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PREFACE

This thesis is based on the following papers, details

of which are given in the list of references,

1

-

Relativistic and Statisticol Foundations of Quonmbum
Mechanics

Products and Compeositions with the Dirac Delta-
Punction

Junction Conditions in General Relativity
A Pelativistic Model of the Electron
Interpretation of the Indeterminacy Relations

Interpretation of Quantum Mcchanics as a Theory of
Extended Particles

Classical Time-Symmetric Electrodymmics

Except for certain minor alterations, four of the

papers (3 = 6) have been reproduced almost vervatim, (2)

has been attached as an appendix, not because it does not

belong to the main body of the work, but because it could

not be included anywhere without breaking the continuity

of the presentation, (7) has been sketched in another

appendix, insofar as it has a direct bearing on the logical
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development of the thesis, (1) contained the rescarch

program for this work, along with some preliminary results,

Since the basic problems considered are somewhat
difficult, and an altogether new line of thought is offered,
it is natural that some‘unsolved problens remain, Nevor-
theless, significant headway has been made in obtaining
an internally consistent theory, Since this theory makes
no new assumptions, and leads to empirical predictions,

its implications are of importance, either way,
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INTRODUCTION

This thesis deals with the following two problems

The structure, stability and dynamics of spatially-
extended, elementary particles

The interpretation of guantum mechanics

Since these problems have traditionally been thousht
vnrelated, we sketch the logical nexusus involved.

The word 'particle' will denote a spherically-simme-

tric, elementary particle of nonzero rest mass, such

as the electron,

Chapters 1 and 2

Real particles are not mass points

Given the imbalance between gravitational and ulco-
tromagnetic forces, an extended particle cannot be
stable, within the existing theory of relativity,
urless the usual junction conditions are modilicc
and the particle corresponds to a shell-like material
distribution,

Tc modify the junction conditions, it is necessary
to define products and compositions with the Dirac
delta~function in such a manner that our contlinucd
belief in the Einstein equations is Justified,
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Products and compositions with the Dirac delta-
distribution are defined, using nonstandard anclysis
1t is ensured that our continued belief in the
Einsteln equations would not be phenomenological,

With the modified junction conditions, the results
obtained by the present methods, for (uncharged}
sphericall~symnetric surface layers, are coupared
with the rcesults obtained by earlier authors, These
agree although the eqguations appear to be overdoder.
mined, because only restricted coordinate transforiew
tions of fl2t gspaces have been used to obtain the
internal metric,

By admitting spaces obtained from flat space by more
general coordinate transformations, it is shown that
the equations of motion for the surface layer are
nanifestly underdeterminad, Thus, it is possible
for extended particles t¢ exist in relativity,

This procedure is generalised to include charce by
taking the external metric to be the Reissner-
Nordstirom metric,

Cheplters 3 and 4

1

*
It is observed that an interpre tatlon o tﬁe precise
form of the indeterminncy relatlons ncceSﬁarlly
leads to the conclusion that tha partlcl“" described
by quantum mechanics nust have some finite spatial
extension, '
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2 It is proposed to interpret quantum mechanics as
the scnmiclassical descripiion of the dynanics of
extended particles of the type constructed in
Chapter 2,

2]

3, The frequency of oscillation, of the particle, iz

chosen to satisfy E = h v in the rcst frane,

4, Statistical considerations are introduced by observing
that the particle is statistically coupled to the
rest of the wniverse, The (now) rendom extensicn
of the particle is related to the wavefunction,

5. It is shown that this wavefunction satisfies the
Schrodinger cguation in statistical equilibrium,

6 It is shown that this wavefunction admits the usual
probability interpretation as an excellent approxi-
mation and that a represcntation of obseryvables by
positive~operator valued nmeasures is naturally
admitted,

The empirical corsequences of this theory are poimbted
out along with some unsolved problems, Therefore,
this theory is empirically verifiable,

The scheme of preseuntation does net adhere to the

strict logical cutline given abové, Rather

, each problen,

=

encovntered on the way, has been studled for its own sike,

It 13 hoped that the effects of the resulting fallout would
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be interesting enough to offset the consequerit bresks in
continuity, The need for extended particles has becn
glaborated below, although some of the stronger points are

apparent only 2 posteriori,

2, The need for extended particles,

L3

it is a historical paradex that, whereas the asswunp-
tion of point masses goes unquestioned, it is nzcessary to
Justify the hypothesis that real particles have some small,

.
0a

but finite, spatial extensiorn, Since it may never
possible to demonstrate, as an element of physical realily,
that real particles are akin to geonetrie points, the
principal virtue that can be attributed to this assunption
is its simplifying value, But, does this assumption really
have great simplifying value ? In Newtonian mechanics, one
could definitely answer the preceeding question in the
affirmative, But, already, in classical field theory, thisg
assunption leads to difficulties, In quarntum theory, these
singulorities beconme unabashed confessions of ignorance in
the form cof infinite renormalization constants, These
difficulties cannot simply be wished away by the piows hope

that they would be resolved in the not-too-digtant future,
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If the extensive, and, so far, unsuccessful, efforts in the

vast are any guide, they call for a bleakly pessimistic View,

Apart from the (essentially) aesthetic eriterion of
simplicity, in the absence of any definite cmpirical evidence,
any extra hypothesis should be anchored on theoretical
necessity, Bulb, there is no theoretical necessity for point
masses, On the contrary, as the arguments in Chapters 1 and
3 show, a very definite case can be made out for the ozposite
point of view, Thus, it is asserted that <the gquarntum mechani-
cal electron cannot, in principle, be localised, and, hence,
must corfespond to an extended distribution of chargad
matter, Similaely; according to relativity, real particles
can never be point masses, because point masses are black
holes, Although this last argument is not applicable to
charged particles, it is difficult to believe that charged
and uncharged particles are eégentially different in stfuc-
ture, This would, further, meke it difficult to account for
cecays of the type n —> p + ¢ + Ug

