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Abstract 

The model considered for the spread of Japanese Encephalitis (JE) in a human population of varying size from a 
reservoir population (pigs, cattle, equines, birds, etc.) through a vector population (particular species of mosquitos) is 
of SIRS (susceptible-infective-recovered-susceptible) type for the human and reservoir populations and SIS 
(susceptible-infective-susceptible) type for the vector population. We have considered the logistic differential 
equation with density-dependent birth rate for the vector population whereas the reservoir population is of constant 
size. We assume that the human population is regulated by the disease. We also assume that there is a constant 
recruitment rate of susceptibles into the human population. We perform an equilibrium and stability analysis to find 
a threshold condition. If the threshold is exceeded, then there is a unique equilibrium with disease present which is 
locally stable to small perturbations and global stability depends on death rates and the ratio of the equilibrium 
population sizes of the infected vector and total human populations. 
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1. Introduction 

Japanese Encephalitis (JE) is a vector-borne viral disease which is transmitted from vertebrate 
reservoir population (pigs, cattle, equines, birds etc.) to susceptible human populations through a 
particular species of mosquito (culicine species namely, Culex vishnui). Man is a dead end of infection, 
transmission of infection from man to man is impossible. JE is a growing and alarming public health 
problem in India. In West Bengal of India since 1973, JE has been almost an annual event in the form of 
an epidemic or a small outbreak engulfing newer and newer rural areas. Every time, the district of 
Burdwan has been the most affected area in West Bengal, probably forming a hyper-endemic zone. No 
study so far has been made on the dynamics of JE spread in the endemic area as far as the authors are 
aware. A regression equation model using a third-order Harmonic Fourier Series having a linear trend 
has been used by some of the present group (Mukhopadhyay et al., 1993) to simulate the pattern of 
monthly  occurrences  o f  JE. 
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The aim of the present study is to investigate the dynamics of this dreaded disease in a 3-population 
system consisting of vector, reservoir and human populations. Our study is based on the consideration 
that the vector and human populations are varying in size whereas the size of the reservoir population is 
fixed and closed. This is because the size of the vector population (mosquito) rapidly changes its size and 
the human population is also subject to frequent death due to fatality of the disease. On the other hand, 
the reservoir population which exhibits no disease symptoms are not usually subject to any fatality due to 
the disease and hence is assumed to be constant in size when the birth rate and death rate are equal (see 
Mena-Lorca and Hethcote, 1992) and there are no fluctuations of the size due to other reasons such as 
emigration, immigration etc. 

We use similar techniques to Hethcote (1976), Anderson and May (1979), Liu et al. (1986,1987), 
Castillo-Chavez et al. (1989), Busenberg and Van den Driessche (1990), Greenhalgh (1990), Hethcote 
and Van den Driessehe (1991), Gao and Hethcote (1992), and Mena-Lorca and Hethcote (1992) in 
constructing as well as analysing the mathematical model. For the global analysis of the model we have 
also used the methods of Tuljapurkar and Semura (1975), Redheffer (1985), and Rinaldi (1990). In 
section 2 we have posed the mathematical model of the dynamics of JE. The criteria for the existence of 
zero (disease-free) and non-zero (disease-present) equilibria have been laid down in section 3. Local and 
global stability properties of the model system have been investigated in sections 4 and 5 respectively. 
Finally, the results have been discussed in section 6. 

2. Mathematical model 

In deriving the model equations, we have first assumed a logistic growth rate for the vector population 
as considered in a SIRS (susceptible-infective-recovered-susceptible) model by Gap and Hethcote 
(1992). There is no immune class in the vector population since it acts as a transmitter of virus only. 
Since the vector population is subject to rapid change, the size is assumed to be varying. There are 
immune classes in both human and reservoir populations as both get infections through the blood system 
and consequently immunity develops in these populations, as shown by their immunity titre level. Since 
there is no fatality in the reservoir population due to the disease, this population has been assumed to be 
constant by taking the birth and death rates equal. Following Castillo-Chavez et al. (1989), it is assumed 
that there is a constant rate of recruitment of new susceptibles in the human population and that the 
number of deaths is proportional to the size in each class. Because of the considerable degree of fatality 
in man due to the disease, the human population must be varying in size and not constant as for the 
reservoir population. Infection is not spread by direct contact between reservoir-reservoir, reservoir-man 
or man-man. It is carried over by mosquitos which play the role of a "transmitter" from infected 
reservoir population to both susceptible reservoir and human populations. Let Vx(t) and V2(t) denote the 
susceptible and infected individuals in vector population; Xl( t ) ,  X2(t) and Xa(t)  denote the susceptible, 
infected and recovered (immune) individuals respectively in human population; Yl(t), Y2(t), and Y3(t) 
denote the susceptible, infected and recovered (immune) individuals respectively in reservoir population. 
We suggest that the dynamics of the transmission of JE then obey the following equations: 

