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We derive the rapidity evolution equation for the gluon four-point function in the dilute regime
and at small # from the JIMWLK functional equation. We show that beyond leading ovder in N,
the mean field (Gaussian) approximation where the four point function is factorized into a product
of two point functions is violated. We caleulate these factorization breaking terms and show that
they contribute at leading order in N, to correlations of two produced gluons as a function of
their relative rapidity and azinmthal angle, for generic (rather than back-to-back) angles. Such
two-particle correlations have been studied experimentally at the BNL-RHIC collider and could be
serutinized also for pp (and, in the future, also AA) collisions at the CERN-LHC accelerator.

I. PRODUCTION OF TWO CORRELATED PARTICLES

The evolution of QUD amplitudes with energy is described by the Balitsky hierarchy Ll-] or, equivalently, by the
JIMWLK [2] fimctional renormalization group equations. They essentially represent generalizations of the well-known
BFKL equation [3] for the evolution of the two-point function to evolution equations for arbitrary n-point functions
including the non-linear effects due to high gluon density. In the unitarity limit of high parton density the Balitsky
hierarchy is not closed: the derivative of any n-point function with respect to energy (or rapidity ¥ ~ log E) involves
all re-point functions (m = n). In the dilute regime, however, the hierarchy can be truncated to obtain closed evolution
equations for each n-point function.

Prior work in this field has mostly focused on the evolution of the two-point function and its perturbative unita-
rization at high energies. The purpose of this paper & to point out that information on the four-point function could
be obtained from two-particle correlations in inelastic high-enerpy collisions in a certain kinematic regime (see below).
Moreover, we argne that the B-JIMWLEK equation for the four point function can not be factorized as a product of
two BFKL two-point functions. We show that the terms that violate this factorization actually contribute to the
correlation function at leading order in N..

We consider the correlation of two particles with transverse momenta p, . g (we shall drop the subscript L from
now on to avoid cluttering of notation) and rapidities y,, y,, respectively:
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The brackets denote an average over events and the momentum distributions shall be normalized according to
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where {N) is the total average multiplicity per event. It has been argued in ref. [—L] that in the high-energy limit
(but fixed p, q, yp, ¥g) the leading contribution to C(p.q) is due to diagrams such as the one depicted in fig. '], For
these diagrams the hard amplitudes are disconnected but the correlations arise becanse for either one (or both) of
the colliding hadrons the ladders in the amplitude and for the conjugate amplitude connect to the same color source.
These two-point functions are essentially the unintegrated gluon distributions of the hadrons; they are of order 1/g°
when the transverse momentum in the ladder is below the saturation momentum ¢, of the corresponding hadron.
Diagrams such as fig.'T.should dominate C(p, q) even at high {(but not asymptotically high) transverse momentum,
p.g = Gy, provided one considers generic relative angles cosod = p- g/{|pl|gl) (in particular, away from the region
of “back-to-back” jets, ¢ =~ ). On the other hand, at leading order in o, when p,g 3 ), the glion pair should
originate from the same ladder; when the rapidity difference between the two produced gluons and the two beams
are smaller than ~ 1/a, the ladder is DGLAP-ordered and C{p,q) should approach §{p + q) {back-to-back dijet).
When |y, — yy| 2 1/a, the delta-function is smeared out by a BFKL-ordered ladder inbetween the produced gluons
(Mueller-Navelet jets [3]). Instead, here we consider the situation where p, g are somewhat larger than but on the



FIG. 1: Correlated production of two particles with generic relative azimuthal angle at leading order. The blobs dencte
the unintegrated gluon distribution of the projectile A or target B, respectively, and the light-cone momenta are 12 =

(p/vE) explEyp), 212 = (g/v¥) explxy,).

order of (}4; also, |y, — 4| should be significantly smaller than the total rapidity window between the two beams,
and the relative azimuthal angle ¢ < 7. When p and g are on the order of a few GeV it is necessary to subtract the
background of uncorrelated particle pairs to reveal the structure of the correlation function.

