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ABSTRACT 

A modified version of the Bezier-Bernstein polynomial approximation tech- 
nique has been developed which gives local control of data points depending on 
an absolute error criterion. Based on this concept, two algorithms for coding a 
gray-tone image have been formulated. Error bounds have been developed which 
are used to approximate gray segments of pixels. These bounds are determined 
by the desired error in approximation. Effectiveness of the algorithms has been 
demonstrated on a set of images. 

1. INTR.ODUCTION 

Bezier approximation technique [l] which uses the Bernstein polynomial 
as the blending function is well known in the field of computer graphics for 
its speed of computation and axis independence property. It has recently 
been used successfully in contour coding of binary images [2, 31. 

The present work is an attempt to investigate an application of the 
Bezier-Bernstein polynomial in gray-tone image data compression. First of 
all, we have investigated if the conventional way of approximating an image 
by the Bezier-Bernstein polynomial provides any advantage from the data 
compression standpoint. For this, an entire row (or column) of an image 
has been considered as a single segment for its approximation. From the 
approximation theorem of Bernstein [4], it is evident that, for a given error 
term, the order of the polynomial increases with the maximum gray value 
present in the segment. Therefore, if the maximum gray value in an image 
is very large, the order of the polynomial becomes large. Consequently, 
it introduces a large number of control points and the generation then 
hecomes slow. This makes inconvenience in using the conventional way of 
approximating an image for its compression. 

A modified version of the approximation technique is then developed 
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to serve the purpose. Here, we have emphasized the local control of data 
points instead of minimizing the global squared-error sum. An absolute 
error criterion has been chosen to keep the absolute error within a bound. 
Also, for the sake of data compression, we have chosen a second-order 
polynomial. 

Based on the modified concept of approximation, two algorithms are pro- 
posed. The first algorithm uses the error bound to segment rows (columns) 
into lines and arcs which are coded in the subsequent stage. The second 
algorithm, on the other hand, considers a row (or column) as a space curve 
on intensity surface and separates out the small deflection curve segments 
on the basis of a homogeneity criterion. These segments are then approxi- 
mated and coded. The performance of the algorithms is tested on a set of 
input images. Their discriminating features are also provided. 

2. SHORTCOMINGS OF THE BERNSTEIN POLYNOMIAL AND 
ERROR OF APPROXIMATION 

The Bernstein polynomial is a powerful tool to approximate a continuous 
function within any degree of accuracy. It uses the global information while 
approximating a function, and the order of the polynomial increases with 
accuracy in approximation. Let us consider the Bernstein polynomial of 
degree m, 

for approximating a function f(t). Here f(t) is defined and finite on the 
closed interval [O, l]. Also, 

bn(t) = 0 ‘,” ti (1 - t)“-“, 

withi=1,2 ,..., m. 
It can be shown that the order m of the Bernstein polynomial B,(t) 

satisfies the inequality [4] 

in order to have an error of approximation less than 6, where k is the 
maximum value of the approximating function f(t) in the interval [0, 11. 6 
is a positive number such that, for points tl, tz E (0, l), 

I.f(t1) - f(t2)l < ;, 
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whenever It1 - 61 < 6. 
Since a gray-level image can be approximated either row wise or column 

wise, it appears from the above inequality that the order of the approximat,- 
ing polynomial may be different for different rows (or columns) depending 
on the value of k. Let us consider the case of approximating a 32 x 32 
crrav-level image row wise. If a row has its maximum value k = 32. then. 0 u 
for c = 1, (i.e., one unit error in gray value), 711 > (32 x 32 X 32)/31 x 31 = 
34.09: since 6 = 31/32. Therefore, for k = 32. one cm choose m to bc equal 
to 35. 

On the other hand, if k = 1, then m = 1.06, i.e., m = 2. k = 1 meam all 
the gray-level values in a row are the same and are equal to 1. Sincr in a 
gray image, it is very likely to have the maximum value anywhere in each 
row: the order may be as high as the maximum gray level in the image. 
This makes the method ineffective. 

3. PROPOSED APPROXIMATION TECHNIQUE 

It is seen in the previous section that, to approximate a gray-tone image 
row wise (or column wise), the order of the Bernstein polynomial varies 
from row to row (or column to column), and for a high-resolut,ion image 
(small 6) with one unit error in approximation (t), this order becomes close 
to the maximum value present in each row (or column). The large order of 
the polynomial, in turn, makes the time of approximation also high. Again! 
the variation of the order of the polynomial from row to row (or column t.o 
column) makes the coding scheme complicated. 

