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Abstract 

We consider the problem of classifying an rmknown observation from one of s ( > 2) univariate classes (or populations) 
using a multi-stage left and right rank nearest neighbor (RNN) rule. We derive the asymptotic error rate (i.e., total 
probability of misclassification (TPMC)) of the m-stage nnivariate RNN (m-URhJN) rule, and show that as the number of 
stages increases, the limiting TF’MC of the m-stage univariate rule decreases. Monte Carlo simulations are used to study the 
behavior of the m-URNN rule and compare it with the conventional LNN rule. Finally, we incorporate an extension of the 
m-URNN rule to multivariate observations with empirical results. 

Keywords: Bayes error rate; Classification; Rank nearest neighbor; k-Nearest neighbor 

1. Introduction 

Statistical classifier design can be posed as follows: Let wr, w2,. . . , o, denote s physically distinguishable 
classes (or populations), and let wi be distributed with probability density function f(x I coil (more briefly, 

h(x)), 1~ i < s, with x E Iwp. Let ei be the prior probability of class Wi, and define g(x) = Cf._, sif(X ( wi) 
= Cf= 1 sifi(x) as the mixture of s populations. Let z be a random observation drawn according to g. The 
classification problem with respect to z is to label it as belonging to one of the s classes {oil. If q(oi I z) 
denotes the posterior probability that, given z, z comes from class Oi, the Bayes rule states that 

rl(Wi(Z)=Sif(zIwi)/g(z)=cfi(z)/g(Z); (1) 

and the Bayes decision rule (BDR) is to simply maximize $wi I z): 

BDR: decidezEwi~~(wiIz)~~(oiIz), j=l,...,s; j#i. (2) 

It is well known that BDR miuimizes the expected total probability of misclassification (TPMC) (Johnson and 
Wichern, 1988). And if the risk in deciding z E wi when z E wj is equal to one for all wrong decisions and 

l Corresponding author. 
’ On leave from Indian Statistical Institute, Calcutta, India. 

0167-8655/9.5/$09.50 8 1995 Elsevier Science B.V. AR rights reserved 
SSDI 0167-8655(95)00009-7 



602 S.C. Bagui, N.R. Pal/Pattern Recognition Letters I6 (1995) 601-614 

zero for all correct decisions (the (O-1) loss matrix), BDR also minimizes the overall risk associated with 
classification of z. In this case, the optimal Bayes error rate (minimal TPMC) is sometimes called the Bayes 
risk. We assume the O-l loss matrix in this paper. 

For J’ = 1, 2,. . . , ni, let xii be labeled as belonging to class oil 1 < i d s; we call (xii} a set of training 
samples. ni is the number of observations from class wi. Given the training data Ix,,), there are two approaches 
to the implementation of approximate BDRs. In the parametric approach, assumptions about the {f(z ( q)} and 
a principle of inference such as maximum likelihood can be used to estimate the right-hand side (RI-IS) of Eq. 
(l), and hence the left-hand side (LHS) for use in Eq. (2). Nonparametric methods do not require distributional 
assumptions, and lead to direct estimates of the LHS of (11, and implementation of (2). The leading 
nonparametric method is the k-nearest neighbor (conventionally known as k-NIV) rule, introduced by Fix and 
Hodges (1951). Their k-NN rule for s = 2 populations may be described as follows: Using a distance function 
d( nij, z), order the distances [d(xij, z)} for i = 1,. . . , ni and i = 1, 2. For a fixed integer k, the k-NN rule 
assigns z to wr if k,/n, > k,/n,, where k, is the number of observations from oi (i = 1, 2) among the 
k = k, + k, observations nearest to z. Cover and Hart (1967) considered an k-NN rule which assigns z to the 
class wi (i = 1,. . ., s), if ki = maxj {kj}, k = C& ,kj. They showed that for the l-NN rule, bounds for the 
limiting error rate R satisfy R * G R Q R * (2 - (s/h - 1))R * ), where R * is the “minimum” Bayes error rate 
(see (14) below). The Cover and Hart (1967) result requires conditions of the existence of an almost sure 
continuous density. Devroye (1981a) generalized the results of Cover and Hart (1967) for all distributions; his 
work strengthens the results of Wagner (1971) and Fritz (1975). Devroye (1981b) obtained the following upper 
bound on the asymptotic k-NN risk R,: 

R,<(l +a,)R*, u~=~::~$+&), kodd,k>5, 

and (Y = 0.3399 and /? = 0.9749 are universal constants. This bound is the best possible in a certain sense. For 
other aspects of the k-NN rule see (Wagner, 1971; Fritz, 1975; Devijver and Kittler, 1982). 