V = Vector 

dr1 
d---'t- = ( a - r V / K  ) V -  a 'V,  - "oYzV1/V + ~V z (2.1) 

dr2 
dt = n Y 2 V 1 / V -  ( a' + ~ ) V  2 (2.2) 

dV 
d--[ = r(1 - V / K ) V  (2.3) 
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Y = Reservoir 

dr1 
d t  = I z l N I  - i z l Y '  - f l IV2Y1 /N~  + f l Y 3  

dY2 
d t  = f l l V 2 Y l / N 1  - (Yl + IXl)Y2 

dY3 
dt  = ~'IY2 - ( f l  +/ / ' l )Y3 

X, N 2 = Human 

dXl 
d t  = lz2 - 13f2Xm -- f l 2 V 2 X l / O 2  + f 2 X 3  

dX2 
d t  = ~ 2 V 2 X 1 / / N 2  -- (Y2 + E -'F" ]~'2)X2 

d t  ~-" ~222  - ( f 2  + ~ +]£t2)X3 

dt =/z2 - /£ '2N2 - e x 2  - ~x3  

where 

Xl ( t )  + g 2 ( t )  +X3( t  ) =U2( t )  

Vl(t ) + V2(t ) - V ( t )  

Yl(t) + Y2(t) + Y3(t) =Nl(cons tan t )  

and the positive rate constants are denoted as 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
(2.12) 
(2.13) 

For vector population (V) 
o~ 
~t 

r 
K 

~7 

= per capita natural birth rate, 
= per capita natural death rate, 
= a - a '  -- per capita growth rate, 
= carrying capacity of environment, 
= per capita loss of infectivity of infected vectors, 
= effective per capita contact rate of infective reservoirs with vector population, 

For  

Yl 
f l  

reservoir population (Y) 
= per capita natural birth (or death) rate, 
= per capita recovery rate of infected reservoirs, 
= per capita loss of immunity rate of recovered reservoirs, 
= effective per capita contact rate of infective vectors with reservoir population, 

For human population (X ,N  2) 
1'2 = the recruitment rate into the susceptible class, 
/~'2 = per capita natural death rate, 
e = excess per capita death rate of infected individuals, 
6 -- excess per capita death rate of recovered individuals, 
Y2 = per capita recovery rate of infected individuals, 
f2 = per capita loss of immunity rate of recovered individuals, 
13 2 = effective per capita contact rate of infective vectors with human population. 
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The parameter r/ is the average number of adequate contacts per unit time of an infective in the 
reservoir population with individuals in the vector population and /31(/32 ) is the average number of 
adequate contacts per unit time of an infective in the vector population with individuals in the reservoir 
(human) population. 

The model is well-posed in the sense that solutions that are initially non-negative remain so. We 
consider the feasible region II -- {(V1, V2, Y2, Y3, Sl,  S2, X3)lgi >-- 0, Y/>__ 0, Vj > 0, i = 1,2,3; j = 1,2; 
EVj(t)= V ( t ) < K ,  E Y / ( t ) = N  1 (=  constant), EXi(t)=N2(t)_<~1,2//~/.'2} and show that it is positively 
invariant for all t > 0. Considering separately the boundary points of l-I where X i = 0, Y~ -- 0 and Vj = 0, 
we see that no solution can exit the feasible region across the boundary. When V 2 = 0 and Y2 -- 0, then 
from Eqs. 2.2 and 2.5, dV2/dt  = O, dY2 /d t  = 0 and from Eqs. 2.6 and 2.8, dYa/d t  < 0 if Y3 > 0 and 
d X 2 / d t  < 0 if X 2 > 0 and hence V 1 = V(t), V 2 • 0; ]I2 = 0, Y3 = 0; X 1 = N2(t), X 2 ~-- 0 ,  X 3 = 0 (where 
Y1 -- N1) be the disease-free solutions in fL At t --, oo, these solutions approach the fixed point (K, 0, 0, 
0,/~2//~'2, 0, 0) in f / i f  the initial size of the vector population is positive. Again, within the interior of I~, 
the right hand sides of Eqs. 2.1-2.10 are continuously differentiable, guarantying uniqueness of solutions 
and hence no solution can cross the boundary points of fl.  

3. Threshold and three equilibria 

The population size of vector (mosquito) approaches an equilibrium size K (carrying capacity) if r > 0 
and initial population size, say, V o > 0. If r -- 0, then population size V(t)  remains at V o and if r < 0, then 
solutions V(t)  with V 0 > K grow to infinity and solutions with V 0 < K decrease to zero. Because of the 
rapidly growing behaviour of the vector population and the density-dependent restricted population 
growth, it is less common to consider r _< 0. The disease will spread in the vector-reservoir system if 
initially (i.e., at t -- 0), dVz /d t  > 0 and dY2 /d t  > O. Let V 1 -- V and Y1 ~ N1 at t -- 0. Hence from Eqs. 2.2 
and 2.5, we have dV2/dt l t .o  > 0 which implies that II2 > (d' / ' l )V2 and dY2/dtl t_o > 0 which implies that 
Y2 < (/31/d)V2, where d' = a '  + ¢ and d = Yl +/Zl- These two inequalities give R 0 = RIR 2 > 1, where 
R1 =/31/d' and R 2 = rl /d.  

The parameter/31(17) is the average number of adequate contacts per unit time of an infective in the 
vector (reservoir) population with individuals in the reservoir (vector) population. Since 1/d '  ( I / d )  is the 
death-adjusted average period of infectivity for an individual in the vector (reservoir) population, 
R 1 =/31/d' (R 2 = T / d ) ,  which is called the infectious contact number, is the average number of the 
reservoir (vector) population (both susceptibles and others) contacted by an infective vector (reservoir) 
individual during its infectious period. Therefore, R o is the product of the two infectious contact 
numbers R 1 and R 2. We shall show in the following theorem that unity is the threshold value of R 0. 