An attempt is made in this section to describe an approximation scheme 
keeping the order of the polynomial equal to 2. For t,his purpose, let us 
consider the Bezier-Bernstein (B-B) polynomial which incorporates t,he 
Bernstein polynomial as the blending function. Since the order is cho- 
sen to be 2, the amount of error t, as expected. will be significantly high. 
Furthermore, unlike the case of two-tone contour coding [2], the stjraigh- 
forward application of a quadratic B-B polynomial to image data is not 
able to segment a row (or column) for their proper approximation. In or- 
der to circumvent this, a modification of the B-B polynomial is proposed 
here. This leads us to formulate a scheme by which it is possible to obtain 
any degree of accuracy in approximation. 

Given n points, the approximation algorithm requires (72 - 2) unique 
quadratic B-B polynomials for their representation. Unlike the method de- 
scribed in Section 2, the scheme proposed here decomposes a row (column) 
either into a single gray segment or into a number of segments so as to en- 
able them to be approximated properly. An error bound has been defined 
which guides the process of segmentation. 
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3.1. BEZIER-BERNSTEIN POLYNOMIAL 

Equation (l), which represents an mth degree Bernstein polynomial for 
approximating a function f(t), 0 2 t 5 1, can be written as 

B,(t) = 4om(t)f(O) + bn(t) f & 0 (“> + 49m(t)f ; + ‘. + hrwn(t)fP)~ 

a,(t) is seen to consider a set of weights 4zm(t) (0 < t 5 l), along with 
some fixed points of function f(t) in [0, l] for its approximation. With the 
choice of some arbitrary points for f(2), one can determine B,(t) for each 
value of t. 

Let U, represent a point in a multidimensional space and that v, = f( $). 
Thus, B,(t) becomes 

Bn(t) = -g c&m(t) v,. (3) 
i=o 

Equation (3) can be viewed as a vector-valued Bernstein polynomial, and it 
approximates a polygon with vertices U% with t in [0, 11. B,(t) is thus seen 
to generate a space curve. Equation (3) is known as an mth degree Bezier- 
Bernstein (B-B) polynomial. For m = 2, the quadratic B-B polynomial 
is 

&.(t) = 

n 

C 4i2(t)vt 
2=0 

402(t)vo + h(t)% + 422(t)v2 

(1 - t)2wo + at(l - t)v1 + t%2. (4) 

3.2. APPROXIMATION CRITERIA OF f(t) 

In order to develop an approximation technique, let us first of all for- 
mulate the key criteria associated with this technique. Let us assume 
(N - 2) quadratic B-B polynomials for the representation of N data points, 
such that 

where 
t, and 

f(b) = B;@J, i = 1,2,3, . . , N - 2. 

Bi(t,) is the value of the ith quadratic B-B polynomial at the point 
is given by 

B;(t,) = (1 - Q2vo + 2t,(l - t&J; + t,2v2. (5) 
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Fig. 1. Supports of approximation due to a sequence of qlladratic polynomial 

B;(O) = B;(o) = .” = By(o) = 4!(J 

B;(l) = B;(l) = ” = By(l) = 112. 

In other words, the end supports of all t,he quadratic B-B polynomials 
are assumed to be identical. This is shown in Figure 1, where the second 
supports uZ, of all the polynomials are shown to be different. From (5): the 
second support of the ith polynomial is obtained i\s 

7J; = 
B$(tt) - (1 - tJ%,) ~ t& 

2t,(1 - fl) 

Let ~4 = ?Ir when ti = 4 and let the corresponding B-B polynomial with 
support ‘~0, 51, and vz be B2(tz). Note that B,$ (data points) at t, = $ 
may not always be available (e.g., for even number of data points). In this 
case, we consider two data points in the neighborhood of t, = ; (t, < 4, 
and t, > i), to calculate the corresponding ,c:\ values and t,ake their average 
to find 5:. The discrete form of Bz(t,) can be expressed as 

&(tz) = (1 - &)%a + a&(1 - f,)T;i + t$z. (7) 

so, 
I&(&) - B;(t,)/ = 1~~ - ,II;[ x 2t,(l - ti). 

