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Abstract

The problem of scattering of surface water waves by 4 horizontal circular cylmder tolally
submerged in decp water is well studicd in the literamure within the framework of lincarized
theory with the remarkable conclusion that a normally incident wave train experiences no
reflection. However, if the cross-section of the cylinder is not circular then it experiences
reflection in general. The present paper studies the case when the cylinder is nol quite
circplar and denves expressions for reflecion and transmission coefficients comect to
order £, where € 15 a measure of simall departure of the cylinder cross-section from circularity.
A simplificd perturbation analysis is employed to derive two independent boundary value
problems {BYF) up to first order in €. The tirst BYF corresponds to the problem of water
wave scattering by a submerged circolar cylinder. The reflection coefficient up to firsl order
and the first order correction wy the transmmissiom coelficient anse in the second BYP in u
naturaf way and are obtzined by 8 spitable use of Green’s integral theorem without sulving
the sccond BVE. Assuming a Fouricr expansion of the shape function, these are cvaluated
approximatcly. It is noticed that for some particular shapes of the cylinder, these vanish,
Also, the numerical resulis for the transmission coefficients up to first order for a nearly
circular cylinder for which the reflection coefficients up to first order vamsh, are given in
tabwlar form, Ty s observed that for many other smooth cylinders, the result for a circular
cylinder that the reflection coefficient vanishes, is also approximarcly valid,

1. Introduction

Assuming linear theory, the two-Jdimensional problems of water wave scattering by
an obstacle present in water admit exact solutions only for a limited few cases, for
example, when the obstacle is in the form of a thin vertical barrier. However, an integral
equation formulation is always possible for obstacles of any geometrical shape by a
Jjudiciouns use of Green’s integral theorem. The resulting integral equation can be
solved approximately by analytical methods in some cases and numerically in most
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cases. There are other procedures available in the literature for tackling these problems
which essentially depend on the geometry of the obstacle. For example, when the
obstacle is it the form of an nhinitely long submenzed cylinder with honizontal axis,
Dean [1] nsed the technique of complex variables and Ursell [9] used the method of
mullipoles wherein 4 system of multipoles are placed at the centre of the cylinder and
the strength of the muoltipoles satisfy an infinite linear system which always possesses
an unique solation. Ogilvie [E] considered some more general simations in which
Urscll's case was included, and used a similar technique to solve it. Lavine [4] later
used an integral equation formulation as mentioned above and considered obliquely
incident wave mains also. They obtained the remarkable conclusion that a normally
incident wave train expernicnces no reflection by the circular cylinder. However if the
obstacle is not in the form of & circular cylinder, the wave train in general experiences
reflection and in principle can be tackled by an integral equation formulation. For an
vhstacle in the form of a nearly circolar cylinder, a simplified perturbation analysis
can be vhlized to handle the problem. A somewhat similar idea of permrbation
dnalysis was used in some recent works involving scattering or radiation of water
waves by nearly vertical barner or plates (sec Mandal and Chakrabarti [6], Mandal
and Kondu |7] and Mandal and Banerjea [5]).

Tn the present paper. we consider water-wave scattering by a submerged nearly
circular cylinder whose axis is horizontal. The aforesaid simplified permcbation
technigue is employed 10 reduce the problem up to first order to two independent
BVPs. The first BVP corresponds to the problem of scattering of a normally incident
wave train by a submerged circular cylinder, and it is studied by Dean [1], Ursell [9],
Ogilvie [8]. Levine [4] by various mathemalical methods as mentioned earlier,

Using a tailored version of Green s integral theorem, based on an idea of Evans [2],
the eflection coefficient up to first order and first order cosrection to transmission
cocfficient are obiained from the second BVE without actually solving it. Approximate
expressions for these guantities are abtained by assuming a general Fourier expansion
of the shupe lunction representing the cross-section of the cylinder. It is found that for
some special shapes, these quantities vanish, Atlso, when ondy a three-term Fourier
expansion of the shape tunction is taken, the reflection coefficient up to first order is
found to vamish, Thus il a nearly circular cylinder has sufficient continuity, then the
Fourier coefficients in the Fourier expansion of the shape function will decay quickly,
and a three-term series might be an excellent approximation to many fairly smooth
cylinders. This implies that for many other smaoth cylinders, the result that the
reflection coefficient vanishes for a circular cylinder, also holds good approximalely.
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2. Formulation of the problem