Using Eqs. 2.11-2.13, the system 2.1-2.10 can be reduced to 

dVl 
dt 

dt 

dY2 
dt 

dt  

= ( a  - r V / K ) V -  a 'V  1 - ~qY2V1/V+ ¢V 2 (3.1) 

- -  = rlY2Vx/V - d 'V  2 (3.2) 

----"/31V2(N1 - Y2 - Y3)/N1 - d Y 2  (3.3) 

-- vlY2 - fYa  (3.4) 
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dXa 
dt = I1"2 - g2X1 -- f l2V2X1/g2 +fEX3 (3.5) 

dX2 
dt = [~2V2 X 1 / N 2  - b l X2  (3.6) 

dX3 
= 72X2 - b 2 X  3 (3.7) 

dt 

where, 

f = f l + l X l ,  b l = Y 2 + e + g . ' 2 ,  b 2 = f 2 + 6 + i z ' 2  (3.8) 

Theorem 3.1. There are three possible equilibria for the system 3.1-3.7. 

(i) R 0 < 1: 

There are two equilibria, say, Po---(0, O, O, O, iz2/iz' 2, O, O) and P'o = (K,  O, O, O, / z2 /g  2, 0, 0), which 
represent disease-free equilibria. 

(ii) R 0 > 1: 

In addition to the two equilibria defined in (i), there is a third possible unique equilibrium with disease 
present, say, P1 = (VI*, V2 ° , Y2*, Ys*, XI*, X ~  , X ~  ), and here the equilibrium value of  human population, 
say, N2*, satisfies the equation 

~bb3N2" - [0(b2 + 72) + blb2N2* ]F(N2" ) = 0, 

where 

0=fl2V2 *, ba = 6y2 + eb 2, F(  N2* ) = lz2 - ~2N2* , 

and V2* = 0/132 satisfies the following equation 

RoV2*(d'K~ + NIn)  = K N I ~ ( R o -  !) ,  where ~= 1 + y , / f .  

Proof. We obtain the equilibrium solutions by setting the time derivatives on the right hand sides of 
Eqs. 3.1-3.7 to zero. We denote the equilibrium values of I"1, V 2, V, Y2, I"3, X1, X2, X3, and N 2 by I7" 1, 
122, l)', I~2, I~3, )(1, X2, )(3, and /V2 (where I~ 1 -- N 1 - I~ 2 - Y3) respectively. From Eq. 2.3, we obtain 

dV 
dt = r ( 1 -  V / K ) V .  

= 12= Then d12/dt 0 implies either 12= 0 or K. 
^ ^ ^ ^ ^ X 3  ^ ^ Case (a): Let 12-- 0. Then, it is trivial to show that V I = V 2 -- 0; II2 -- II3 = 0; X z = = O, X~ = N2 = 

 '2/u'2 (where = U0.  

Case (b): Let 12= K. 
From Eq. 3.1, 

From Eq. 3.2, 

v2=  ,7 

(3.9) 

(3.10) 
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From Eqs. 3.9 and 3.10, 

Y2 ffi d' ICI~'2/ [ ~l ( K -122 ) ] 

From Eq. 3.4, 
^ ^ 

I"3 = (Y , / f )Y2;  
From Eqs. 3.3 and 3.12, 

122( ^ fll 1 -~ =dY 2 
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From Eqs. 3.11 and 3.13, we obtain 

122[ KNI~(Ro-  1) - Ro122(d'r: + NI~)] •0 

Eq. 3.14 implies that either 122 = 0 or 

^ KN  (R0- 1) 
V2= 

Ro(d ' r  ~ + N1W ) " 

Since 122 > 0, the latter value of 122 is possible if R 0 >__ 1. 122 ffi 0 implies 

^ ^ ^ ^ ^ ^ ^ ^ 

VI -- K , V2-.~-0; Y2 ffi Y3 ffi O; X l  -~ N2 -~ l.t2/i.t ' ,  X2ffiX3ffi0 

From Eq. 3.6, 

From Eq. 3.7, 

= (  Jb2), 2, 
From Eqs. 3.5 and 3.15-3.16, we have 

X1 = [ ~2b2 - ( bib2 - f23~2) 9~2 ]/(/~'2b2) 

Using Eqs. 3.16 and 3.17 in Eq. 2.11, we obtain 
^ ^ 

X2=b2F(N2)/b3 

From Eqs. 3.15 and 3.18, we have 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(where l~ 1 -- N 1). 