For the special case of univariate populations (p = 11, Anderson (1966) proposed a nonparametric classifica- 
tion rule for two populations by ranking the training samples (not their distances from z) that was further 
investigated by Das Gupta and Lin (1980). These ranking rules are related to statistically equivalent blocks; see 
(Anderson, 1966; Gessaman, 1970). Bagui (1989, 1993) extended Das Gupta and Lin’s work to s > 2 
populations. The l-stage (m = 1) Univariate Rank Nearest Neighbor (URNN) rule for s populations may be 
described as follows. 

l-URNN Algorithm (Bagui, 1989, 1993) 
Pool the observations {xii’s} (i = 1, . . . , s; i = 1, . . . , n,> and z, and rank order them; then, (i) if both the 

immediate left-hand (LH) and right-hand (RH) neighbors of z belong to the same population, classify z to that 
population; (ii) if z is either the smallest or the largest observation, classify z into the population of its 
immediate rank nearest neighbor; (iii) if both the immediate LH and RH rank nearest neighbors of z belong to 
different populations, classify z into either population arbitrarily. 

The asymptotic error rate of the l-stage URNN (l-URNN) rule for s populations turns out to be exactly the 
same as the asymptotic error rate of the l-NN rule of Cover and Hart (1967) for s populations (Bagui, 1989, 
1993). In this article we introduce a multi-stage (m-stage) generalization of the l-stage URNN rule with s 
populations and investigate its theoretical properties. The m-stage URNN (m-URNN) rule for s populations 
may be described as follows: 

m-URNN Algorithm 
1. Sort training data {xii) in ascending order to {Z,, I = 1, 2,. . . , N, N = Ci= 1 n,}. 
2. Fix m E N+ a positive integer given z E [w. 
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3. If z 0 [ &, a,], classify z with its rank nearest neighbor, exit. 
4. If z = fr for some t, classify z with the label of f,, exit. 
5. j+ 1. 
6. While j d m 

a. Find labels L, and L, of the jth LH and RI-I neighbors of z. 
b. If L, = L, = L, classify z in L; exit. 
c. If j = m, classify z arbitrarily to its LH or RI-I label; exit. 
d. j+j+l 
Wend (end while) 

Fig. 1. The m-stage URNN rule. 

In step 6a, the jth LH and RI-I neighbors of z are the points in (2,) which are, respectively, j positions to the 
left and right of z in the ordered data. As described, m bounds the number of (pairs) of LH and RH neighbors 
examined during the attempt to classify z. Accordingly, it is proper to call this algorithm the m-URNN rule. 

The m-stage URNN is depicted schematically in Fig. 1. In this figure, A = z is’the point to be labeled, and 
we show the six most immediate neighbors of z from the pooled training data, with, say (0 > denoting samples 
from class q, and (0) denoting samples from class wj. In Fig. 1, z is not labeled at stage 1 or stage 2, but at 
m = 3 both URNNs of z are (0) = q, so the 3-stage URNN rule labels z as belonging to class q. Applying 
the conventional &NN rule to z using any metric on Iw would result in the label assignments shown in Table 1. 

In Section 2 we derive the limiting TPMC, R cm) of the m-URNN rule in the s-population case and show that 
the limiting TPMC decreases as the number of stages employed increases, i.e., R'*' < Rcmwl). In Section 3, 
Monte Carlo results are reported to compare the performance of the m-stage URNN with the k-NN and 2k-NN 
(k = m) rules using 3-population univariate mixtures. In Section 4 we discuss the possible extension of our 
m-URNN to the m-stage Mulivariate Rank Nearest Neighbor (m-MRNN) rule and compare it with the 
conventional k-NN rule on a real-world application. Finally, Section 5 contains some concluding remarks. 

2. Limiting TPMC of the m-stage rule 

For brevity, we denote the cumulative distribution of the ith class by Fi and its density by fi (i = 1, 2,. . . , s>. 
Let n=min(n,, n2,..., n,>. Let the probability of misclassification (PMC) at the mth stage (i.e., the 
probability of classifying 2 as being from wI when in fact it is from wj (1# j)) be: 

(Y{,~++.., n,) = P(decide 2 E o,lZEwj, Z#j). 

Table 1 
k-NN rule labels for z in Fig. 1 

k 1 
label of z cl 

2 3 4 5 6 
tie 0 tie 0 0 
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Then the total probability of misclassification (TPMC) at stage m is: 

R(m)(nr,..., n,) = f: i ~jc$+r,,...,n,). (3) 
Z==l j=l 

j+l 

Let the left and right RNNs of .z at the mth stage be U (m) and Vcm) respectively. We state two lemmas which 
are required to prove our main results. The proofs of these two lemmas are omitted as they essentially appear in 
(Das Gupta and Lin, 1980). The following lemma deals with the existence of m-stage left and right RNNs of z. 

Lemma 2.1. If m/n + 0 as n --) ~0, the probability that there are at least m observations to the lej2 of Z and at 
least m observations to the right of Z in the pooled sample converges to 1 as n + ~0. 

The next lemma shows almost sure (a.s.) convergence of i?“’ and V(“) to Z as n + ~0. 

Lemma 2.2. Zf m/n + 0 and Z has density f,, then 

UC”), V(“) 8.s. Z as n + C0. 