We note that two-particle correlations away from the back-to-back regime have recently been measured at the
BNL-RHIC accelerator at 45 = 200 GeV (per colliding mucleon pair) for proton-proton, deuteron-gokd, and pold-gold
collisions E—H For the former systems only a narrow peak doe to frapmentation of the triggered parton have been
observed. For collisions of heavy ions, on the other hand, C{p, ) exhibits a “ridge”-like structure: it is narrow in ¢
but extends over several units in Ay = |y, — ). The absence of measurable correlations in pp and d 4+ Au collisions
may be due to the smallness of the saturation momentum ¢, for a proton or deuteron at RHIC energy. Also, the
measurements from RHIC might be expected to be rather sensitive to the initial conditions for the evolution equation
at moderately small z,. At the higher energies of CERN's LHC collider, the saturation momentum of a proton
measured from the central rapidity region is expected to be on the order of 1 GeV and such correlations could be
sufficiently strong to provide information about the QUD four-point function at small .

The diagrams like the one from fig. [[] arise from factorization of the four-point functions in the field of the projec-
tile/tarpet into products of two-point functions Q (unintegrated ghion distributions). Doing so, however, picks up
only the leading- N, contribution to the four-point function. More generally, C'(p,q) is given by
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In the second step we have assumed factorization of the wave functions of projectile and tarpet. L* denotes the
Lipatov vertex which satisfies
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The expression (G is depicted in fig. B] Here, p(v) denotes the color charpe density per unit transverse area at a
transverse coordinate v and p( k) is its Fourier transform. Its two-point function is related to the unintegrated ploon
distribution ®{z, k*) via

g
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FIG. 2 Correlated production of two particles with generic relative azimuthal angle at leading order. The blobs denote the
ler—pnmt functions for the projectile A or target B, respectively.

With this normalization one recovers the L0 k) -factorization formula for the single-inchsive distribution from the
diagram [Bwith the standard prefactor [g
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where oy is the transverse area of the collision (note that in our convention ®(z, k?) is the density of gluons per unit
transverse area and it therefore contains a factor of 1/0).
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FIG. 3: Single-particle production from & -factorization at leading order. The blobs denote the unintegrated ghion distribution
of the projectile A or target B, respectively.

In a mean field (and large N.) approximation one may factorize the four-point functions from eq. &) into products

of two-point functions,
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where p° = {pp), and the momentum dependence of the two-point function has been suppressed. Then, one of the
nine contractions corresponds to the square of the single-inclusive distribution: contract the first p with the third and
the second with the fourth, for both projectile and target. The color factor for this diagram st
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I Nat including factors of N which will enter once {pp) is expressed through & vie eq. [H).



The remaining eipht diaprams correspond to a color factor of (we take fig. [[las an example)
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Thus, two-particle correlations are suppressed by a factor of N2 —1 as compared to uncorrelated production. For this
reason, the leading-N,. ansatz may not capture the complete result for Cip, q). Below, we derive the evolution
equation for the four-point function from JIMWLEK. We determine the corrections beyond the mean-field and larpe- N,
approximations to the rhs of {10} and show that these corrections contribute at the same order in N, to the correlation
function.

In this regard, we should point out that N, corrections to the two-point function in the dense regime were found to
be exceptionally small [ﬁj] However, this needs not be true for the four-point function. In fact, we shall arpue below
that we do not expect N, corrections to the four-point fimction to be anomalously small, even in the dilute regime.
A verification or fakification of this expectation via exact numerical solutions would be very valuable.

II. EVOLUTION EQUATION FOR THE FOUR-POINT FUNCTION

In this section we present the equation describing the rapidity evolution of the four-point function {af ala u"}
obtained from the JIMWLEK equations, which inchide terms of subleading order in N.. In this context it & more
natural to work in coordinate space, so v, s, 7, § denote transverse coordinates; the four-point function in momentum
space can be obtained by Fourier transform. We also find it preferable to work with the fields o rather than the color
charpe densities p; at leading order and in covariant gauge, they are related in coordinate space by

1
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for a hadron moving at the speed of light in the negative z-direction. Since this field also satisfies AT = 0, the only
non-vanishing field-strength is F~! = —#a. In momentum space we have the relation kZa(k) = gp(k).

