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In machine scheduhing the first problem s 1o find a tmetable that 1s optimal with respect 1o some ethciency critenon.
[f the jobs come trom different chients the solulion of the optimization problem is not the end of the story. In addition,
we have to decide how the munimal total cost must be distnibuted among the parties involved. 1n this note, cost allocation
problems will be considered to anse from one-machine scheduling problems with an addinve and weakly increasing cosl
function. We will show that the cooperative games related to these cost allocation problems have 4 nonempty core.
Furthermore, we give a rule that assigns a core element of the associated cost saving game to cach scheduling problem

of this kind and an initval order of the joubs,

' I raditionally, a scheduling problem is the task 10

find a uimetable that is optimal with respect,

to some efficiency criterion. An efficiency criterion
defines an order on the set of teasible timetables and
the problem is to find an optimal one. The efficiency
criterion 1s usually given by a tunction of the job
completion times and the timetable 1s better if the
function value is lower.

In practice, the jobs to be processed often come
from different clients, and they are only interested in
an etheient processing of their own jobs. Hence, there
IS 4 controversy between social benefit and individual
benehts. in this note, we deal with the problem of
reconciling these two visions.

More concretely, we are going to investigate the
following:

a. there are n jobs to be processed on one machine;
cach job can start at time ¢ = ();

b. different jobs come from different clients;

C. edach chient 1s using an efficiency criterion

represented by a weakly monotonic function of the
completion time of Ay job;

d. the total efhciency function is the sum ot the eth-
ciency funcuons of the chents;

¢. there 1s an imtial order o, N — {1, ..., n} and
client ¢ can derive from this order the nghr to be
processed in the oy (4)th dme slot, 1.e., in the time
period (4, 4, + p.| WIR T, = ) wpameaquidys

An efhciency tuncuon that satishes propertics c and d
Is called an additive and regular ethciency funcuon.

The problem s the distribution of the cost savings
that can be made by changing the iminal order into
another order. One could avoid the problem and pro-
pose an cqual split of the benetits. We will, howewver,
follow a more sophisticated approach, taking into
account the “‘virtual cost savings that coalitions of
clients could have made.”

Su, we have a set N of n clients each having one job
to be processed on one and the sume machine. The
type of client s 1s determined by the weakly monotonic
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ctheiency tunction DR, — R and the processing
ttme p, > U of the job. There is an iniual order
oy N — {1, ..., n} which gives each client a rank-
ing number. Any order o: N — {1, ..., n} deter-
mines a, what 1s called semui-active timetable v =
(lis s o5 &) WheEreln & = 3 o s P, 15 The Time
that Jjob 7 can start. Then, assuming no pre-emplion or
interruption, the completion time of job ¢ s €, =
(, + p,. As the ethciency tunctons f, are weakly
monotonic 1t makes no sense 10 look at other (not
semi-active) timetables.

If we consider a coalition of clients § C N, this
group of clients can also generate cost savings by
changing their processing order. In this paper we
assume:

f. coalitions § are only allowed to change posiuon
within groups that are connected in S with respect
to the ininal order oy; if there are. tor example, five
clients and the imitial order is 1 < 2 < -++ < 3§,
coalition (1, 2, 4, 5) can only switch the position of
jobs 1 and 2 or jobs 4 and § (or both), but a switch
2 «— 4 1s not allowed.

Now we can define v(S) as the maximal cost sav-
ings that coalition $ can produce by changing posi-
ttons within o,-connected groups (= o,-components).
Then we have a cooperative game v:2" — R with
5 — v(S§). Notice that the game v depends on the
initizd order o, that v{AN) 1s the total benetit to be
distributed among the chents and that one-person
coaliions cannot generate any Cost Savings, 1.e.,
vit) = O foratlt € N,

A natural question ts whether the total cost savings
v{ANV) can be distributed among the chients in such a
way that each coalition a1 least obtains the benctit
they can gencrate by themselves. A distribution s
facking in stability if this is not the case. A coalition $
that obtains less than the profit they can produce by
themselves may be tempted to sphit oft and follow
their own way of action. Theretore, the questionis: Is
there a vector x € RY such that

E x, = v(N) and 2 X, 2wy) forall SCN?

Y TR

In the theory of cooperative pames such a distribution
x is called a core allocation of the cooperative game
v 2™ — R.

In this note we show that the cost saving games
generated by scheduling problems of the type we
described before have core allocations, or more pre-
cisely, we will give a simpie rule which assigns a core
allocation of the associated game to each scheduling
problem of this type. As turns out, it will only be
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necessary o compute the values ot 20 — | coalitions
to find this core allocation.