Next, we define r#“‘(Z; Xii, i = 1 ,***, s; j=l ,...,n& as 

#0 = 

( 

1, if both U(“) and V(“) are from the Ith population, or if z becomes an extreme 

observation at the mth stage and its RNN is from the lth population; 
1 if either one of UC”) or V(“) is from the Zth population; 

(4) 
27 

0, otherwise. 

Let Ai be the event that both Uo) and VCi) exist at the ith stage. Since the steps of proofs of l-URNN 
limiting risk are needed to derive the limiting m-URNN error rate, we first obtain the limiting TPMC of the 
l-URNN risk. The conditional probability that Z is in T,, given Z = z, using the l-URNN rule is given by 

n,‘r)(z; nl,...,n,) = E( 4;” 1 Z = z) = E( #IA, I Z = z) + E( 4[l)Z,; I Z = z) (5) 

where in (5) 11. I stands for the indicator function. 
In subsequent discussions, when there is no fear of confusion, we use z instead of Z = z when conditioning 

by Z = z. Lemma 2.1 implies that, asymptotically, the nonexistence of the left and right RNNs of z is 
impossible. 

Thus, the second expectation in (51 satisfies 

E( @1,, I z) < P( A: I z) --) 0, n --) co. (6) 

Now we express the first expectation in (5) as follows: 

E( #)zA, ) Z) = P( 4;‘) = 1 n A, I Z) + +P( +I” = 3 n A, I Z) 

= E(P(“‘(U, V, z)) + $E(P”‘)(U, V, z)), (7) 
where 

Por)( u, v, z) = P(@ = 1 I u, v, z) and P(“)( u, v, z) = P@(l) = 3 I u, v, z). 

P(“)(u, v, z> is the conditional probability that both RNNs of z at the 1st stage are from the Zth population, and 
P(“)(u, v, z> is the conditional probability that one of the RNNs of z at the 1st stage is from the Ith population. 
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Note that 

P(‘[)(U, U, 2) = 
Cdn 1,...9,) C,,( n,, * * *, n,) 

B(” 1,...&) ’ 
P([O)(u, U, 2) = 

B(” 1,...,n,) ’ 

where for all I = 1,. . . , s, 

Cl@ 1 ,..., n,) =q(q-- l)[l- (F,(u) -q(~))l”‘-2z~l [l- (FLU) -I;;:(~))l"'f~(U)h(~)~ (10) 
i#l 

C~O(~l,..., n,)= j~l~~~j[l-(F,(u)-F,(u))]"'~l[l-(F,(u)~~(u))]ni~l 

j*l 

x zol [l-(F,<v)-~i(u))l”‘[fi(u)fi(v) +~(‘)fi(‘)]~ 

i#j,i#l 

(11) 

and 
s 

B(” 1,...4,) = i C,( q,...,n,)+ CCIO(nl,...,n,). (12) 
I=1 I=1 

Let pi=lim,,, ni/CfS1ni and clearly we see piaz’ ti as n + ~0, and assume 0 <pi < 1 (i = 1,. . . , s). 
Now we state a theorem from (Bagui, 1993) without proof: 

Theorem 2.1. Suppose z is a continuity point of fi (i = 1,. . . , s). Then, for almost all z (under fi, i = 1,. . . , s), 
the asymptotic conditional probability of classifying z to w,, using the l-URh?N rule is given by 

17,“)(z) = lim 17,(‘)(2; nl,...,ns) = v,(z) + +vlo(z), 
n-m 

where 

vI(z) =Pl”fF(z)/ Ik PifiCz) 
[ 1 2 and ~/o(z) =z~lfi(z) i Pifi(z)/ 2* 

i=l i=l 
i+I 

In view of Theorem 2.1, piaz’ gi and (1) we have 

Lq”( 2) = VI(Z) + &(z) = ?.J2( WI I z) + ?I( 0, I z)(l - q( 0, I z)) = q( q I z). 

Now the limiting PMC’s of the first-stage FWN are derived as follows: 

(Y!,!) = lim P(decide Z E w, I Z E wj, I #j) = jn,“‘( z)fi( z) dz = /v( w, I z)fi( z) dz. 
n-tm 

(13) 

The minimal Bayes error rate (for the O-l loss matrix case) is: 

R’ = /min( C (ifi( C Sifi(Z),***, C fiS(Z)) dz 
i#l i#2 i#s 

(14) 
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When the training sample is from a mixture of s populations, we may take p, = cr and then using (11, (3) 
and (13) we have the limiting TPMC of the 1st~stage rule in the following form: 

~8’)~ i i tjo#‘=/l$ j~~~(~,Ir)9(~jlr)g(l) dz 
I=1 j=l 

j#l j+l 

It is clear from (15) that the limiting TPMC for the l-URNN rule in s populations is exactly the same as the 
limiting risk of the l-NN rule of Cover and Hart (1967) in the s-population case. From this we deduce the 
following theorem. 