This expression denotes the absolute difference between the polynomial - 
I&(&) and an arbitrary ith quadratic B-B polynomial B;(tZ) at an instant 
t,. 
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Let us now find the maximum possible error in 1 Bz(t,) - II; 1. We 
can write 

Similarly, 

The expression ti( 1 - tZ) has a maximum at t = i, and the value falls 
symmetrically either side as t moves away from i. Since t, E (0, l), the 
expression 2t,( 1 -tt) is minimum for the possible minimum/maximum value 
of t,. For equally spaced data points, the minimum possible value of t, is 
l/(N - 1) and the maximum possible value of tz is (N - 2)/(N - 1). In 
either case, [2t,(l - ti)]min = [2(N - 2)]/(N - 1)2. With this, 

Iv1 - ,“;I ‘c (N - 1)2 ]Bz - B;Ilrlir, 
ml” - 2(N - 2) 

(9) 
and 

where I B2 - B;lmin = t,in and ]Bz - B$I,,, = emax are, respectively, the 
minimum and maximum absolute errors in approximating a function f(t), 
and tz( 1 - ti) is maximum at t, = $. Assuming 1~11 - vi Jmax = oh 2 2~~~~ 
and 1~1 - ~11,~~ = EL < (N - l)2/[2(N - 2)]Elnin, it is straightforward to 
observe from (9) and (10) that 

(11) 

v Iv1 - V; / # 1~)~ - vi Imax and # ]Ei - v”l Irnin’ and for which 

Given (9) and (lo), it is not always true that (N - 1)2/[2(N - 2)]E,in < 
2&l,, But one can choose E,,, and e,in in such a way that a wide range of 
choice is available for the selection of N so that (11) holds. Therefore, the 



IMAGE CODING-BEZIER-BERNSTEIN APPROXIMATIOK 181 

Fig. 2. Annular zone indicates space for c 

inequality (11) tells us that the function f(&) = L3;(t,), i = 1 2 .1\; ~ 2 
can be approximated by Bz(t) with an error inequality expressed in (12). 
vi values thus form an annular ring with cent,er at PII. The inner and outer 
radii ri and r-2 are, respectively, (N -- 1)‘/[2(n’- 2)]c,r,i,, and 2t,,,,. tl and 
f/L may lie either outside or on this annular ring. This is shown in Figure 2. 

s3.3. WORST-CASE APPROXIMATION 

It is seen from the previous sect,ion that, the inequalities (11) and (12) 
can be used to approximate a gray-tone image row wise (or column wise). 
During approximation, it may be the case that the inequality (11) does not 
hold good for all values of i associated wit,h the dimension of the image. 
Let us consider that the inequality is true for II. pixels out of N in each 
row (or column). Thus the remaining (N - sty + 1) pixels can again be 
approximated over the interval [0, 11. Approximation technique thus may 
involve decomposition of the entire row (or column) into a number of gra) 
segments. It is to be noted that the inequality (11) is always t,rue for 
an interval having three pixels irrespective of t,he inequality (12). This 
situation is referred as worst-case approximation in the sense of coding 
because it generates a maximum number of gray segments while doing the 
approximation. Finally, the end pixel of the row (or column) may remain 
free. In this case, the same pixel may be considered twice for the worst-cast 
approximation. 
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TABLE 1 
Illustration of Approximation Techniques 

Interval Original Data Points Approximated Values Error in Approximation 

24 24.00000000 0.00000000 
27 26.68640137 0.31359863 

1 29 28.72960281 0.27039719 
30 30.12960052 0.12960052 
31 30.88640213 0.11359787 
31 31.00000000 0.00000000 

31 3 1 .oooooooo 0.00000000 
32 31.52640343 0.47359657 
32 31.88960266 0.11039734 
32 32.08959961 0.08959961 
32 32.12639999 0.12639999 
32 32.00000000 0.00000000 

32 32.00000000 0.00000000 
1 31 31.01000023 0.01000023 

31 31.00000000 0.00000000 

EXAMPLE. In order to explain the method of approximation, let us 
consider a sequence of 13 data points. The sequence is 24, 27, 29, 30, 31, 
31, 32, 32, 32, 32, 32, 31, 31. Let the maximum and minimum supplied 
errors emax and Emin be, respectively, 1.0 and 0.01. It, is seen that the 
approximation can be done over three intervals. The approximated values 
in the three intervals, along with the original data points and errors in 
approximation, are shown in Table 1. It is also seen from the table that 
the data point at the beginning of one interval is exactly the same as the 
end point of the previous interval. 