The JIMWLK evolution equation for the four-point function to lowest order in the fields can be shown to be (see
appendix)
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This expression neglects contributions from higher n-point functions on the rhs; in the dilute regime, ie. when the
transverse momenta of the prodoced particles are higher than the saturation momenta of the colliding hadrons, this
approximation should be justified.

In order to derive the color structure of corrections beyond the large-N,. approximation, we factorize the product of
four point functions on the rhs of eq. into products of two point functions. This Ganssian approximation reduces
the evolution equation for the four point fimction to a product of two BFKL equations (for the two point function)
plus extra terms which provide corrections to the factorization {I0). The result is
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In [{I8) all terms in Fy, Fy and F5 are to be duplicated with the substitutions indicated explicitly in the brackets.
Second, all terms in By and Fy are to be duplicated again substituting a + b and v + #. Then, all terms in Fy and
F} should be duplicated a third time exchanging ¢ « d and 5 & 5. Furthermore, all terms in F5 are to be duplicated
while letting b +5 ¢ and r + 5 Finally, the terms obtained in the last substitution (only) in Fs should be duplicated
exchanging ¢+ d and r & 7.

The first term in [T} provides the leading-N,. contribution to the four-point function. The second term gives
corrections beyond the large-N,. factorization ([I0). Since an analytic solution to the evolition equation for the four
point function & not within our reach, a numerical investigation of these terms and their magnitude would be extremely
useful. Nevertheless, from
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one might expect that, generically, the solution to this equation has the following color structure:
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(Note that the varions two-point finctions depend on different coordinates /momenta and so each of the above terms
is distinet.) The color factors emerging from the products of the Kronecker tensors have already been discussed above,
eqs. (12 and [I3). However, some of the products of a leading- N, term from the first line (Z0) with a subleading-N..
term from the second line (ZI) ako contribute at the same order N2(N? —1). For example,
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The other products are worked out in appendix[C]

This shows that some of the subleading-N. contributions from the four-point function actually enter C'(p, q) at
leading order, compare to eq. {14). Previous results from the literature H (also see m] are therefore not complete.
Nevertheless, the correlations described here should still extend over several units in [y, — | lﬂ] Quantitative results
for the JIMWLEK four-point function and for the corresponding two-particle correlations '(p, q) as functions of the
transverse momenta p, q, relative azinth ¢ and relative rapidity [y, —,| remain to be found.

In summary, we have argued that two-particke correlations from high-energy collisions may provide some insight into
the QCD four-point function. This should be the case, in particular, when the transverse momenta of the produced
particles are not very much higher than the saturation momenta of the colliding hadrons and when their relative
azimuthal angle is sufficiently less than 7. The narrow (in both azimuthal and polar angle) jet-like fragmentation
peak should sit on top of a “background” which is broader in the relative rapidity |3, — 3,

If expanded in powers of N, the leading contribution to the four-point fimetion is given by the product of two
BFKL two-point functions. However, we find that permine B-JIMWLK subleading-N,. corrections alko appear in the
correlation function C{p.q), at leading non-vanishing order in N.. The correlations mentioned here represent an
interesting opportunity to study the non-trivial structure of the four-point function of the B-JIMWLEK hierarchy,
both theoretically and experimentally.
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Appendix A: Two-point function and BFKL

The JIMWLK {*quuti{:-n for the two-point function is
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We start with the first term from eq. (A2):
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The first term in the bracket from eq. vanishes because §(z — ) VIV, t* = 8(z — )" and (#*)pa = 0. To apply
the same argument to the second term from [AS) we rewrite
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Henee, the second term from [A5) becomes
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The first term again vanishes when @ = z while for the other two terms the divergences at @ = 2z cancel and so they

vanish due to the color structure.