(3.15) 

(3.16) 

(3.17) 

(3 .18)  

^ 1220 ) (3 19) X1 = bib2 2 3 

Again, putting the values of XI, 9~2 and "~3 from Eqs. 3.16, 3.18 and 3.19 in F-xl. 2.11, we obtain 

/32122b3/V2 - {/32122( b2 + 3'2) + b,b21V2}F(N2) = 0 (3.20) 
^ ^ . ^ 

Since F ( N  2) = l.I, 2 -/,ff2N2, F_~. 3.20 m a quadratic equation of N 2. Since LH.S. of Eq. 3.20 takes values 
{ -/32V2/~2(3, 2 + b2)} and {/32V2b3t~2/'/~'2} at N 2 --- 0 and N 2 --/z2//~' 2 respectively, Eq. 3.20 has a unique 
positive root, say, N 2 --- N2* when V 2 -- V 2. > 0. Therefore, we get the unique non-zero equilibrium P1 
(i.e., disease-present) from Eqs. 3.9, 3.11, 3.12, 3.14, 3.16 and 3.18-3.20 when R 0 > 1. This completes the 
proof. 

Before going for stability analysis of the system we shall first state some definitions and theorems 
relating to the stability of matrices (see Berman and Hershkowitz, 1983; Rinaldi, 1990): 

~¢--{A; there exists a positive diagonal matrix W such that WA + A r W  is positive-definite} - the 
diagonally (positive) stable matrices, 
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T'= {A; there exists a positive diagonal matrix W such that WA + A r W  
Volterra-Lyapunov (negative) stable matrices, 

-- {A; all the signed principal minors of A, i.e., the quantities 

Mil ..... ik= ( - 1 )  kdetAil  ..... ik 

for any subset 1 < i 1 < • . .  < i k < n of the integers {1,2, • . .  ,nL are positive} 

is negative-definite} - 

Theorem 3.2. Let A be a n × n matrix and A is reducible to a matrix of  the form 

[ 01 
where the blocks A 1 and A 3 are square. Then A ~ s¢ i f  A 1 ~ ~ and A 3 ~ ~'. 

Theorem 3.3 (Lyapunov, 1892). Let A be a n X n real matrix. Then all the eigenvalues o f  a matrix A have 
negative (positive) real parts i f  and only if  there exists a symmetric positive-definite matrix H such that 

HA + A r H  

is negative (positive) definite. Such a matrix A is said to be negative (positive) stable. 

4. Local stability 

4.1. Local stability o f  zero-equilibria 

It is trivial to prove that one of the two zero (i.e., disease-free) equilibria, P0 = (0, 0, 0, 0,/~2//z'2, 0, 
0,), which always exists, is saddle. We shall now show that another disease-free equilibrium P6-- (K, 0, 0, 
0,/~2//z'2, 0, 0), which also always exists, is locally asymptotically stable (I_AS) if R 0 < 1 and unstable if 
R o > 1: 

Using Eqs. 2.11-2.13, we obtain the following Jacobian matrix for the system 3.1-3.7 at P~ 

J10 0 ], 

J°-- [J o J3o 
where 

0 A 
J30 = 0 - b  1 0 , 

0 'Y2 -b2  

J2o = /32 0 , 
0 0 

and 

- r  
0 

Jlo -- 0 

0 

- d '  

/31 - d  

0 Yl 
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We see that all the eigenvalues of the matrix J3o are negative whereas the characteristic equation of 
the matrix Jlo is 

(A + r ) ( A  + f ) [ A  2+ (d  +d ' )A + d d ' ( 1 - R o )  ] = 0  

Since r > 0, all the eigenvalues of the matrix Jlo are negative real parts if and only if R o < 1. Applying 
Theorems 3.2 and 3.3, we can prove that Jo E 7/" if R o < 1 and Jo q~ ~;" if R o > 1 i.e., the zero (i.e., 
disease-free) equilibrium which is P~ is LAS if R o < 1 and unstable if R o > 1. 

4.2. Local stability of the non-zero equilibrium 

Using Eqs. 2.11-2.13, we can obtain the following Jacobian matrix for the system 3.1-3.7 at the 
non-zero equilibrium point P1 = (VI*, V2*, Y2*, Y3*, Xl*, X2*, X3* ) as 

where 

- ( O '  + t~'2N; ) I N ;  

J3 = ¢'/N2" 
0 

(by usinl Eq. 3.15) 

0 - / 3 2 X l ' / N ;  
J2--- 0 /32Xl*/N2* 

0 0 

- (r  + ,la2a'2) 

rla2a' 2 
J l= 0 

0 

(by using Eq. 3.12), where 

b I X ; / N ;  ( b l X  ~ + A N ~  ) I N ;  ] 

- b , ( X ;  +N2*)/N2* - b , X ; / N  2" J, 
Y2 -b2 

0 , 

0 

( d'  + ,lala'2) - r 

- ( d ' +  ~ala'2) 

/31(1 - ~a3d2) 
0 

-~la 1 0 ] 
~a 1 0 

- ( d  +/31a2a3) -/31f2a 3 
T1 

a, = Vi*/K, a~ = Yj*/K (i = 1,2;j = 1 . . . .  3,), 

Then the characteristic equation of the matrix J3 is 

Aa +Pl  A2 +P2 A +P3 = 0, 

where 

Pl = [~b+ (b 1 +b  2 +I~'2)N2*]/N2", 

P2 = [~b'(bl + b2) + (b2 + ~'2 + 1"~'2)blX; + {b,b2 +/~'2(bl + b2)}N2" ] / N ; ,  

P3 = [{b3 +/-~'2(b2 + Y2)}O' + I'L'2bl{b2N; + (b2 + ~'2) X2 " }] /N~.  

