the case of minimizing superadditive hazard functions. which was addressed in
Theorem 2.2,

Tamte 1
Choigs af 4, in various cases,

Ohjective

Class of hazard funciions (%) bMinimize Alx) Manimize Afx)

= (A 0 Z e E— (A 0Za ;0 f =x)

O - T | N
Convex Adyy= ‘lcc ifr=x A gl —
{'u ifp-=g
al{y —fWx — g ifyzg
@ ={A,D=a 0} ¢ = [A 0 Za<lx)
‘ o ey ifpax ’ _{ﬂ Wy =x
Star-shaped h“{}} ]-3(:- if]r' =x A"U} Ly if}'i.\'
W._L_{-I'Ill-piﬂi'rrq:: -:r'.:] s = ["\h:ﬁé“{f ‘:‘-'Jl'
LU i T - ifnx =p = i
Soperadditive Adyy— {i :fJ: _i Ml mneitar Sy =te nox

Remark 1. It is easy to see that the minimizer among the superadditive hazard
functions happens to be convex (iand henee star-shaped). Therefore no separate deriva-
tion is needed for the upper bound of the reliability function in the IFR or the IFRA
case, If, however, 8 diteat proof 5 soueht, venfcation of property (1) would be much
gasier compared 10 the corresponding step in Theorem 2.2, sinee A would uniformly
dominate A.

Eemark 2. From the construction it is clear that all the wpper and lower bounds
obtained this way are sharp.

3.2, Negatively ageing distriburions,  Om principle, the derivation of upper and lower
moment bounds for the rehiability functions of negatively ageing classes of distributiony
{such as DFR, DFRA and NWU)) should be similar to those for the positively ageing
classes. However, a simple observation makes the search for %, in each case unnecess-
ary. By the symmetry of the problem, finding the infimum of a concave (“inverse’ slar-
shaped/subadditive) hazard function is equivalent 1o finding the supremum of a conves
(star-shaped/superadditive} hazard function. Thus the graph of a typical member of %,
in the negatively ageing case should be that obtained by interchanging the coordinates of
a typical graph in the corresponding posilively ageing case.

When the objective is to wminimize Afx), the above method gives the class of
appropriate piecewise linear functions. However, this does not work when we seck to
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rgaimize Alx), since inlerchanging the coordinates would produce a hazard funciion of
the form

-o_'_v, ify-tx
A(p)=

ax, ifyzx,

for which the mean integral h: expl — A ¥y diverges. Flowewer, the following
argument ¢an be used to construct %5 O ¥, directly, For given positive numbers v and
M. we can always find o ={ 140, ) such thal ey = 3f, Subsequently we can find a #in
the interval (0, o) such that the concave hazard function

oy, i =y
Adyl=

LA — X+ a, ifvza

satisfics the comstraint |7 expl ~ Azl v)ldy = 2. But As(r) is greater than the specified
number A, which can be made as large as we wanl The funchon A, is also inverse
star-shaped and subadditive. Therelore the supremum of Afx) is infnily in each of the
cases of interest.

4. Bounds based on any finite moment

If the rth moment x of a life-distribution 15 known (¢ may be other than [ bt
positive), then the integral constraint becomes Jn expl — AL EWe e - o The theo-
rems of Section 2 and the arguments given in Section 3 po through in this case with
appropriale modifications. Therefore Table | is applicable here, After straight farward

algebra, the upper and lower bounds on F can be verified to be as in Table 2,

Rewrark 1. The lpwer bound on Elx) in the IFRA case piven in Table 2 is simpler
than that given in Barlow and Proschan (1975

Remork 20 When » = [, the IFR lower bound easily simplifies 10
g if o = ol .
Fixnyz : _ wher: o = [T + 11,5,
0, if x = ul*
Barlow and Proschan (1973) provided only this simpler special case,

Remarl 3. MNone of the bounds given in Table 2 {with the esception of the 1FR and
IFRA lower bounds) is documented anywhere,

8. Bounds in terms of another distribution

5.1, Lhwal norion of relarive ageing. Suppose Fand 7 arve life distributions where £
s unknown and €7 is known, The disiribution F is said 1o be more IFR, IFRA or KBL
than & depending on whether 77! 2 & fwith a suitable defnition for &' when
necessary) is convey, star-shaped or superadditive (sec Bariow and Proschan (1975)), It
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) TarLr 2
Raunds on Fix) {based on rth moment} in variaus cases

Class Upper bound Lower bound
1, ifxoe it : {i.ufg‘- O - g Tr
= g 4 r = E0 K PR ¥
IFR -Fff):} {Jx. lf-x = ‘u‘l!.'; f‘x} |:|1 If.x E.“T.Ir

! Ky
|wh|:r¢j r;r"'éia'y——,]
n X

I, ifx-plr

TFRA =y e

1
[where J- 3 A =ﬁ;]
2 x

: [l ifx=p®
hall s |8, ifx=p”

[wh:rcflr}""'&_{d}' —”{]
L] X

fexpf — rxdxg),  Ifx <2 x,

{wher: J:D (ﬂ +&

#

— z)re"a’z-ﬂ,]
T

i o pplir
F{x}g{‘é:: il x = g}

if x = ubr

[whﬂre 1+ JW (o S P =::i]

1 I
oo ifx =t

15#

Fixiz=
=10 irxz

[whtrﬁji SLIG 1y —51= x&]

DFR Fix) = VT T Flxyz=n
[where x, = rlmTiF F 1]4]
DFRA Fix)=4, Flx)z0
[here 8+ [~ a7y =]
NWLJ Fix) =4, Fix)=0

[whm‘e T ST — i — 1] =£,]
= *

is useful 1o Aind a bound on F when one of its moments is known and F has such a
relation with Or.