We can therefore simplify eq. (A3) to
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To expand the rhs to second order in the fields we need the following expressions:
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In the step from (A23) to (A2} we have used the rapidity ordering of the fields; hence, only one of the ~ a2 terms
can contribute.
Using these expressions in [ALG) gives
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We now take the expectation valne on the rhs using

{afal) = §%al_

+

{A28)

L3

where a?__ & essentially the unintegrated glion distribution function. This turns eq. (AZ3) into (we drop an overall
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To cast this into the familiar form for the BFKL equation we symmetrize the kernel of the first term and rewrite that
of the second term in a different form:

(A30)

= + - ' . (A31)
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where & = a N, /7.
The other terms from {A20) where o depends on the integration variable z (the BFKL real emissions) turn into
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Appendix B: Four-point function

The JIMWLK equation for the four-point function is
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We hegin with the first term. The square bracket can be taken over from eq. {A3), and may also be written in the
form

& d*z 1 e
- s iy 1% :
&urﬂiy = __fi"_l.l ﬂl{I— :I—[WW [Lz i'rﬁ"] {B'{:I
We also need
_—Irx:‘fu?nﬁu‘_—l = ﬁ" ﬁ,r}_f-rt“.‘rx*I + 5” n afal + ﬂ:‘{ y O CE alad + J'I‘r yrx“nf'rf.‘ (B4)
ey

The first term on the rhs of {BZ) becomes
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To linear order in the fields,
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This is the final result for the first term from (B2). In the next section [BI]we will simplify this further by taking the
expectation value with a Gaussian weight.
We now turn to the second term from eq. (B2). With 1}‘1‘; = ’TI:: we find
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The expansion of ﬂg in powers of the field starts at second order. From {A3),
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We note thut the two terms o exhibit different ordering in rapidity as they H.l'l‘i{-" from the expansion of V. and V1
to order g%, respectively. For what follows, we combine them into a single ~ a? term which shows up no matter how

rapidities are ordered. Using (BL1) in m we obtain
d*2 {fﬂmf}'m[r (r—z)-(r—
(r—z)3(r -

i ke

e et P |
- — ol nzn\,-.+n=n]n:_,‘n§

*
-

i
e Pl
_—
=~
®
=
1=

L]

tal —atal + ata ‘r] abal

+
=
~
L
I
=~

|

(r—

o frmaf_,rxd' {T == ::I 5 {S —
(r—

{

,_,
=
=

".rx{ —atal rfrr'f + ol rx‘r] alat

a

+ fmdr_ffm{ ]_rt al —ofal —afal +a® u*r] g

:{r z

z

td
-
3=
—
n
']
pol— b | BS|

Tz
T — ,
f. fanbyfrd = [rtif_rx{ —atal —atn ! +n‘:n£] ot

(i

+ frr:rf,l'udg: ;:j:ﬁ{j{;' :Il [a:a;':—n:’n‘r af ﬂ +at ﬂr] ﬂf_,lf_r_} . (B12)

This is the final result for the second term from (B2Z). In the next section we compute its expectation value for a
Ganssian weight.

1. Gaussian approximation

To simplify the expressions further, we assume that the expectation value of the four-point function on the rhs of
the evolution equation is taken with a Gaussian weight so that it is given by a sum over all possible Wick contractions:

{ofalataly

= {mpery Yala®) + (aal) (afal + {ala) (alat) (B13)
P 45{”451:": 2_*(11,—_.;4-45“& rd' ‘3 ¥__+6ud'&brﬂ .|"_|:2 {Blilj

T—5 r—a 1

where we used {A28). The above factorization into two-point functions reproduces the evolution of the four-point
function at leading order in N.. The lhs of (B2} then becomes

d},{ﬁnﬁbﬂ: } — 541:‘51:": ( F—#‘,;ifﬂg—" +n3_"% tg—i) {}315:'
+ 6411!6:;1]' a iﬂﬁ + &2 d ﬂﬁ {Blﬁj
L& dY r—F =7 d}/ E—§
i i
+ o5 (a2 et et ra? ) (B17)