Let D 1 =pl, D 2 =PlP2 --P3" We shall now show that D 2 > 0. 
Now, 

D 2 = [ q l N ~ 2 +  q 2 N ~  + q 3 ] / N ~  2, 

a 3 = K I N  1 and ~b' = ~b - b lX  ~ (4.21) 
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where, 

and 

q l  =" (bl + b 2 ) [ b l b 2 + l ' c ' 2 ( b l  + b2 +/-¢'2)], 

q2 = [ b l b 2 + l . t ' 2 ( b  1 + b2)]~b + [b2 +f2T2 + (b 1 + b2)(b2 +/.t'2)]qt' 

+[~'~ + (bl + bE)(b2 + T2 + P"2)]b,X;, 

q3 = [(b, + b2)qt' + (b 2 + Y2 + IZ'2)b,X~ ]0. 
In the case of the matrix J1, its characteristic polynomial is det(J 1 - a I ) .  After elementary row and 
column operation of the matrix (J1 - A I )  and finally expanding det(J 1 - A I ) ,  we obtain the following 
characteristic equation: 

=0, 

where 

P'I = d + d' + f + flla2a3 + ~7a'2, 

P'2 = f (  d + a ' )  + na'2( d + f ) + flla2a3(Yl + f ) + f l la2a3( d'  + 71a'2) , 

P'3 = df*la'2 + f l la2a3( d'  + 'r/a2) (T1 + f )  

(using R0al(1 - ~aaa' 2) = 1, which we obtain from Eqs. 3.10, 3.13 and 4.21). 
t t t t _ p t  Let D ~ - P l  and D 2 = P I P 2  3. 

Now, 

D'  2 = ( d + f + f l la2a3)[  f (  d + d ' )  + ~Ta~( d + f )  + ~1a2aa(T1 + f )  + f l la2a3( d' + ~Ta~)] 

+ dd'f+ (d' + na'2)[d'f+ na'2(d ÷ f )  + f l ,a2a3(d '  + ~/a~)] 

Since r, Pi, qi and p~ (i-- 1,2,3) are greater than zero, Di and D~ are greater than zero. Therefore, by 
applying the Routh-Hurwitz's Theorem (see Wylie and Barrett, 1989), we can say that all the roots of 
the characteristic equations of the matrices J1 and J3 have negative real parts. Again, by applying 
Theorems 3.2 and 3.3, we see that J ~  ~'. Hence, the non-zero equilibrium P1 (when it exists, i.e., 
R 0 > 1) is LAS. 

5. Global stability of the equilibria 

First, we shall state two theorems and then we shall study the global stability property of our system. 
The inequality WA > 0 means that WA + A T W  is positive-definite, where W is a positive diagonal matrix 
and A r is the transpose of the matrix A. 

Theorem 5.1 (Cross, 1978). Let  A be a 2 X2 matrix. Then A ~ ~/¢* A ~ . ~ .  

Theorem 5.2 (Redheffer, 1985). Let  A be a non singular n × n matrix, where n > 2, with inverse A - 1 = B 
and  W a positive diagonal n X n matrix. Le t  A *, B *, W * denote the (n - 1) × (n - 1) matrices obtained 
f rom A,  B, W, respectively, deleting the last row and  column. Then: 

(i) i f  WA > O, we mus t  have a , ,  > O, W *A* > O, and W *B * > O; 
(ii) i f  a ,n > O, W *.4 * > O, and W * B * > O, it is possible to choose W i > 0 in such a way that WA > O. 
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We shall now prove that the zero-equilibrium, i.e., disease-free equilibrium, which is P~, is globally 
asymptotically stable (GAS) if R 0 < 1. Consider the function 

V2( t ) Y2(t) 
Ll( t ) --- ~ + d----;'- 

Then its derivative is given by 

d L l ( t  ) d'(1 - (a /a ' )R1)  

dt d 

d(1 - (d ' /d )R2)  ] 
d' Y2 + (R1/N1 + R 2 / V ) Y 2 V 2  ] • 

Since L 1 is positive-definite and the above inequality shows that dL~/dt  must be negative-definite if 
R 1 < d ' /d  and R 2 < d/d '  (which implies R o < 1), then we can say that L 1 is the Lyapunov function when 
R 0 <  1. Therefore, Ll( t )  ~ 0 as t ~  + ~  when R 0 <  1. Then, V2(t) ~ 0, Y2(t) ~ 0 as t ~  + ~  and hence 
from E, qs. 2.4 and 2.6, we see that Ya(t) ~ 0 and Yl(t) ~ N  1 as t ~ +~ .  Again from Eq. 2.3, V(t) ~ K  as 
t ~ ~ (when initial population size of the vector is greater than zero). Therefore, the solutions (V~(t), 
V2(t), Y2(t), Y3(t)) for the subsystem 3.1-3.4 approach the fixed point (K, 0, 0, 0) in 4-dimensional space 
as t ~ +oo when R 0 < 1. Hence, it is obvious to show that all the solutions (Vl(t), V2(t), Y2(t), Y3(t), 
Xl(t), X2(t), Xa(t)) of the system 3.1-3.7 approach the fixed point (K, 0, 0, 0,/~2/tt '  2, 0, 0) which belongs 
to fl as t ~ + ~  when R 0 < 1. Therefore, the zero equilibrium (P~) is GAS when R 0 --R~R 2 < 1, 
whereas another zero equilibrium Po is always unstable saddle. 