A rectangular carlesian coordinate system is wsed in which the y-axis is directed
vertically downwards, and the origin lies on the axis of an infinitely long nearly
circular cylinder submerged in desp water with its generators parallel to the z-axis
and f is the depth of its axis below the mean free surface. Tt 15 represented by
r=uafl +ec{M}, (0 = 8 = 27 with x = rsiné, y = r cosd) where ¢ is a2 small
nondimensional parameter and is a measure of small departure of the cylinder cross-
section from circularity, and ¢(#} is a smooth function of #. A time-harmonic surface
waler wave (rain is normally incident on the cylinder from negative x-direction. The
problem is two-dimensional and is independent of z. The motion is assumed to be
irrotational and can be described by a velocity potential. Let the incident wave field
be represented by Relg™(x, ¥)e™™'} where ™ (x, v) is given below and o is the
angular frequency. Assuming linear theory, the motion in the fluid can be described
by the velocity potential Re{¢ (x, y)e |, where ¢ satisfies

=0 in the fluid region, (2.1}
K$+d,=0 ony=—f 2.2)

where K = o /g, g being the gravity;

de_

5 =0 onr=all+e@®} 0=8s<2r {2.3)
1

where r is normal 10 the surface of the cylinder;
V-0 asy — o (2.4)

™ (x, ¥) + RP™(—x, ¥) asx = —0a,

Té™(x, v) as x —» 00, (2.3)

& —

where ¢™(x, y) = ¢ FU¥+OHEs und R and T denote reflection and transmission
coefficients respectively and are to be determined.

3. Method of solution

The condition (2.3} can be approximated to the first order of € as (s¢c Appendix)

i og 1 d de
ir 8

T R L'I:H)E”-l—ﬂl[r}:ﬂ on r =a, (3.1)
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This form of boundary condition suggests that we may assume the following perturb-
ation expansion for ¢{x, ¥}, R and T in terms of € as

Plx, y;€) = dolx, y) + ey (x, ¥) + O},
R = Ry+eR +0(eY), (3.2)
T = Ty+eh +0h.

Substituting (3.2) in (3.1) and following the usoal procedure for straightforward per-
turbation techmique, we find ¢,{x, ¥) and ¢y (x, ¥) to be the solutions of the following
two independent BVPs,

BVPIL  ¢nix, ¥) satisfies
Vigy =0 inyvs—f r=>a,
d
Kl‘,b::-l-;m‘:ﬂ (4131 _}-‘:—_jF.
dy
diy
B = 0 O r =da,
Ve — D as ¥y — 0o,
¢™(x, ¥) + Ro@™(—x,y)  as x — —oo,
o — .
T ™ (x, ¥) 45 X — o0,
BVPIL.  ¢(x, y) satisfies
Vi, =0  iny=—f r=a, (3.3)
ey
A e 4
H¢'1+Ey 0 ony 1 (3.4)
E% =h(® on r=a, ]
14 ey
where h0Yy = oy [C[ﬁ]‘g&—{ﬂ]} {3.6)
with dolf) = dylusing, acosd),
Vi — O as y = 0o, (3.1
Rip™(—x, ¥) as ¥ — —0a,
P B i (3.8)
Tig¢"™{x, ¥) as x — o0,

We note that the BVP I corresponds to the two-dimensional problem of water wave
scattering by an infinitely long horizontal circular cylinder submerged in deep water.
As stated in the introduction this problem is well studied in the literature. In the



iT6 B. M. Mandal and Sedeshna Banerjea [5]

condition (3.5} of BYP II we require the knowledge of ¢ (8. 1t is given by {4]
$o(@) = ™0+ ) a,e™, 0= <2 (3.9)
r=i]

In (3.9} a,’s (n = 1) satisfy the linear systern

Zam.‘{m={—l]’*ﬂ%, e, (3.10)
m=1 &
m4-u
= (el X (A ) _Gmtn =Dt
1) 2(2f) (m—1)!n—1)!
r(Ka)"+ dmen
BCEDICE) [duw F{“'}]u.m‘ i