The partition of data points into three intervals is controlled by (11). 
The values of Vl for the three intervals are, respectively, 31.52000046, 
32.52000046, and 30.52000046. The lower bounds for the absolute value 
of (~1 - ~1) as indicated in (11) are found to be 0.03125, 0.03125, and 0.02 
in the three intervals, whereas their upper bounds were found to be the 
same and equal to 2.0. 

4. IMAGE DATA COMPRESSION ALGORITHM 

Based on the modified version of the B-B polynomial, we have devel- 
oped here two algorithms for image data compression. Both the algorithms 
involve scanning in the horizontal (or vertical) and encode line and arc seg- 
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ments present in images. Algorithm 1 uses the absolute error criterion of 
t,he approximation scheme for a specified error bound while segmenting a 
row (or a column). Algorithm 2, on the other hand. uses a homogeneous 
criterion (based on analogy between the small deformation cubic splines 
itlltl image space curves) to segment rows (eolu~rms). These segments arc 
then approximated using the quadratic B-B polynomial and coded suitably. 

4.1. ALGORITHM 1 

4.1.1. Coding Scheme 

A11 image can be approximated either row wise or column wise. The 
one which needs fewer number of segments is selected for coding. In the 
following section, we will explain the bit requirement for the proposed 
method of coding. 

4.1.X Bit Requirements 

Let, us consider an image of size M x N with L number of gray levels. 
Since there may be a number of gray segments resulting in the process 
of approximation, each of them can be coded by their corresponding two 
supports (the starting pixel being known). If the image is coded row wise, 
t,hen the starting pixels will be the first column, while for column-wise 
coding. the first row pixels will be the starting pixels. 

Since the positional information of the B-B supports is not taken into 
account for coding, the size of the gray segments becomes important for 
regeneration of the image. Since the maximurn possible size of a segment 
is N (or M), the bit required for coding a segment is log2 N(or log2 M) if 
c~tlctl row wise (or column wise). 

It should be noted that each of the gray segments represents a Bezier arc 
having three supports of approximation, namely, vg? ‘VI? ~2 (guiding pixels). 
Of them, 7jl may not be integer. So we store 7j0, the integer part of the 
data point dl (say) at t = $ of the segment and ~2. The bit required fol 
c,acli of them is log2 L. 

Furthermore, we notice that when vo + ~2 = 2~2. the Bezier arc reduces 
to a straight line segment, and under this situation, we need to store only 
‘7~2. In practice, we consider a Bezier arc to bc a line segment when ZJO + ‘~2 = 
2~1 +n, is observed, where 51 is a small positive integer. Also, if v2 = 710&h I, 
t,hen only a single check bit and a sign bit are sufficient t,o recover the line 
segment (provided the starting point is known). Two such lines are also 
merged together to make a single line segment if 

(VO)lst seg + (742,KJ seg = 2(~l)combinr,l seg * 61. 
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?? ??

(i) 
?? a 

(ii) ?? ’ 
a ??

0 .1. 
(III) 

Fig. 3. Coded binary string for Algorithm 1 

a 

?? ??

??

0 

??

Finally, if the end pixel of the row (or column) remains free, then we neither 
consider it for worst-case approximation nor consider it for coding. During 
regeneration of this pixel, we simply consider the previous pixel. 

Let ni, T, be the number of line segments with or without the replace- 
ability condition satisfied, and m, the number of arcs present in the ith 
row of the image. If CQ, p,, and yi are the amount of bits required in each 
of the above respective cases, then, 

o, = n,(log, N (or log, M) + 3), 

pX = r, (log, N (or log, M) + 2 + log, L) , 
7% = m,(log, N (or log, M) + 1 + 2 log, L). 

If s is the bits required for the starting pixels, then the total number of 
bits for an A4 x N image for row-wise approximation is 

T=lis+-&,+8,+7,. 
2=1 

4.1.3. Decoding 

The coded binary string for the image is as shown in Figure 3. Decoding 
of the string uses the following notations. 

The first bit (Ii) denotes the mode of approximation. 11 = 0 for row-wise 
and 1 for column-wise approximation. The next sequence 12 of log, L bits 
represents the gray value of the starting pixel, which is the first entry of 
the image A4 x N. The length of 1s is either log, N or log, M, depending 
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on (II = 0 or 1). The bit (/4) indicates the type of t,he segment. 14 = 0 for 
straight line segment and for arc. 