Let us assume that V = V * ( = K )  (see Discussion) and make some technical assumptions that 
Y(t)--Yl( t )  + Y2(t) and X(t)=X~(t)+X2(t ) .  Then, using Eqs. 2.11-2.13, the system 2.1-2.10 can be 
reduced to 

d X  
dt = - ( /2  + (72 +  )X2 + fFv2 ,  

dX2 
dt  -- • 2 V 2 ( X - X 2 ) / N 2  - ('Y2 + e + ~,g'2)X2, 

dN2 
dt -~ 1~2 + 8 X -  e X  2 - (8 +/~'2)N2, (5.1) 

dV2 
dt = r / ' ( K -  V2)Y 2 - d'V 2, 

dY 
d---t = f (  N1 - Y)  - Y,Y2, 

dr2 
a t  - / 3 ~ ( g -  g2)v2 - dY 2, 

where X3 = N2 - X, If3 = N 1  - Y ,  'ril' = ~/K a n d / 3 ~  = 13t/N~. Let 
i 0 t ~ 0  = ' ~  -- {(/~ 2//X2' '/Z2//~2' 0, Nx, 0)}, 

where 

~ =  {(X,  X2,N2,V2,Y,  Y2 ) :X>O,Y>O,X~>O,  Yi>O(i=2,3),V2>-O, VI(t) + V2(t) 

= K , Y ( t )  + Ya(t) = N 1 , X ( t  ) + X a ( t )  = N 2 ( t )  < p,2//x'2} 

We now introduce variables u~ (i -- 1,2 . . . . .  6) in the system 5.1 through the substitutions 

X = X ' e U , ,  X2--X2*e=2 , N 2 = N ; e  u3, 

V2=V2*eU,, y = Y * e " s ,  y2=Y2*eU6. 
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The variables U i obey the following equations: 

d u  1 

dt 

d u  2 

dt 

= ( X * e U ' ) - l [ - X * ( f  2 +/~'2)(e "1 - 1) - X ~ ( y  2 + e ) ( e " : -  1) +f2N2* (e "3 - 1)], 

=~O(N2*X~eUz+"3)- l [X*(eUl-  1) - {X2* + ( X *  -X2*)e"3}(e u : -  1) - ( X *  - X 2 * ) ( e  ~ -  1) 

+ ( X * e u l - X ; e " : ) ( e U , - 1 ) ] ,  

du3 = ( N 2 . e , 0 _ I [ s x .  ( e ,  ' _ 1) - e X ~ ( e  ~2-  1) - N2* (~ +/~'2)(e "3 - 1)] (5.2) 
dt 

du4 -1[ 
dt ='rl'Y2*(V2*eU4) - g ( e u a - 1 ) + ( g - V 2 * e U 4 ) ( e U 6 - 1 ) ] '  

du 5 
dt = - ( y * e u 0 - 1 [ f y * ( e " 5 -  1) + y y 2 * ( e  " 6 -  1)], 

du---36 = e-U~[ d ( e  u' - 1) + eU'( d + ff~V2* ) ( e  "5 - 1) - ( d  +/3~V2*e"')(e " ~ -  1)]. 
dt 

Theorem 5.3. Let V = V * = K. Let ~ is the set ~o  in the new coordinates u i. Then the origin, u i = 0 
(i = 1, 2, . . . .  6) which belongs to ~ ,  for the system 5.2 is globally asymptotically stable (GAS) if 

(i) e_< a +/z' 2 

or 

(i i)  V2* > blb2[e-(~3+tz'2)] 
N2. - f l - ~ ' ~ 7 2 ~ - ~ 2 + b 2 )  whene>B+lZ '2  • 

Proof. Let u be the vector of u/. Consider the function 

L ( u (  t)  ) = w 1 g * ( e  ul - -  1)2+ W2N2*X; (e u2-  1)2+ W3N2* (e : 3 -  1)2+ W4Vz*(~fY2*)- l (e  " ' -  1) 2 

+ WsY* (e" '  - 1) 2 + W6(e u6 - 1) 2, 

where W~ > 0 constants. 
Observe that L(u( t ) )  is a positive-definite function on the set ~ .  Its derivative is given by 

d L ( u ( t ) )  
dt = 2 W l ( e " l - 1 ) [ - X * ( f 2 + l z ' 2 ) ( e U l - 1 ) - X ; ( y 2 + e ) ( e " 2 - 1 ) + f 2 N 2 * ( e " 3 - 1 ) ]  

+2W25e-"3 (e  " 2 -  1 ) [ X * ( e  "' - 1) - {X2* + ( X *  -X2*)e"3}(e"2-  1) - ( X *  - X 2 * ) ( e  " 3 -  1) 

+( X *  e U l - X ;  eU2) (e" , -1 ) ]  

+ 2W3(e u3 - 1 ) [SX* (e ~1 - 1) - e X ; ( e  u z -  1) - N2* (8 +/z'2)(e ~3-  1)] 

+ 2W4(e ~' - 1 ) [ - K ( e  "' - 1) + ( K -  V2* e"4)(e u6 - 1)] 