Kon =0 forallm = 1,

2 i I In 21
R 2 5 2 (i) @ Dy ZHer” [ ¢ %F(.u]:|
2 2N =D {(n=DIP [du w=2Kf
with
o c—p.:
Fi) =f dz (3.11)
0 z— 1
where the path of integration is indented below the pole at z = 1. Ttis also known that
Ry =10, (3.12)
while -
’ e (—1)'(Ka)"
Ty =14 2mie 2% ;ﬂnw (3.13)

and the results are independent of ¢;. The 2, s in (3.13) are determined approximately
by truncating the linear system (3.107.

In order to obtain R, we utilize Evans’ |2] idea of the application of Green's integral
theorem to the harmonic functions ¢ (x, ¥) and gy(x, ¥) in the region bounded by
thelines y = —f, X =x =X, x=X,-f=y=Y;, vy=Y,-X =x = X;
x=—X,—f =y =Y and the cicle ¥ = a, and ultimately make X, ¥ — 00 so that
we find

2
Ry = iaf dn (E)R(8) dB.
i}

After integrating by parts and noting that & = 0, 2 correspond to the same point on
the circle, we see that

2 2
R = —ff [%{ﬂ]} c(8) 484, (3.14)
n o6
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Similarly to obtain T, we apply Green’s intepral theorem to the functions ¢ (x, ¥)
and dy{—x, v} in the same region and ablain

in
K =£af g (— G R(0) d8
2n
= —:f %(B]-ﬁ(—ﬂ} (f)db. {3.15)
]

With the knowledge of ¢y (8} given in (3.9), we find

T
R, = ff c{ﬂ}[{Ka}z exp(—2K flexp{~2i8 —2Ka exp{—if})
o

—2Kaexp{—K[) Znan expl—i(n+ 130} exp{—if — Kaexp(—if)}

=]

+3 3 mnaa, expl-:'l[m+ﬂ]ﬂ]j|dﬂ (3.16}

Mol gl

and
In

T, = iff c(ﬂ}[(ﬂ'a}z eap(—2Kf—-2Kacosd)
0

—2Kaexp(—K[f) Z nd, exp{—Ka cos8) cos[Kasind + (n—1}0)

w=I

ZZ A, eXp{—i (m — nj&}:|d9 (3.17)

m=l n

We now assume a general Fourier expangion of c(f) as

c{f) = %ﬂ + Z [.TP sin p# +rpccspﬁ‘], Q=@ =2x, {3.18)

e=l1

Substituting (3.18) in (3.16) and (3.17) and evaluating the various integrals (see [%],
page 488) we find R, and T as

a1

R —HZ[S +it, [ }} p(— EKfJ-I—an{p—n]amp —a
p=2

nan{Kﬂ}‘” "

- Zexp(- Kf}E T

a=|

} (3.19)
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and

T gni >t [(Kﬂ}z exp(—2K f)1,(2K a)

[Ka}" ° a,(Ka)™r
— exp(—K ) Z +Z‘ (Hp_m”

:r—r.l+l

[Z Y 2mnanautn-s +f.,zn

A=1 m=n+l
+iexp(—2K f)(Ka) [o(2Ka)t — 2exp(— Kf}ruz“{ﬂj”na,,

Ty :r (3.20)

where /,(z) denotes the modified Bessel function of first kind.

The constants, a,, are obtained from the solution of the linear system (3.10) by
truncation and the ¢, and 5,’s are known once the shape function c(€) is given. We
nole that R, is independent of 7, s, and ¢, while T, is independent of s,. This states
that the nearly circular cylinder does not experience any reflection (up to first order)
if it has the shape r = a{l 4 ¢c{#)}, where

(@) = —+¢,¢ln6'+r,t.,mﬁi {3.21;

Again T, is independent of the 5,'s so that if the shape function ¢(f) is of the form
c(f) = Z:‘ll 5p 5in pd, then T, vanishes. These observations give some interesting
physical results discussed below,

4. Discussion
Taking € = 0.001 and 0.0001 we have computed |T| = [Ty + € Ty for the cylinders

r=all +ec(d)}

with

c{f) = Asinf + Bcosd, {4.1)
for B = 0.1 (A being arbitrary), a/f = 0.5 and for various values of Ka between 0.1
and 1.7. A set of representative values is given in Tables 1 and 2.