Theorem 2.2 (Bagui, 1993). Suppose the training sample is from a mixture of populations CO, (I = 1,. . . , s> 
with 6, the prior probability of oI. Then R(‘) has the following bounds: 

R’ <R(” <R* 2 - LR’ 
! s-l i 

where R * is the Bayes error rate defined in (14). 

Now we will derive the limiting TPMC of the m-stage RNN rule. 
Let nr(qz; Iz 1,***, n,) be the conditional probability that the m-URNN rule classifies 2 in ol, given 

z = Z. By-the definition of 4jrn) (see (411, we h&e 

n/m)( =; n,, . . . , n,) = P(both U(“) and V(“) are from the 2th population) 

+ $P(one of U(“) and V(“) is from the Ith population) 

=p(#[(1)211r)+P(~fl)z3, @=11z)+ **. +P(#)=$, 

+ iP( +,I” = 3). . . , (by = ; I 2) 

= p( 4,“’ = 1 I z) + f p( c#p = $, . . . , r#$-‘) = 4, cfJji’ = 1 I 2) 
i-2 

Again, 

+3P(~,J’)=~,...,~I”)=~Iz). 

i-l 

. . . , $p’ = 1 I %) 

(16) 

P(f##‘= +,..., ~~i,=1~~)=p(~~~)=~I~),~2P(~l(i)=~I~~j-1)=t,...,~~1’=!~ z> 

xp(~l(i)=11~ji-l)=~,...,~1(1)=3, 2) 
(17) 

and 

p(+(l’=;,+j2,+ )...) si.‘=fl~)=P(d”=i,~),~*P(gli,=ilml”’=t ,..., 4P’=L& 

(18) 

We shall show that 

limp(~Ii)=ll~Ii-l)=~,...,~p)=~, Z)= limP(~j’)=lIZ)=~~(Z), as. 
n-m n+a (19) 
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and 

limp(~lj)=31~r(j-‘)=~,..., #)= $, 2) = :itP(#)= +lZ) = vro(Z), as. 
n-m 

where vI and q,, are given in Theorem 2.1. 
Thus, using (16) to (20) we arrive at 

m-l 

(20) 

(21) 

Assume c#’ = 3. Remove the observations corresponding to U(l) and V(l) from the pooled ordered training 
sample. Denote the remaining (Cf= lni - 2) observations by X$). 

Lemma 2.3. Given Z = z, #II’) = $, U(l) = u1 and V(l) = v1 (suppose one of u1 and v1 is from the lth 
population), then the conditional distributions of Xf’“’ (j = 1,. . . , n, - 1) and Xk(T) (k Z 1) (j = 1,. . . , nk - 1) 
satisfv: 

(i) Xi,!) are conditionally mutually independent. 

(ii) The density of X$,? is 

fP(4 =f,W/[l - (N4 -w4)1 on [UP ulIC* (22) 

(iii) The density of Xjj” is 

fP(x) =f&)/[l- (m4 -&W)l on b17 ulIC. (23) 

Lemma 2.3 can be extended in a similar manner inductively. Let &“) = i (m = 1, 2,. . . , i - 1). Delete the 
observations corresponding to 17”“’ and V(“) (m = 1, 2,. . . , 
observations by X$. 

i - 1) and denote the remaining Cc;= lni - 2(i - 1)) 

Lemma 2.4. Given Z = z, U’“’ = u,, V’“’ = v, and +irn) = $ (m = 1, 2,. . . , i - 11, the conditional distribu- 

tions of X$ ( p = 1, 2, . . . , ItI - i + 1) and Xjj (k # 1) (p = 1, 2,. . . , nl - i, + 1, where i, is such that 

c k + , i, = 9, satisfy: 
(i) X$‘s are mutually independent. 

(ii) The density of X/j) is 

fi”‘( x) = fr”-“( x)/[l - ( F{‘-‘)(v~_~) -F,C’-‘)(U~_~))] on [u~_~, v~_~]‘, (24) 

where F,“- ‘) is c.d. f. corresponding to f/i- ‘) defined inductively. 
(iii) The density of XC’@ is 

fk(i)(x) =fy”&,l- (Fpyvi_l) -Fk(ui_l))] on [“i-lT vi-l]c9 (25) 

where I$- ‘) is c.d. f. corresponding to fii- ‘I, defined inductively. 

Proof. The proofs of the above two lemmas are similar to the proofs of Lemmas 3.1 and 3.2 of (Das Gupta and 
Lin, 1980), and hence they are omitted. 0 

Note from (19) that 

p(~li)=ll~l(i-1)=3,..., #) = $, z) = E(P( @’ = 1 1 +fi- ‘) = ;, . . . , +j” = +; uci), v(i)7 z, 
(26) 

with 
p(4ji) = 1 I 4ji-1) = 3,. . . , +I’) = $, uci), VCi), Z) = Cji)/Bci), 

(27) 
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where Cfi) and B(‘) can be obtained from C, and B (given in (10) and (12) respectively) by replacing n,, u, u, 
f, by nI - i + 1, ui, q, f/‘) respectively. 