If /4 = 0, then the subsequent bit 15 denotes the replaceability of the end 
pixel of the line segment. 15 = 0 indicates that the end pixel is replaceable 
by the beginning pixel of the line segment. 16 also is 1 bit long and gives 
the sign for 61, and the next sequence in the decoded string is Ilo. On 
the other hand, if 15 = 1, then 1~ is absent and the sequence 17 gives the 
gray value of the end pixel of the line segment. /7 has length log, L. For 
1.1 = 1 (i.e., the segment is an arc), I, ,1 5 6, and .17 are all absent, and /s, lcl 
are the two pixels of the arc. Earh of them is log, L bits long. Finally, llc, 
is identical to l2 for the next row. The same process is t,hen repeatjet for 
t,lie ent,ire image. 

4.2. ALGORITHM 2 

Here each row (column) of pixels has been viewed as a space curve and is 
segmented depending on the homogeneity among the pixels. Each segment 
is t,hen approximated by the modified B-B polynomial with a variable error 
crit,erion. Since the segments are all homogeneous, approximation for cod- 
ing can be done with small error. This will, in turn, reduce the smearing 
significantly. It also makes the approximation faster, and the algorithm 
becomes parameter independent. Further, unlike algorithm 1, where we 
considered ~1 = ‘vi at t = 0.5, the present approximation scheme incorpo- 
rates 

This, in turn, introduces flexibility in approximating larger segments as 
compared to algorithm 1. 

4.21. Small Deformation Space Curve and the Concept of 
Hom.ogeneity 

An image may be considered to be an intensity surface with surface 
contours representing the space curves along the rows and columns of t,ht: 
image. Note that for any curve I?: the amount of information contained 
in it can be represented by its curvature vector k or bv any other relat,ed 
quantity. The curvature vector k is defined as 

t being the tangent vector and s being the arc length 
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For a curve l?, with given end points, its bending energy B, can be 
written as 

B, = 
s 

k2 ds. 
r 

Here the deformation of the curve is in the direction normal to the axis 
of the equilibrium position. Therefore, when the z-axis is along the axis 
of equilibrium position, the deformation may be represented by Z(Z) and, 
consequently, we have 

B, = s k2 dx 
r 

.I [Z”(X)]2 
= r [l + (Z’(X))213 dx. (14 

For small deformation, Z’(X) z 0 and B, M j” [z”(x)]‘dx. Since B, 
represents the total energy of the curve, k2 or (2’) 5 represents the energy 
of the curve at an arbitrary point. Therefore, in an image plane, k2 will 
represent the energy of the image space curve at a pixel position. 

With the above principle, a curve (a set of pixels along a row or a column) 
can be considered to be perfectly homogeneous if the bending energy is zero 
at every pixel position. This is obviously the most stable state of the curve 
(i.e., without any d e ormation). f Homogeneity decreases with the increase 
of deformation. 

For the purpose of image compression, we are interested in finding the 
homogeneous segments of pixels in an image, because such segments can be 
approximated with small amount of error and they do not produce signif- 
icantly any smearing effect. From the space curve analogy, homogeneous 
segments of pixels are segments with Z’(X) z 0. However, in practice, 
it is very difficult to obtain long segments of pixels with zero gradient 
everywhere. On the other hand, we can find a threshold 13 and accept those 
segments with Z’(X) < B as the allowable deformation space curves. 

In order to determine 0, we consider an analogy between a space curve 
and a thin elastic physical spline, resting on two simple supports. Without 
any loss of generality, a physical spline can also be viewed as a thin elastic 
beam. It is shown in the Appendix that, in order to have a corner-free 
small deformation cubic spline segment (i.e., homogeneous space curve), 
one should have 

3 
e<----- 

COSQ:’ 
o denoting the direction of tangent vectors at the ends of the segment. The 
segments of pixels thus obtained with this t? are then approximated by the 
modified B-B polynomial. 
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?? a 0 0 

??