We can assume without loss of genenality that F sharcs the rth moment with 7, If 7
has a different #th moment, we can replace G{x) by G{ax) for a suitable choice of 7 to
make the moments equal.

The basic approach is very similar to those in the previous two sections. The
conhstraint becomes

[L GO Tde = g,
Ja

where A is a convex, slar-shaped or superadditive harzard function such that A, -

Ag ¢ A Sinee we only used the non-increasing property of the function ¢~ in most of
the results of Section 3, they go through when it is replaced by &{x). The only result that
cannot be extended 15 Theorem 2.2, A tractable solution for this problem may not exist,



Anether ook at the moment baunds an refiability 785

except for a few special forms of 7. The results in the other cases are listed in Table 3,
The cascs of F being less positively ageing than (7 (in one of the above senses) are also
ingluded.

) TABLE 3
Bounds on £i{x) (based on rth moment and &)} in various cases

G- F Unper bound Lower houncd
: 1, if x =g : [infycgey Gl i x =g
F =z [ iz} F o= UZi=x .rl
IFR W66, ez ) izl
[ | mis _ ks e
where ey ey = = where (.ﬁ' + 2| dF(z) =y
l u A ] I I
2 1, if x = frin), ifx = pl?
Fix1= J Fixiz : :
[FRA P [Gip ) ifxzplr ¥} L&, ifxz=pt
1 : [ 3
q X 1 L 1 x
. [z b ifx gl
K Flx)=- ;
MR F{IJ =7 {x} I,U. if o :é.“r”r
twhere § Gl + 10 —i7) -ﬁ—]
L =i
DFE Fix)yZ supexpl — wx — §) Flo)zd
gz
| where JNJ e Glep + By = .rt,]
L n
DFRA Fix)y = Gy, Fixy=zn
[whcrc o+ J ) ey W vlay = %]
[} A
NwL Fiay = Gl Fixi=a

[wherc i Gl - U= 17 _%J
1=t

When F is more IFR than & and they share the rth moment {r = 13, it is gasy to see
that the bound given above reduces to

Gy, ifx<p

-

Fix)= {

A, otheraise,
as given in Barlow and Proschan (1973).

5.2, dlrernative norion of relative ageing. Since 7'« o AZ' e Ay the ghove
nations of relative ageing can be characterized by the convexity, star-shapedness or
superadditivity of A7 ' » A, Kalashnikov and Rachey {1986) introduced a new 1ype of
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relative ageing via the convexity of Ap = A5 ", One can also attribute star-shapcdness or
superadditivity to this composite function, The interesting feature of this series of
partial ordering 1s that cach has 2 meaningtul implication. These are as follows:

1. ITthe hazard rates Apand A existand d; == O, then Ay © Az Y s convex ifand only if
Apid,, 1S Increasing.

2. IFA; =0, then A, = AZ ' is star-shaped if and only if AgfA; 15 increasing,

3. F, & =0, then A, » A;' s superadditive if and only if

e F{-x +L:}I‘l = T 1':(-;1('1'- _J}.\
f ( o 4 e /2

The guantity on the lefi-hand side may be interpreted as the rescaled quantile of the Life
disiribution of o component which &5 { units ofd, In other words,

Plx =i 1':1’1{-’])} ~ PLX, = x],
L v i

X, being the remaining kfe of 4 component which is £ units old. and X = X,

Suppase the ageing of Fis either faster or stower than that of a konown distribation € in
the above sense and that the rth moment of F is koown 1o be g, Then the moment
constraint can be shown to be equivalent to

ft e~ MOP[AG ()] dAG (1) - - i,

where A Is convex, star-shaped, superadditive, concave, "inverse” star-shaped ar subad-
ditive. Here Ay = A © Ay Thus it is enough 10 find a bound on A, This problem is very
similar to that of Section 4. Table 1 is relevant here. An claborate dervation s
unnecessary since no further insight can be gained. It should be noled that even the
‘WBU upper bound’ generalizes in this case. since Lemma 2.2 continues to hold when
the tolegrals are with respect 10 any positive measure.

6. Concluding remarks

An extremely simplified form of the technique presenicd in this paper was used by
Barlow and Proschan (1963} to derive the lower bound on the rehiability of an IFR
distnbution, In their later volume {1975) they gave a different (statistical) proof, A
variation of the method suggested here may be used e derive reliability bounds based on
a known quantile or a known moment gred a quantite. It is expected that the method will
also be useful for classroom teaching, As a matter of fact, the lemmas and theorems of
Section 2, the procedure of Scction 3 snd the functions described in Table | are casily
understood Iy means of diagrams drawn on a blackboard. Since the harard functions of
NBUE, DMRL and HNBUE classes are nal known o have any special geometrically
appealing property, the method may not be useful in deriving bounds for these classes.
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