We continue to analyze only one color channel corresponding to the first term ~ 856" (the others are similar). The
two-point functions satisfy the BFKL equation and therefore

d _E_||' N, (r— 3:"3 ,-_,_.2 0‘2
2 a . . 5 i B
e ey e {W s —at.. —al_.-+a] + o oy
i T‘ . ¥:|‘2 o2 a{ﬂ
2 2 2 3 5 5 2 "
(t,._sﬁﬂ'r'-_i -— fﬂzﬂ { 7 _' {g — :Iﬁ [ﬂ!-;.__-'.: — gy — g + ﬂ:ﬂ] + ETJ} [ PR {Bl"'}:l
Thus, m turns into
T _gﬁN;_. fdg_ (r— 5)2 (7 — ) g
d}fﬂ-f._,‘m-._rz B (27)3 i S T + 7= 225 — 2)2 B
ﬂg = ﬂﬁ (r—s) i 5 x
+|:2 z2 _{T_qﬁ{q_,e{ r—z+ﬂ“_z_'|'1ﬂ):|(tr__‘7
2

e a .._.2
g oD @ ral—a)]ar.) (B20)
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At leading order in N, the evolution of the four-point function should be determined by the BFKL evolution of the
two-point function, as given in the previous equation [phs similar terms from eqs. (BIGIBIT)|. In what follows, we
verify this explicitly from the full JIMWLEK evolution equation, eq. plus (BIZ). However, we also derive the
contributions which are subleading in N

a Virtwal terms from JIMWLK

Forming pairwise contractions on eq. (B8} gives

T /2|

5:11?&:.‘4]’ —4 &E—F'ﬂg—.-? ﬂg—fﬂi—i £ HE—:'&E—E i &3— P 1 &E—T E—:
z2 (r—z) (r—z) (8 —z) (8 —2z)

g gl [ rﬁ—nﬂ%—ﬁ ﬂg—mng—i HE—#’QE—R &E— :'rtr?—E &E—rﬁﬂ?—z
o '5 -1 + 2 = a
- z) (s —2z) (8—2z)

aedgh | —4—= (B21)

All of these terms will cancel against corresponding pieces from eq. ([B1Z).
We organize the virtual contributions {where none of the fields depends on the integration variable z) from eq. (B1Z)
according to the various possible contractions. The term involving of _ o2 _, i

i = crie g f el pee g Fd [ 1 I ik {T_'i":lg g
o [ e [ e - e
2 fwmaf_,l'x::&r:fﬁbd [ 1 L 1 2 {T B S:IQ |
Lr—2z)2  (s—2)2 (r—z)%s—z)]
R _,I'Kdﬁm:ﬁbf [ 1 1 o) {T — E:Ii ]
e (F—2F  G-2° (r-22G-27
by p e puf ped [ 1 1 . {3—1"‘)2 |
MR (e e e e ]
i : 2 -
+ fr:r:lrf_,l'mf&:u:ﬁrf 3 1 e 1 - {3 e 'T':|
L(3—z0  (F—z)F (5—2)%(F —z)?]
o fﬁm.'ffmf&nrﬁbf [ 1 o 1 o {3—3’)2 -}&2 ﬂ? - {}322]
(G- TG Goare—a ) e
- yﬁ IPE { e fdrl [ 1 1 . {T T f'ji :|
ol et [ o R e i o
ar g pld [ 1 1 _ {T_ S:IQ ]
R e R P R ey -
= s N
+ fr.'r:uf{nﬂf 1 Rt 1 {T' = S:|
Lr—2F " F-2)F (r—2f(3-2)°
F fdrdrfuru: {S_l::l-z + {T _l::lz {g _{-'::I;{::Ii 1:|‘2
ar e gl r 1 1 {S_T:IE :
M [ e e S e )
are plred [ 1 1 _ {S_ 'E]E | } H‘E ﬂ? - Bo:
RN | ey e e )

C ol [ e[ o _ed ]
{zﬂjﬁf N A TP -2 PG

r—i)? r— &) s — )2 §— a2
= o [{r e R e S e = i R :P] }22 e
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The first term on the first line cancels the corresponding term involving o2 __a?__ from eq. (BZI). The rest of that
line contributes to the rapidity evolution of the four-point function at order O{N_.) and & seen to match the first
line of eq. [BZ0), i.e. the “virtual correction” part of the keading- N, BFKL equation for the four-point function. The
second line in {B24) is a correction which & suppressed by a relative factor of 1/N,..