It is observed from (3.19} that for a sequence of cylinders with cross-sections given
in (4.1), Ry = 0, that is, the reflection coefficient up to first order of €, vanishes. This
implies that |T] = [Ty + €Ti| is nearly equal to unity. This is also reflected in the
numerical results for |T'| in Tables 1 and 2.
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TABLE 1. ¢ = Q00D a/f = (1.5 TABLE 2. € = 00001, aff =10.5.
Ka | 7ul 17| Ka | Tal 17|
01 1000012 1.000012 0o 1000mz2 1000012
0.3 1000549  LOD0S4Y 03  L000540 1000549
05 1.00077%  LOS0TTS 0.5 1.000775 1000775
0.7 LO000421  1.000421 07 1000421 1.000421
100 1000077 LODOOS0 L0 1000077 LOM0076
1.3 1000008 1.000063 1.3 1000309 1.000008
1.5 1400002 1000229 1.5 LO000002  1.O00CO3

_L7 1000000 1.000800 L7 1000000 1000008

Also, it 15 observed from (3.20) that | 7| for these cylinders is independent of 4.
More generally if c(8) = E:“:I 5, 8in pB, then from (3.19} and (3.20) it is found that
f; =0, T, = 0{of course &, = 0). This implies that for the nearly circular cylinders
with the shape function c(#) mentioned above, the transmissivity is totally unaffected
by its noncircularity,

Apgain from Table 1, itis found that for € = 0.001, |T'| does nat differ from | Ty {up
to six decimal places) for Ka < 0.9 where T is the transmission coefficient for the
circular cylinder » = 2. Again |T'| differs from |T;| beyond the fourth decimal place
for Ka lying between 1.0 and 1.3, However for Ka < 1.4 the said difference occurs
at the fourth decimal place.

Also from Table 2, it is found that for € = 0.0001, |T| does not differ from 17|
{up io six decimal places) for Ka = (.9, but for Ka > 1.0, this difference occurs
beyond the fifth decimal places. This shows that the effect of € on |T] 15 not of much
significance for various vajues of the parameter Ka and K f. Thus for a sequence
of nearly circular cylinders whose cross-sections are given in (4.1), the reflection
co¢fficient up to first order vanishes and the transmission coefficient up to first order
does not differ significantly from that of the circular cylinder. It may also be observed
that if a nearly circular cylinder r = a{1 + ec(#)} has sufficient continuity, then the
Fourier coefficients s; and ¢; in (3.18) will decay rapidly with j and a three-term series
as given in (3.21) is a good approximation 10 many fairly smooth ¢ylinders. This
implies that for many smooth nearly circular cylinders, the result that for the circular
cylinder the reflection coefficient vanishes, is approximately valid.

Appendix: Derivation of the condition (3.1)

The condition (2.3} is

s S8

T ] onr=all +ec(®}, =6 <2m (A1)



IR0 B. M. Mandal and Sudeshna Bancrjea [9]

Let & be the angle between the radius vector and a tangent to the curve r = #(8) at
(r, 2}, then

¢ ¢ .

ﬁ = ESIHQ! s ":EE COSCE.
Noting that cota = r'(8)/r onr = all + ec(8)}, we find sina = 1 4+ O(e?) and
COs @ = E{."I(E} + Dl:t‘.z} 50 Lhat

gf i‘:ﬁ i {g] i + Oy on r=afl +ec(}. (A.2)

Expanding 8¢ fdr (r, 8}, ﬂfﬁfﬂﬂ'{n H}I onr = all 4+ £c(@)} about r = a by Taylor
series expansion and using the harmonic properly of ¢, we find from (A.2) that
condition {A.1) is approximately equivalent to

de e

E—e[{ﬂ}—+~£{{9}—-”+0(ﬁl— onr=a
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