Since q, V;. “3 z (by Lemma 2.21, using Lemmas 2.3, 2.4, and the continuity of fi, we have for f,%+), and 
f/i)( vi) %fr( z) a.s. Therefore, the limiting value of CI(‘)/B(‘) would be 
Dominated Convergence theorem (DCT), we get 

lim P( 4:” = 11 +ji--1) = 1 
n-m 

2 ,..., t${‘)= 3, 2) = C,/B = q(Z), a.s. 

and by similar arguments one can show that 

lim P( 4ji) = f 1 41(i-1) = 3,. . . ,+I’) = 3, Z) = V,a(Z), a.s. 
If-m 

where q(Z), and Q(Z) are given in Theorem 2.1. 
Now we state our main theorem. 

C,/B. So by (261, (27) and the 

(28) 

(29) 

Theorem 2.3. Let z be a continuity point of fi (i = 1,. . . , s). Then the limiting conditional probability of 
classifying z as belonging to o, using the m-VRNN is given by 

m-l 

L!/“)(z) = lim 17,(“)(2; n,,...,n,) = v,(z) C V&(Z) + Jj~;;f(z). 
n+m i=O 

Proof. Introducing the set A, as in Theorem 2.1 and arguing as for (5) to (7) we get the result in view of (16) to 
(21). El 

The limiting PMC’s of the m-URNN rule using the DCI are given by 

a,(im) = lim P( m-URNN rule decides Z E o, 1 Z E wi) = /n,crn)( z) fi( z) dz. (30) n-m 

In the limiting case we may take pi = .$ (i = 1, 2,. . . , s) so that the limiting TPMC for the m-URNN rule is 
given by 

R’“’ = k i tj$“). (31) 
I=1 j=l 

j#l 

Finally, we show that R’“’ is monotone decreasing with m. 

Theorem 2.4. For R”“’ as defined in (311, we have: 
(i) R(m)gR(m-l), m=2, 3, 4 ,,.., and 

(ii) R * Q R”), where R * is given in (14) and R@” is obtained from (31). 

Proof. Using (11, (211, (301, (31), and after a great deal of simplification, one will have 

R(m) _ Rc” - 1) 

Now using the fact that -(l - T&W, I z>j2 < -(l - 271(0, I z)) in the above, we get 

R’m’-R~m-*‘~-2m-2/~~(~~~z)m-1(l-?(01(z))m-2(1-2~(~~~z))2g(z)dz, 
I=1 

which implies Rem) < Rem - ‘! 
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From (30) and (31) as m + ~0, we have 

R’“’ = / i i 171”‘~j~( z) dz 
I=1 j=l 

j+l 

Remark 2.1. Theorem 2.4 shows that as the number of stages (m) increases, the limiting error rate of the 
m-stage RNN rule decreases, which agrees with our intuition. Thus the m-stage rule is just an improvement over 
the previous stage. 

3. Monte Carlo simulation for m-URNN rule 

This section investigates the performance of the m-URNN rule empirically and compares it with that of the 
k-NN rule. Our first experiments used random training samples {xii} of equal size (n, = + = + = 50) 
generated from equiprobable mixtures of triples of univariate distributions, namely (normal, normal, normal), 
(lognormal, lognormal, lognormal), (gamma, gamma, gamma), (Weibull, Weibull, Weibull) and (gamma, 
Weibull, gamma). For each mixture we then drew 1000 random observations from each of wi, w2, and wg. The 
150 xij’s were then used to classify these 3000 points using the m-URNN and m-NN rules, varying m from 1 
to 5. The proportions among the 3000 z’s that were misclassified by the m-URNN and k-NN (k = m) rules are 
given in Tables 2, 3, and 4. Entries in the mth row of each of these three tables correspond to the situation 
where all 3000 sample points have been classified by the m-URNN. We remind readers that this means that all 
stages up to and including m have been used, as described in Section 1. For the m-NN rule, of course, each row 
of these tables corresponds to the fixed number of m of nearest neighbors used as shown in column 1. 

Tables 2-4 exhibit the behavior of the m-URNN rule across changes in the shape and mean separations 
{ I pi - pj 1) of the components of g. Observe that the mean separations of A, B and C in Tables 2 and 3 
increase from 1 to 2 to 3 while the variance in all cases remains fixed (at 1). In A, mean separation and standard 
deviations are equal, and error rates hover around 45%, regardless of m or f<x 1 q). As 1 pi - pj 1 increases to 
the right in Tables 2 and 3, the error rate drops; as m increases, the error rate also drops. Both of these trends 