Along the same lines one finds that the contribution from eq. {B12) involving o _.a2_, is

PO N, ST

22 (r—z2r—2z2 (s—z2)}s—2z)2

— 52 r—&)? s—i)2 F—i)2
i f“.-d-f_-m: [ (r—s) . ( ) i { ) + ( ) :'2] }"IE—\-'-”E .. (B25)

r—z)%s—2)2 (r—2)%s—-22 (s—2)3%r—-22 (s—2z3r—z

The first term on the first line will again cancel with a similar term ~ —N;_.ﬁ“'bq’i*’drx‘f_r._ni_i from the first line of
eq. (3.

Finally, we also list the contribution from eq. {B12) involving o _ a2

[ .,mu.,[i_ ) A
(2m)3 fd‘zu{ d 22 (r—z235—-2)2 (s—zr—2z)2
— 2 i g N 3 _ 72 3 512
SO S P = I | W

T—2PF—27F (r—2P(—2F (@—-zPF—2¢° (@—2P(s—2 Ry

As before, the very first term in this expression will cancel To summarize the results obtained so far: the evolution
equation for the f{:-ur-p{:-int function in mean-field approximation is given by

(B26)

%{&u b(t; (f!} = d}’ {,ﬁ‘” 45M:|'}_f- -;”-, + ‘54&!6:.4]'&2

sl "P:{

fone d (r—7)2 3 (r—#)? (s —7)° (5 — 5)? ] a g
a [ P22 (2222 (-2 —2P  (-2P(s-=2 " :
arb perd fr—s?* =8  (s—7) (E—FF
+ FUF [{r—:]z{s—zjz (r—2z)%5 -2 (5—2)%r — z)? {s—::lg{i"—::l?-]

ard flhrc {T _fji _ {T = S:IE _ {S _fji {.‘?— S:I? :|ﬂ2 “2 }
gy [{r—z)ﬂ{f—:zﬂ r—2P(s—2F @—2P(F—2R | (-2e— 2] ]

The first line, eq. {B27), involves only standard BFKL evolution of the two-point functions and provides the leading-
N, contributions to both real emissions and virtual corrections. These terms can be written in explicit form by using
the BFKL equation for the rapidity evolution for the two-point functions; for example, the first term from that line
is given in (B20). The remaining lines correspond to the subleading (in N,.) contributions to the virtual terms for
JIMWLEK evolution. In the next section, we derive the corresponding real emission terms.

 a2) (B27)

b, Real terms from JIMWLE

We begin with terms which contain only one z-dependent fiekd, as given by the second and third columns in ([B13).
The first line is given by

:maf_,rmb <ﬂ4“ I ;(tf-i-(l u"}fq”} {stj
it f:.mﬂ f_lrrdr
[45""4’5”1 I[rtT e ?'_ )+ geegld I[rt?_ L E_ oyt el )+ aedge! I[a:lr O B e r‘?]] (B29)

= h‘r ﬁubﬁu: { L —z -s 3 + 'u"—r A— ':I + fi'NHfiIﬁ[I' {'&r _,‘H —5F +(I.2,_¢(I?_.‘:| + FINHff-KII' {{lr'—.%ﬂ:—m + ﬂg—i'ﬂ\g—v)ﬂ}]:ﬂ}j
The second plus third terms from the first line of {BIZ) thus becomes

g . 3 1 (i — )2
- B | ({r—::ﬂ T e )
= [‘Mﬁﬁ“bﬁ”]‘{ '|Ig =L E & + O —z&w—.-s:l + f; Kﬂf‘:ﬁh{ﬂr—nug—ﬁ + ﬂ? 2 :I 1 jﬂh“‘f; Kb{ g !E—ns it ”E— "(IE_@:U.]