- 2 W s ( e  ~5-  1 ) [ f Y * ( e  ~5- 1) + YxY2*(e ~6- 1)] 

+ 2W6(e u6 - 1) [d (e  ~' - 1) + eU'( d +/3~V2" ) (e "5 - 1) - ( d + fl'lV2* e u') (e ~6 - 1)] (5.3) 

For simplicity, let us consider U,.(t)= e ~,tt) - 1 .  So, if u i ( t )=  0, then U/( t )=  0. Let d L ( u ( t ) ) / d t  = 
G(U(t)),  where U is the vector of U/. Now, if G(U(t))  is a negative-definite function, then L(u( t ) )  would 
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be a Lyapunov function for the system and would ensure global stability about the origin. The Eq. 5.3 can 
be written in the following matrix form: 

G(U) = Ur(WA +ArW)U,  

where U = (U 1, U2,""" ,U6) r, W= diag(W1, W 2 , ' "  ,W6), and 

where A1 and A3 are square block matrices and 

A, i 
- x "  (f2 + ~'~) 

g,X* 

U3+l  

6X* 

A2= 

- x ;  ( v2 + ~) 

~o{x 2 + ( x*  - x 2 ) ( u  3+ 1)} ¢,( x *  - x ;  ) 

U3+l  U3+l  

- ~ x ;  - N ;  (6 + ~'2) o o!] 
, { ( x ' - x ; )  + ( x * v , - x ; u 2 ) }  o 

U3+1 
0 0 

and 

-K 0 K -  v ;  (04 + i) 
A 3 = 0 - f Y "  -Y lY2  * 

d (d+fllV2*)(U4+l) - {d+f fy2*(U4+l)}  

We shall now show that P = - A  1 ~ ¢  and Q = - A  3 ~ d .  
Case (a): P = - A  1. In this case, we construct the inverse of the matrix P, 

1 [Pll P21 P31 "1 
p - l = ~  P12 P22 P32 , 

det(P)[pt3  P23 P33J 

where Pq are the co-factors of the elements Pij in the determinant of the matrix P and 

det(p) = ,X ' [ I~ ' 2bzN ; (X"  -X2*)(U 3 + 1) +X;{I~'2N;(T2+b2) + b3(X2* +X;)}] / (U3+ 1) 

= $X* [ I~'2b2N; ( X * -)(2*)(/_/3+ 1) + X ;  ( y2 + b2)( e (  N;  ) +1~'2N; )] / ( U3 + 1), 

(by Eqs. 3.16 and 3.18) 

ell  = , [ N ;  (8 +/£t2)(X* - X ;  ) ( 0  3 + 1) + X ;  {N; (8 +/£'2) - E ( X "  - X ;  ) ) ] / / (0  3 + 1) 

= ~,[ Nz* (8 +/z'2) (X * -X2* )(/-/3 + 1) + X ;  {N; (8 + Iz'z) - eblbzN; F( N;  )/(~bb3)}]/(U 3 + 1) 

(by Eq. 3.19) 

= *IN2* (8 + p,'2)(X * -X2* ) (U 3 + 1) + F i X ;  {~0(6 + P"2)('Y2 + b2) - blb2(e -- (8 +/z'2))N2* }] 

/ ( U  3 + 1) 
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(by Eq. 3.20) 

P12 = OX*[N2 (8 + ]/,t2) -- t~(X* - X ;  ) ] / ( U  3 + 1) 

= OX*[Iz'zb3N2* + 6F(N2* )('/2 + b2)]/(b3(U3 + 1)), 

(by Eqs. 3.19 and 3.20) 

P13 = ~bX * [8(X* -X2* )(U3 + 1) + (8 - e ) X ;  ] / ( U  3 + 1), 

P21 = -N2*X; ( b3 + '/2/z'2), 

/22 = Iz'2b2X *N2*, 

and 

P23 = - b 3 X  *X;  , 

Pal = ~b[ f2N2* (X*  -X2* ) (U s + 1) + X ; { f 2 N ;  + ('/2 + e)(X* - X ;  )} ] / (U  3 + 1), 

P32 = - 0 X *  [(rE +/'L'2) (X*  -X2* ) -f2N2 * ] / (03  + 1), 

P33 = ~bX * [(f2 +/z'2)(X * -)(2* )(03 + 1) + X2* (b I +f2)] / (U3 + 1), 
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Case (b): Q = - a  3. Now, we construct the inverse of the matrix Q, 

1 [ a l l  Q21 Q31] 
Q - 1 = ~  Q12 Q22 Q321, / 

det(Q)[.Qt3 Q2a Q33J 

where Qiy are similarly defined as Po and 

de t ( a )  = (U 4 + 1)[d(fY* V2* + K'/1Y2* ) + K/3~V2* (fY* + YY2* )], 

Qll =dfY* + (U4+ 1)[d'/1Y2* + fl~V2* (fY* +'/1Y2")], 

012 = 

021 = 

022 = 

Q23 = 

031 = 

Q32 = 

-d'/1Y:*, 013 = dfY *, 

-(d +/3~V2*)(U 4 + I)[ V2* (U 4 + i) -K], 

V2*(d +K31)(U4 + 1), 

K ( d + fl'I V2* ) ( U4 + 1), 

- f Y *  [V2* (04 + 1 ) - K ] ,  

-K'/tY2*, Q33 = KfY*. 