Table 2 
Error rates (%o) for the m-URNN and m-NIV rules: equiprobable mixtures of 3 normals 

m A B 

m-URNN m-NIV m-URNN m-NIV 

C 

m-URNN m-NIV 

1 51.1 50.3 29.7 29.0 12.8 
2 47.2 50.4 26.3 29.7 12.1 
3 45.5 48.3 23.7 27.3 11.8 
4 44.9 48.7 23.8 27.1 11.7 
5 44.7 45.3 23.8 23.1 11.7 

A = (N(O, 1) + N(1, 1) + N(2,1))/3; B = (N(O, 1) + N(2, 1) + N(4,1))/3; C = (N(0, 1) + N(3, 1) + N(6, 1))/3 
N(a, b) = Normal distribution with mean a and standard deviation b 

12.8 
13.1 
11.4 
11.8 
12.0 
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Table 3 
Error rates (%) for the m-URNN and m-NN rules: equiprobable mixtures of 3 lognormals 

m A B 

m-URNN m-NN m-URNN m-NN 

C 

m-URNN m-NN 

1 48.9 47.9 36.6 35.9 12.6 12.6 

2 45.6 48.9 33.9 36.7 9.4 12.4 

3 44.9 46.2 32.4 34.5 9.4 9.7 

4 45.4 45.7 32.5 34.4 9.0 10.2 

5 45.4 44.5 32.1 32.5 8.9 10.0 

A = (L(O, l)+ L(1, l)+ L(2, 1))/3; B = (L(O, l)+ L(2, l)+ L(4, 1))/3; C = (L(O, l)+ L(3, l)+ L(6, 1))/3 
L(a, b) = Lognormal distribution (with mean and standard deviation of the underlying normal distribution being a and b respectively) 

agree with theory. Table 4 lists results of using the m-URNN rule on mixtures whose components have Gamma 
and/or Weibull distributions. The same trends and remarks just noted apply to Table 4. Note that C, Table 4 is 
a mixture of two Gammas with a Weibull that has non-uniform mean separations. In summary, Tables 2-4 
show that the m-URNN and m-NN rules yield quite similar, very comparable results on equiprobable mixtures 
of univariate distributions. Excluding ties, 34 of the 43 unequal error rate pairs in these three tables (about 
79.1% of the tests) favor the m-URNN rule; but the differences in error rates are not significant enough to claim 
a great advantage for m-URNN. Nonetheless, this indicates that m-URNN is a bonafide competitor to the 
standard m-NIV rule for classifier design on a wide variety of mixtures. 

In Tables 2-4 we compared m-URNN with m-NN rules. One might argue that m-URNN should be 
compared to 2m-NN rules as the m-URNN rule might use 2m data points. The intuitive justification for not 
doing this lies in the fact that m-URNN can, in the worst case, use 2m data points and in the best case decision 
may be made only with two data points. On an average, decision is expected to be made with m/2 neighbors on 
either side, i.e., m-URNN is expected to use on an average roughly m neighbors only. However, for 
completeness we compare in Table 5, the 2m-NN rule with the m-URNN rule as an illustration, which also 
shows comparable results. Results of Table 5 correspond to the mixtures used in Table 3. For other mixtures 
reported in Tables 2 and 4, one can view the behavior of m-URNN and 2m-NN rules (for m < 2) from Tables 2 
and 4 itself. 

4. Generalization to the multivariate case and an empirical study 

Multivariate observations cannot be ranked uniquely because x E [WJ’ can at best be partially ordered. 
Consequently, it is difficult to make a natural extension of the m-URNN rule to multivariate observations. For 

Table 4 
Error rates (%) for the m-URNN and m-NN rules: equiprobable mixtures of 3 distributions 

m A B C 

m-URNN m-NN m-URNN m-NN m-URNN 

1 41.1 41.6 51.3 51.2 40.6 
2 38.1 41.1 49.8 52.4 36.4 
3 37.1 38.4 48.7 50.4 35.6 
4 36.7 37.9 48.5 50.1 34.9 
5 36.6 36.8 48.3 48.7 34.9 

A = (G(1, 1) + G(3, 1) + G(5, 1))/3; B = (W(1, l)+ W(3,l) + W(5, 1))/3; C = (G(1, l)+ W(2, l)+ G(4, 1))/3 
G(a, b) = Gamma distribution with shape and scale parameters a and b respectively 
W(a, b) = Weibull distribution with shape and scale parameters a and b respectively 

m-NN 

40.1 
39.3 
36.3 
35.3 
35.5 
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Table 5 
Error rates (o/o) for the m-URNN and 2m-NN rules: equiprobable mixtures of 3 lognomnls. 

m A B C 

m-URNN 2m-NN m-URNN 2m-NN m-URNN 2m-NN 

1 48.9 48.9 36.6 36.7 12.6 12.4 
2 45.6 45.7 33.9 34.4 9.4 10.2 
3 44.9 44.5 32.4 32.4 9.4 9.5 
4 45.4 44.7 32.5 31.8 9.0 9.7 
5 45.4 43.8 32.1 31.5 8.9 9.9 