—.-'s:
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The remaining terms from with one z-dependent field are easily obtained via permutations of color indices and
coordinates. The full result is

1 B (#—7)?
{( —-ﬂ? {T—-ﬂﬂ{i‘—zjﬂ)
e

“E_;:I g f{.m‘fdﬁb{ﬂ? o 2 +(t— _(1 :| +f:fmafrnb{ ;.’ ‘-1_;_5 +'r!-§_3“2_§:|]

r—K z—F ™8 ZE—E

—z
+Q§—' *g E:I+-fbm-fdl“{ Yy e '+ﬂ —g —1--I|+me‘fbm;{ﬂy F;'u-ﬂ_-—-i-+ﬂ§—rrﬂ?_'—i:|]
" 1 n B (8—r)? )
(r—zPf  (5—zP (r—z)s-2z)*
x [Neddd™(ag_,of_, + o _,a7_,) + P fded ool , + ol o )+ o Yoy 0] s +ai g0 )]

BE—EZ T—8 =i

1 1 (s —7)? )

B\ G G- p

ks [*M:.'";“J'ﬁh.{ 1' —"'”'r —5 + HE— zﬂ‘f—i + fUKII'fiIKL'{“? —& + rtri—‘ﬁ z—r :I + ffIKII'FJK*{&_ ﬁﬂz—r' + QE— ns'uz—ﬁ:l]

" ( 1 - 1 (8 —7)? )
F—22 " (F-2P @F-z(5-2)?
X [‘M{."E“L.‘;M{ T —Zrl\' —5 + (t‘i Z ;2 .‘F:I + -fnsbfrﬁ*I{ﬂ'f —'f Z—.'F + rtE "'—f :I + fﬁb-f“rc{:{ T—'F E—T + n?— Krlg 'F:I]

1 1 (8—s)?
Goz2 T2 (o= 2% =27
x [NA ool i bod ot o) F 5 M el jod b olgol o b PP of ol ol g0l -1 H8)

Adding now the terms from eq. [B2Z1) with one z-dependent field, and those from eq. (BIZ) with two z-dependent
fields, leads to the sum of the following two contributions; the terms proportional to N, are given hy

+

2 a - 2
ale ped a, — oy {T - T:I a a a
4%t [ 2 = _{r—ﬂ"-{r—*"-{ﬂ*'_z +rx\,.__=—rt“:|)rx .
a 2 " a
o — i (& — &) P a a a
+ (2 - 0 _ PR (an_.+os_.—aj) | ar_;
e gl [ ﬂz—ﬂ% (s—7) a 2 a
+4%5 22 PR T P (o_.+a; . —ay) |ar_s
) a a 9
50z — O F=—=F oy} 2
(0 e s el ) e,
r 2 a = 2
ad ghe o — Oy (3—7) a a a a
+4%%5 (E = _I[T'—":I G ¢ {nr_z+rtﬁ_z—nﬂ:])n:f__#
a a 3
o, — oy (s—7) a a a a e
+ (E — 1o PPy T {rxi__z + o, —uﬂ:I Oz (B33
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These provide the leading-N,. contributions and correspond to BFKL evolution of the product of two two-point
functions; compare to eq. (B20). The genuine JIMWLK contribution is

{zf:ﬁ f e {

fu rlr fr.'m]' [
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i) ! = ! a_ ot
+ (=~ o) el
are pled T_T:IQ 1 {ﬁ!_f':li “2 “2 B
T [ =2 -220-2)7° {g_33,2+{r_,:,2“_:)2) rs02 s
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This expression {B3d), which is to be added to the rhs of {B27), is our final result for the evolution equation of the
JIMWLEK four-point function for a Gaussian weight. It can be rewritten in more compact form by exploiting some of

the symmetries of {n%atota?), eqs. (TILH).

Appendix C: Color factors

In this appendix, we compute the color factors for the products of a leading-N,. term from the first line (20} with
a subleading- N term from the second line {ZI); color indices from the target side carry a prime and we need to ako

inchide the remaining structure constants from eq. (G, Using the following SU(N,) identities
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