In the Inerature there are two papers dealing with
the issues we are talking about. In Tijs et al. (1984) the
cost for job ¢ to be processed on the jth place is given
and coaliions are allowed to make any switch ol
position. The cost saving games arising from such
permutation sitiations have been proved to have core
allocanions. [n Curniel, Pederzol and Tis (19849) the
cfliciency functions are linear in the completion time
and a rule s given (the equal gain splhitttng rule) which
assigns to cach sequencing sttuation a core allocation
of the associated cost saving game. The allocation rule
we give in this paper is an extension of the EGS
rule to more general situations. The sequencing games
of Curiel, Pederzoh and Tis are convex games, 1.c.,
v(S)+ (7Y v(SUT) + (S N TY tor all coalitions
S, T C N. The existence of core allocations is implied
by this fact. The games we are going to consider arc,
In general, not convex.

et us complete this Introduction with an example.

Example. Lct NV consist of three clients with the ef-
ficiency functions:

[i(C) :=0.5C, f1(C) := 4
[-(C) :=0 if C €3,
J(C) 1= max (0, C — 4).

fC >3,

So client 1 is paying half of his completion ime, client
2 is paying a penalty of 4 1f his job is completed afier
¢ = 3, and client 3 has due date 4 and 1s paying his
tardiness. Let the processing times be (p, 2. pa) =
2.2, 2)and o,: 1} <2 < 3. The cost saving game hus
the values v(123) = 4, v(12) = 3, and v(23) = 2.
This game 1S not convex as v(il}y + v(23) >
v(123) + v(2). The B-rule (as we will dethine below)
gives the core allocation (1, 2.5, (1.5).

1. THE B8 RULE

1 (N, v)is a cooperative game and o N — {1, ...,
n} is an ordering of the players, the 8 rule is defined
by the formula

B,(v) = ‘/:[1*[?’;'(,‘_ ro)) ~ v (Prie, o))
+ v(F(i, o)) = vFU, ou))].

where pr(i. a,). Prii. oy), Fii. a,), and F{i. o)
are the coalitions {j € Nlow(j) < o)}, {j €
Nloyj) < auli)}, {j € Niaylj) 2 oyld)}, and
{j € Nlawj) > i)}, respectively. Every coordi-
nate B,(v) is the average of the marginal of 7 1n the
coalition consisting of the players preceding ¢ and in
the coalition of players following 1 with respect to the
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initial order a;,. In general, the B rule does not give a
core allocation of the game, but it does for games that
arise from one-machine scheduling problems satisfy-
ing conditions c-f.

Theorem. If (N, v) is a cooperative game generated
hy a one-machine scheduling problem with an addi-
tive and regular efficiency criterion, the B rule gives a
core allocation of the game.

The proof follows from the next two propositions.
The first proposition gives conditions for a coopera-
tive game that guarantees that the 8 rule gives a core
element. The second proposition states that one-
machine scheduling problems (with additive and reg-
ular efficiency criterion) generate games with these
properties.

Proposition 1. The B-rule gives a core element of a
cooperative game (N, v) if

a. the game i1s superadditive (i.e., v(§S) + v(T) s v

(S U T) whenever S T =),

b. the game is o,-component additive (i.e., v($) =
21esa, V(T) where Sty is the collection of com-
ponents of S under the order o).

Proof. Take any o,-connected coalition 7 and sup-
pose that T = {i € N|a < o,(i) < b}. Wriling Pr(i)
instead of Pr(i, ), the B8 rule gives for coalition T

|l

2 Y B,(v)= 2 [v(Prti)) - v(Pr(i))

p b tCT

+ v(F(i)) — v(F(i))]

["’(F"(Un I(h})) = "(Pr‘fﬁi'l(ﬂn)
T ‘»"(F(U'u I(ﬂ)})
- v(F(oq (b)) 2 2:(T).

The second equality 1s obtained by canceling equal
terms from the first expression and the inequality
follows from superadditivity, and

Prioqg" (@)U T = Pr(ay (b))

and

TU F(ay (b)) = Floyg'(a)).

If T = N{a =1 and b = n) we obtain:

2 2 B.(v)y=v(Priay'(n)) + v(Flay (D))
" = 2v(N).

For non-g,-connected coalitions the core inequalities
follow from g;,-component additivity.

Proposition 2. £very one-machine scheduling prob-
lem with an additive and regular cost critenion gives
rise to a cost saving game that is superadditive and
o,-component additive.

Proof. If § and T are disjoint coalitions we can com-
btne any action of § with any action of 7 to a feas-
ible action of S U T. The cost savings of the combined
action is the sum of the profits yielded by the action
of § and T. This gives the superadditivity of (N, v).
From the definition of v 1t follows immediately that
the game is o,-component additive.

The proof of the theorem follows from Propositions |
and 2.
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