A = (L(0, l)+ L(1, 1) + L(2, 1))/3; B = (L(0, l)+ L(2, 1) + L(3, 1))/3; C = (L(0, 1) + L(3, l)+ L(6,1))/3. 

literature on ordering multivariate observations see (Anderson, 1966; Bamett, 1976). But here we propose a rule 
which classifies multivariate observations using the m-URNN rule first on each feature; and then integrates the 
feature-wise results to arrive at a final labeling decision for each multivariate observation. The rule is specified 
as follows: suppose we have s p-variate (p > 1) populations wl, w2, . . . , o,, and let (xi’), xi’), . . . , x!(j) be 
the training data from the Zth population o1 with sample size n,, where x(‘) = (xl:), x$), . . . , x!‘))~ for all 
j=l,2 , . . . , n, and I= 1, 2,. . . , s, and T stands for the transpose of a vector! Let z = (z,, z ,,...,“z,)’ be an 
unknown observation to be classified into one of the s populations. First we classify zt for all k = 1, 2,. . . , p 
by applying the m-URNN rule using {x$‘) for j = 1, 2,. . . , n, and I = 1, 2,. . . , s as training data. Recalling 
+jrn) of Eq. (4), we define &” to be 1 or i or zero when zk is classified to the Ith population ol, zk is 
randomized between the Ith and jth population ( j # I), and not classified to wI respectively. Define m, = Cl= 1 
c#@). Thus m, can be viewed as the feature-wise total number of counts to classify z in favor of the class wr. 

m-stage Multivariate Rank Nearest Neighbor hdPiRNN) rule 
m-MRNN(a): If mi = m* where m* is the unique maximum of {m,: 1 < 1~ s}, then classify z to the 
population fi+. 
m-MRNN(b): If m* = mi, = miz = * * 4 = m,,, then classify z to wi with probability of being correct equal to 
l/J for i = i,, i,, . . . , i,. 

In other words, we poll the votes (cast by the m-URNN rule in each feature) for each of the s possible labels 
which might be assigned to z, and classify z using a simple majority scheme. Ties in m-URNN(b) are resolved 
arbitrarily. We shall call this algorithm the m-stage Multivariate Rank Nearest Neighbor (m-MRNN) rule. The 
term m-stage is appropriate because for p = 1, the proposed rule reduces to the m-URNN rule. 

To see how the m-MRNN rule performs on multivariate data, we use Anderson’s IRIS data (Johnson and 
Wichem, 1988) as an experimental data set. Let S be the IRIS data. S contains 50 (labeled) vectors in 
4-dimensional space for each of the 3 classes of the IRIS sub-species. Properties of this data set are well known 
in the literature and have become a benchmark to illustrate various clustering and classifier designs. In order to 
use S in the present context, it is necessary to create training (So) and test (S,) data sets from S. We partition S 
randomly into two (sub) data sets S, and Sr, such that S, n Sr = fl; S, U 8, = S; and 1 SD 1 = I ST ( = 75 
(cardinality), with 25 points being drawn randomly from each of the three classes. For any partition (S, : S,), 
we first use S, as the training set and Sr as the test set, and then we switch the data sets and repeat the 
experiment. We refer to the former run as the forward phase, while the latter run is referred to as the reverse 
phase. We have generated two such partitions P, and Pz where P, = SD, U Srl and Pz = SD, U S,*. Table 6 
illustrates the results of a typical forward-reverse run on partition P, of the IRIS data using the m-URNN and 
m-NN rules separately on each feature. Error rates in Table 6 are averages of forward-reverse phases. 

Table 7 shows results similar to Table 6, but with partition Pz. 
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From Tables 6 and 7 note that the m-URNN and m-NN rules produce comparable error rates on each feature, 
just as they did in the Monte Carlo simulations discussed earlier. Further, features 3 and 4 are clearly superior to 
features 1 and 2, since the rates for either of these features are in the 5% range, (roughly l/10 of rates achieved 
using feature 2). The point of tabulating these outputs is for purposes of comparison with the multivariate rules. 

Table 8 illustrates the results of applying the m-MRNN and m-NN rules to the same data sets S = So U S, as 
used for Tables 6 and 7, considering each point to be a vector in 4-space. Error rates in Table 8 are again for 
averages of forward-reverse runs. Observe that using the multivariate data reduces these rates considerably, as 
one would expect. Distances for the m-NN rule were computed using the Euclidean norm (the 2-norm) in 
columns 3 and 5, and the Manhattan norm (the l-norm) in columns 2 and 4. Observe first that the error rates are 
again comparable, but the m-NN rule is found to work a little better than the m-MRNN rule for this data set and 
particular partitions. Note that for the m-NN rule one needs to make a choice for d, the metric used by the 
m-NN rule to assess “nearest”. The choice of d is usually a matter of trial and error, and in practice, system 
design with the m-NN rule must account for this. On the other hand, just as in Tables 6 and 7, the results in 

Table 6 

Error rates ($1 using each feature of the IRIS data (PI) 