F1 = FI(N2*) = N2*/[~b('/2 +b2) +blb2N~]. 

Let P * and [(p-l)] .  be the matrices obtained from P and p-x respectively, deleting the last row and 
column. By Theorem 5.1, we can easily show that P * and [ (p) - l ] .  satisfy the hypotheses of Theorem 
5.2 if Pn > 0 i.e., if either e _< 8 +/z' 2 or, 

V2* blbE[e-(8+~'2)  ] 
>_ 

N ;  & ( 8  + ~'~)('/2 + b2) 

when e > 8 +/z' 2 (these are the sufficient conditions for Pll > 0). Hence by Theorem 5.2, we have P ~.a¢. 
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In a similar way as in case (a), we can show that Q ~ ¢  without any parametric condition. By applying 
Theorem 3.2, it is easy to prove that A ~ T if either e _< 8 + ~'2 or, 

V2* blbz[e  - (a +/~'2)] > 

when e > a +/~'2. 
Therefore, L is negative definite and hence is a Lyapunov function for the system 5.2, ensuring global 

asymptotic stability of the origin if either of the conditions (i) or (ii) is satisfied. This completes the proof 
of the theorem. 

Hence, by Theorem 5.3, we can say that if V= V * = K (carrying capacity) and one of the two 
conditions in Theorem 5.3 is satisfied, then (X *, X2*, N2*, V2*, Y *, Y2*) is GAS for the system 5.1. 

6. Discussion 

In this paper we have proposed a mathematical model of the transmission of JE and discussed its 
dynamics. The spread of JE involves three populations: vector (mosquito), reservoir (pigs, cattle, equines, 
birds etc.) and man. The peculiarity of the transmission of the disease is that man is the dead end of the 
infection and transmission of infection does not take place from man to man, man to the reservoir, or 
man to the vector. Infection is spread from infected reservoir population to susceptible human and 
reservoir populations through a particulal species of mosquito (Culex vishnui sp.). Hence modelling 
transmission of such types of diseases poses some difficulty as these simultaneously involve three 
populations in an open chain system making it a multidimensional one. Moreover, the rapid change of 
size of the vector population as well as fatality of the disease makes the population size variable at the 
vector and human levels so that the analytical study becomes more complex. When R 0 < 1, i.e., the 
product of the two infectious contact numbers (R 1 and R 2) is less than or equal to unity, there are the 
two zero equilibria. The zero equilibrium Po -- (0, 0, 0, 0,/~2//~'2, 0, 0) is always saddle. Biologically this 
means, this disease-free state with no vector population can never be attained. Another zero equilibrium 
P'offi(K, O, O, O, /./,2///d, t2, 0, 0) is GAS if Rof f iRIR2 <_ 1, where R l = f l l / d '  ( R 2 = ~ 7 / d )  is the average 
number of the reservoir (vector) population (both susceptibles and others) contacted by an infective 
vector (reservoir) individual during its infectious period. The latter is also a disease-free equilibrium at 
which the three populations consist of susceptible individuals only. Both these equilibrium points denote 
disease-free states. 

When R 0 > 1, there exists three equilibria: two disease-free as given above and one non-zero 
equilibrium (VI*, V2*, Y2*, Y3*, X ( ,  X2*, X3* ) which is the endemic (disease-present) equilibrium. In the 
case of the disease-free equilibria, one which is saddle, Po, and the other one, P~, is unstable whereas 
the endemic equilibrium is LAS. Because of the rapidly growing behaviour of the vector population 
compared to other two populations, we have assumed V(t )  = V * = K (carrying capacity of environment) 
using the pseudo steady-state hypothesis to study the global stability of the non-zero (i.e., disease-pre- 
sent) equilibrium of our system. This endemic equilibrium is GAS for e < 8 + ~'2. On the other hand, if 
e > 8 +/~'2, the condition for the global stability is that the ratio of the equilibrium population sizes of 
the infected vector and total human populations exceeds or is equal to the quantity 

blb2[e - (a +/.g2)] 
/32(a + P-'2)(Y2 + b2)" 
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The former condition implies that when the excess per capita death rate due to disease is less than or 
equal to the total of the per capita natural death rate and excess per capita death rate of recovered 
individual human, the endemic equilibrium is globally asymptotically stable. The latter condition implies 
that when the former condition is violated, the global stability of endemic equilibrium depends upon the 
ratio of the equilibrium population sizes of the infected vector and total human populations. This is quite 
realistic from biological standpoints. Obviously, if the disease is not fatal, i.e., e = 0, the former condition 
of Theorem 5.3 is always satisfied and hence the endemic equilibrium is always globally asymptotically 
stable. In that case the disease always persists. When e -~ oo, that is to say, the fatality is very severe, the 
former condition e _< 8 + ~'2 is violated and the latter condition of Theorem 5.3 can no more be satisfied 
except N 2 --, 0, and hence we conjecture that the endemic equilibrium is unstable and the only stable 
equilibrium will be the disease-free equilibrium at which the three populations consist of susceptible 
individuals only. In that case the disease will not persist. The size of the endemicity (in human 
population) is directly proportional to ~ =/32V2", that is, the product of the effective contact rate in man 
and the equilibrium size of the infected vector population. 
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