Fig. 4. Typical (connected and nonconnected) homogeneous segments 

4.2.2. Segment Geometry and Bit Requirements 

Each row (or column) of pixels in the image is a collection of homo- 
geneous segments. The homogeneous segments obtained in the previous 
section are either straight line segments or arcs, or a combination of them. 
Further, the pixel segments in a particular row may or may not be con- 
nected to the segments in the just preceding row. Two segments in two 
successive rows are connected in the z-y projection plane if their end points 
are connected. This means that only three different connections are possi- 
ble. ‘I’he end of a segment s, with position vector (i, j) in the ith row is 
connected to a segment s,_l in the preceding row if 

(i,j) ~5 {(i - l,j), (i - l,.i + 1). (i ~ l%:j ~ 1)) 

‘I’wo individually homogeneous segments in two successive rows together 
a.re called homogeneous if the column-wise differences between successive 
pixels are all less than B. Similar definition holds for two successive ho- 
mogeneous columns. We consider those homogeneous segments for which 
t,heir end point difference also is less than H. With t,his principle, wr get 
the following four different kinds of segmentls in a row (or a co11m~1~): 

connected and homogeneous segment (CH) 
connected and not homogeneous segment (C-NH) 
nonconnected and homogeneous segment (NC-H) 
nonconnected and not homogeneous segment (NC-NH) 

Figure 4 shows the nature of typical homogeneous (connected and non- 
connected) segments. 

Since the approximation scheme is restricted to the scan direction (either 
horizontal or vertical), a connect,ed vertical line of one or two pixel width 
will produce a single-pixel- (SP) or two-pixel- (TP) long segment, and they 
are also taken as valid segments in the coding algorithm. Successive three 
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segments of one pixel length or a single pixel followed by a two-pixel-long 
segment, or vice versa, is replaced by an arc segment. In all other cases, 
single-pixel or two-pixel-long segments are merged to the nearest segment. 
Note further that a (SP) or a (TP) segment may or may not be connected, 
and they can also maintain a column-wise difference less than 0 in its 
value from the preceding one. Therefore, for a single-pixel segment from 
the above nomenclature we get CHSP, C-NHSP, NC-HSP, NC-NHSP type 
of segments, and for a two-pixel-long segment we get CHTP, C-NHTP, 
NC-HTP, and NC-NHTP type of segments. With the above geometry 
of segments, it is clear that a CHSP segment requires minimum bits of 
information, while NC-NH arc requires maximum bits of information. For 
two homogeneous arc segments (connected or nonconnected), one arc can 
always be found from the other provided we know one of the arcs and 
a difference vector with the differences at known points. This difference 
vector n can be taken as 

A= 

where al, a2, and a3 are the known points on an arc, and bl, b2, and b3 are 
the points on an unknown arc, where the differences are considered. 

Figure 4 shows two such arcs. For a CH arc, we therefore need 2 bits 
for the end connection, 3 x 3, i.e., 9 bits for the pixel intensity differences, 
and 3 more bits for its identity, so altogether 14 bits. For a NC-NH arc, 
the number of bits is log, N + 3 log, L + 3 for an M x N and L-level image, 
where log, N bits of information are required for the length of the segment, 
and 3 log, L bits for pixel intensities of the three points of the arc. For all 
other segments, bit requirements are given in Table 2. 

4.3. DISCRIMINATING FEATURES OF THE ALGORITHMS 

For Algorithm 1: 

?? Segmentation of pixels in row (or column) does not need any sepa- 
rate algorithm. The approximation scheme itself selects the specific 
segments. 

?? The method of approximation depends on the selection of emax and 
Emin. The values of these parameters are the same for all segments in 
the image. The resulting performance in reconstruction, therefore, is 
parameter dependent. 

?? For large E,~~~, the possibility of the long homogeneous segments of 
pixels for satisfying the approximation criterion increases. This may 
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TABLE 2 
Bit Requirements for Different Segments 

Segment Nature Bit Requirement Segment Nature Bit Requirement 

(-J-H line segments 
C-H arc segment 
CHSP 
CHTI’ 

NC-H line segment 
NC-H arc segment 
NC-HSP 
NC-HTP 

11 
14 

7 
10 

3 + log, N 
12 + log, N 

5 + log2 N 
8 + loga N 

C-NH line segment 
C-NH arc segment 

C-NHSP 
C-NlITP 

NCNH line segment 
NCNH arc segment 

NC-NHSP 
NC-NHTP 

5 + 2 log,, 
5 + 3 log, I, 
4 + log2 1, 
4 + 2 logr, 

3 + log, N + 2 log, L 
3 + log, N + 3 logz I, 
2 + log, N + logz I, 
2 + log, N + 2 logL I, 

introduce visual disparity between the original and the reconstruct,ed 
segments. This, in turn, may affect the overall picture quality. 