Feature m-, 1 2 3 4 5 

1 m-URNN 39.0 34.3 32.3 32.7 32.7 

m-NN 36.0 35.3 35.1 34.3 33.0 

2 m-LJRNN 51.7 46.0 46.0 43.7 42.0 

m-NN 48.7 52.3 50.0 54.0 46.3 

3 m-URhW 7.0 5.7 5.7 5.7 5.7 

m-NN 5.3 5.4 4.7 5.0 4.7 

4 m-URNN 8.7 8.0 8.0 8.0 8.0 

m-NN 5.3 4.3 4.7 4.7 4.7 

Table 7 

Error rate (%) using each feature of the IRIS data (P2) 

Feature m+ 1 2 3 4 5 

1 m-URNN 4.0 35.0 33.7 32.7 33.3 

m-NN 31.3 34.7 36.0 38.8 38.0 

2 m-URNN 54.0 48.3 48.3 45.7 45.7 

m-NN 52.7 51.7 47.8 46.7 47.0 

3 m-URNN 8.7 6.3 6.3 6.3 6.0 

m-NIV 4.7 6.0 5.3 5.0 4.7 

4 m-URNN 6.7 6.7 6.7 6.7 6.7 

m-NN 3.7 4.0 3.3 3.3 3.3 

Table 8 

Comparison between m-MRNN and m-NIV on the IRIS data in terms of error rate (%) 

m Pl p2 

m-MRNN m-NIV m-MRNN m-NIV 

1 6.7 4.0 8.7 5.3 

2 7.0 2.0 9.0 18.7 

3 8.0 6.7 9.7 3.3 

4 8.3 6.7 10.0 4.7 

5 8.7 4.0 10.0 3.3 
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Table 8 for the m-MRNN rule are the only ones that can be found for partitions P, and Pz of S. In other words, 
the use of the m-MRNN rule is independent of the need to specify a distance measure. Thus, an essential 
difference between these multivariate rules is the way “evidence” for class labels produced by each feature is 
aggregated; the m-MRNN rule essentially uses the l-norm and voting; whereas the metric chosen is the 
aggregation mechanism for the m-NN rule. 

Computational complexities of the m-MRNN and the m-NN rules 

Let 1 SD ] = a, 1 S, 1 = b, and S = So U S, c Iw P. We assume that the cost of multiplication and comparisons 
are equal, and we ignore the cost of addition and subtraction. For the m-MRNN rule we need to sort the values 
of each feature for points in SD. The total computational overhead for this sort is equal to (pa log, a). Note 
that this sorting is required only once. Now the computational cost for finding the class of a p-variate 
observation using m-MRNN rule is (2mp +p log, a) - we assumed the worst case when the decision is made 
at stage m. Hence, roughly the total computational cost (TC,,,) for classifying the set Sr is 

TCMR,, =(2mp+plog, a)b+(palog, a). (32) 

In (32) log, a is the number of comparisons required to find the positions (rank) of an element in a sorted 
sequence of length a. So p log, a is the cost of finding positions of all p components of z in the respective p 
sorted sequences each of length a; while 2mp is the maximum number of comparisons that may be required to 
classify all p components of z. 

On the other hand, for the m-NN rule we need to compute a distances for each data point in S,. Thus the 
total computational cost (TC,,) for processing the entire set S, is 

TCNN =(a log, a+pa+m)b. (33) 

In (33) pa is the total number of multiplications required for computing a Euclidean distances and m is the 
number of comparisons for finding class labels of m nearest neighbors. 

In (32) pa log, a is a fixed overhead and does not change with b, the number of points to be classified. 
Now (a log, a +pa + m)b is much greater than (2mp +p log, a)b unless a is very small. So in general, 
unless a and b are very small, TC, will be greater than TC,,,,. 

5. Conclusions 

We have generalized the (univariate) l-stage URNN rule to an m-URNN rule for s populations, and 
investigated its theoretical properties. The asymptotic error rates R (R(l)) of the l-NN (l-URNN) rules both lie 
in the optimal Bayes interval [R * , R * (2 - (s/( s - 1))R l )I. As the number of training samples increases, the 
performance of these two rules becomes nearly identical. Their implementational characteristics, however, are 
different. The asymptotic TPMC of the m-URIW rule is shown to decrease as m increases. 

The m-URNN rule enjoys some advantages over the m-NN rule. First, it may lessen the computational 
burden of computing the distances {d(xij, z>], and second, decisions by the m-URNN rule are less ambiguous, 
because ties can occur between only two classes (regardless of s>, whereas the m-NN rule can suffer an s-way 
tie. Moreover, the k-NN rules require additional computation to find the class with the highest vote. The 
m-URNN rule is particularly useful when the observations are available in terms of their ranks. 

Finally, we extended (generalized) the univariate m-RNN rule to multivariate observations by defining the 
m-MRNN rule and empirically investigated its performance. The theoretical properties of the m-MRNN rule 
need to be investigated. 
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