For Algorithm 2: 

?? A separate algorithm selects only those segments which are homoge- 
neous in some cases. For this, an image has been considered as an 
intensity surface and the homogeneity concept of pixel segments has 
been viewed as a small segment space curve on this intensity surface. 

?? Different homogeneous segments in an image are approximated with 
different values of c,,,ax, which are determined automatically in the 
process of approximation. The performance of the algorithm. there- 
fore, does not depend on E,,,, as in Algorithm 1. 

?? Since the approximation is done over the homogeneous segments of 
pixels, low values of E,,, are able to approximate all the segments. 
This, in turn, significantly reduces the smearing effect. 

5. R.EGENERATION 

Reconstruction of the image during decoding is done using the quadratic 
B-B polynomial. We use here the recursive computation algorithm based 
on Newton’s forward difference scheme as described in [a]. Let y = nt2 + 
bt + c be a polynomial representation of (4), where the constant parameters 
(I,, 0, and c are determined by the three pixels (two end pixels and one 
mid pixel) of the arc segment. The usual Newton’s method of evaluating 
the polynomial results in multiplications and does not make use of the 
previously computed values to compute new values. 

Assume the parameter t ranges from 0 to 1. Let the incremental value 
he q. Then the corresponding y values will be c, aq” + bq + c, 4aq2 + 2bq + c, 
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9aq2 + 3aq + C, . . It can be observed from [2] that 

a’ylj = 2aq2 and yj+2 ~ 2~,+~ + y3 = 2aq2, ,j > 0. 

This leads to the recurrence formula 

Y2 = 2Y1 - YO + 2aq2 (15) 

that involves just three additions to get the next value from the two pre- 
ceding values at hand. 

Since the gray segment size is known, the increment q can be obtained 
from 

1 
4= segment size - 1’ 

The regenerated gray value y2 can therefore be determined from (15). 

6. RESULTS AND DISCUSSION 

An attempt is made here to demonstrate an application of one-dimensional 
quadratic Bezier-Bernstein polynomial approximation in coding gray-tone 
images. Drawbacks in using the conventional way of approximation have 
been examined and a modification is then introduced in order to make 
it useful in image data compression. Based on the modified concept, two 
different algorithms have been formulated. 

Note that Algorithm 1 may produce smearing for large values of emax, 
because with the increase in the value of efnaxr the possibility of the long 
homogeneous segments of pixels for satisfying the approximation criterion 
increases. As a result, visual disparity may arise. However, this smearing 
is almost absent in Algorithm 2. Also, the picture quality and the com- 
pression ratio are better compared to those in Algorithm 1. It is seen from 
Table 3 that the compression ratio is of the order of 0.8 bit/pixel. 

The approximation technique described here is different from the con- 
ventional least-square method of approximation. Instead of minimizing 
t,he global squared sum of errors, it controls an absolute maximum error 
for each data point. It should be noticed in this context that if the pix- 
els of a segment have low intensity variation, then the techniques based 
on conventional quadratic least-square and the quadratic B-B polynomial 
approximation will produce the same result. Since the proposed method 
of approximation controls an absolute local error instead of global sum of 
errors, it is expected that even for moderate variation of intensity within 
data points, the proposed method will produce better results. Also, given 
an error term, the conventional least-square technique does not ensure that 
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TABLE 3 
Results 

Images 

Algorithm 1 Algorithm 2 
Mode of ComRp;Fosion Mode of 
Approx. tmax Images Approx. 

ComRp;;Gon 

Fig. 7b row-wise 6 
Fig. 7c _> 10 
Fig. 7d >> 14 

Fig. Xb row-wise 4 
Fig. Xc .1 6 
Fig. Xd 1, 8 

Fig. Oh row-wise 4 
Fig. $1~ ,> 5 
Fie. ‘3d 6 

4.87 
6.04 Fig. 10a row-wise 6.33 
7.32 

3.80 
4.44 Fig. lob row-wise 6.58 
4.76 

2.34 
2.54 Fig. 1Oc row-wise 3.80 
2.82 

0.6- 

Fig. 5. Behavior of weighting (blending) functions for a cubic spline 

all the data points will satisfy the error criterion, whereas in the proposed 
method this is not the case. Furthermore, it is not necessary to compute 
any functional distance (unlike the least-square technique (51) to justify 
the goodness of approximation because the error term itself quantifies this. 

Note further that our intention here is to demonstrate an application 
of one-dimensional B-B polynomial in the scan direction for image data 
compression. Since the algorithms consider scanning in only one direction, 
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Y .L a 
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(01 O I 1.0 

1.0r 

(d) ’ 
1.0 

I 

Fig. 6. Effect of tangent vector magnitude on cubic spline segment shape a = : (a) a; 

(b) 4; (c) 1: (d) &; (e) $. 
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Fig. 7. (a) Input saturn image. (b)-(d) Regenerated outprlt images with (b) c,~,%~ = ti. 
((,I fIllrlx = 10. and (d) enlax = I4 by Algorithm 1. 

the scheme is fast and simple in hardware implementation. However, it, is 
needless to mention that the two-dimensional approximation always pro- 
vides a better compression ratio than the corresponding one-dimensional 
approximation. 



S. BISWAS AND S. K. PAL 

(a) (b) 

Cc) Cd) 
Fig. 8. (a) Input biplane image. (b)-(d) Regenerated output images with (b) tmax = 4, 
(c) tmax = 6, and (d) tmax = 8 by Algorithm 1. 

APPENDIX 

We know that for small deformation, the Euler equation for bending 
moment M(x) of a beam can be written as 

M(z) = y1 
R(rc)’ 

where l/R(z) = k(z) z z”(x) [from (14)]. Y is the Young’s modulus 
depending on the material of the beam, I is the moment of inertia for the 
cross section of the beam, and R(x) is the radius of curvature of the beam. 
Assuming simple supports, the bending moment is known to vary linearly 
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(h) 

Fig. 5). (a) Input Lincoln image. (b)-(d) K. g e enerated olltput images with (b) ttllaX = -1, 
CC) tIllnx = 5. and cmax = 6 by Algorithm 1. 

[G], FL& we therefore put M(z) = nx t b. With this. z”(:~:) = ((KC + b)/YI. 
which yields 

This equation indicates that a small deformation curve can always be reprc- 
sented by a cubic spline curve. In the image plane, a homogeneous segment 
of pixels can therefore be viewed as a cubic spline segment, and therefore it, 
can be extracted based on the properties of the cubic spline function. As the 
axis of the stable position of all such segments may not always correspond 
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Fig. 10. (a)-(c) Regenerated output images by Algorithm 2. 

to the x-axis, it is wise to consider an axis-independent representation. For 
this, we write 

4 

z(t) = c Bitt-‘, t1 F t L t2, 
i=l 

where tl and t2 are the parameter values at the end positions of a segment 
and Bi’s are the coefficients. Using the boundary conditions, this can be 
written as 

Pl 

z(t) = (74 w2 w3 w4) 
P2 i) Pi . 
Pb 
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1,1, ~12 and pi, ~‘2 are the end positions of the curve and their derivatives 
(tangent vectors) at these positions, respectively, whereas ~u,‘s arr t,he 
weighting functions. 

Figure 5 shows the behavior of these weighting functions. Since the 
difference in magnitudes of ~1 and UQ is more than t,hat of ~13 ;and 71:~: WP 

can say t,hat the end position vectors have more influence than t,hr tangent 
vect,ors on the value of z(t). 

Although the tangent vectors have less influence on t,he value of z(t). 
they have a strong impact, as described below, on the smoothness of z(t) 
[7]. Figure 6 h s ows a single plane symmetric spline segment with constant, 
t,angent, vector direction ((~0) and varying magnitudes (represented by the 
length of the tangent vector). When t,he magnitude is a small fraction of the 
chord length 1, the curve is convex at the ends and lies inside the triangle 
formed by the chord and the tangent vectors. as shown in Figure 6(d). 
With the increase of magnitude, the curve eventually becomes concave at, 
the ends and lies outside the triangle. A corner is developed in the cllrve 
when the tangent vector magnitude is S/cosa [7]. For magnitudes larger 
than this, a loop is formed. This is shown in Figure t;(o). 

From the above behavior, it, is evident that a symmetjric cubic splint: 
curve is distortion- (corner or loop) free or. in other words, smoothness of 
such curves is preserved when the tangent vector magnitude is kept, below 
7nf < 3/ cos N. This feature of tangent vector magnit,ude can therefore 1,~ 
used to segment an arbitrary space curve in the image plane. 
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