In short, the assumption of point masses could wreal

havoc on some of the fundamental principles of physics,
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While there is no guarantee that these principles will
continue to survive at theagtoscopic level, one cannot just
brush them aside for the sake of a single unsubstantiated

asgumption,

Now, the hypothesis of extended particles brincs in
its wake its own brand of difficulties, These difficulties
pertain both to the structure and the &iynamics of cxtended
particles, And, it is the purpose of this thesis o show
that these difficulties are not insurmountable, as has been

thought in the past,

One final point that needs mention, The structure
assigned to the particle is not quite avbitrary, With the
éssumption of spherical symmetry in the rest frame, cssen-—
tially two types of structures arc possible, The resiric-
tion to an infinitesimably thin shell secems to be required
by relativity, quantum mechanies, and time-symmetric elcc-

trodynamiecs,
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ABSTRACT S

I JUNCTION CONDITIONS IN GENERAL RETATIVITY

A new formulation of the problem of junction conditions
is given, It is pointed out that, if the existing theory of
relativity is to be consistent with the existence of matter
in the form of particles, then the g, cannot be conitinuwously
differentiable everywhere, The mathematical part of the problem
of junction conditions is solved by using nonstandard analysis
to define products and compositions with distributions, The
definitions are such that continued belief in the equations of
relativity is justified, As an application, the equations of
motion for the spherically-symmetric surface layer,at the
Schwarzschild-Minkowski junction, are derived, These agree
with the equations derived by earlier authors in being under-

determined, Applications to singularity theory are pointed out,

II 4 REIATIVISTIC MODEL OF THE ELECTRON

The problem of the motion of surface layers in rela-
tivity is considered in its most geheral form using the

techniques developed in the carlier chapter, By using gencral
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coordinate transformations it is shown that the equations of
motion are manifestly underdetermined, This indeterminacy

cén be overcome by prescribing an equation of state, in the
macroscopic case, It is concluded that surface layers, in

the microscopic case, can evolve in an essentially arbitrary
manner, and that it is possible to construct shell-like models
of elementary charged particles satisfying the restrictions in

Chapter IV,

IIT INTERPRETATION OF THE INDETERMINACY REIATIONS

1t is pointed out that, within the axiomatic formula-
tion of guantum mechanics, the precise form of the indeter.
minacy relations introduces some gualitatively new features,
As a result, the notion of simultancous measurement, which
is an integral parit of the usual interpretation of +the
indeterminacy relations, becomes redundant and nisleading,
it is shown that the precise form, of the indeterminacy
relations, recessarily leads to the conclusion that the parti-
cles described by quantum mechanics have some finite (as

opposed to infinitesimal) spatial extension,
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Xvi

Iv INTERPRETATION OF QUANTUM MECHAIICS AS A TIHCORY OR
EXTENDED PARTICIES

Developing on the conclusions reached in the previous
chapter, it is proposed to interpret quantuvm mechanics as a
theory of extended particles, Certain restrictions are placed
on the underlying model for extended particles, Wave-particle
duality is interpreted in the context of the pulsations of the
particle, The wavefunction is related to the (rendom) exten—
sion of the particle, It is shown that this wavefunction
satisfies the Schrodinger eguation, In this theory, the
peculiarities of guantum probabilities are related to the
assumption that the particle is shell-like, It is shown that
& representation of dynamical variables by positive-operator
valued measures is possible, The empirical predictions of
this theory are pointed out, along with some unsolved problems,
It is concluded that it is, at least partially, possiblc to
interpret gquantum mechanics as 3 semiclassical description of
the dymamics of extended particles, If this interpretation
is correct, quantum mechenics would fail at very high ener-

gles, and, possibly, at very low encrgies,
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Appendix A - PRODUCT3 AND COMPOSITIONS WITH THE
DIRAC DELTA-FUNCTION

The need for defining pointwise products and conposi-
tions with distributions is pointed out, in the context of
the problems of Junction conditions and curved shock waves,
Barlier definitions are bricfly reviewed, and new definitions
are proposcd using nonstandard analysis, Basic propertics
are established, and some products and compositions with the
delta distribution are explicitly evaluated, With these
definitions the domain of validity of certain equations of
bhysics can be extended to include discontinuous fields,
without introducing new phenomenology, As an example, the
Rankine-Hugoniot equations are derived from the Euler equa-

tions,
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CHAPTER I

JUNCT ION CONDITIONS IN GENERAL REIATIVITY

1.1 Introduction

The problem of junction conditions in general wels~
tivity is usually stated thus : at a boundary betweern maiicn
and spacetime (called a junction) how smooth should “he ten
distinet functions, of the coordinates, 8, Pe 7 4 number
of papers have been written on this problem since Iancros
(1924), and we shall not go into the merits or demerits of
these papers, except to point out that a general consensus
was reached with the publication of Lichnerowicz's (1955
teeatise, According to this consensus, the junction condi-
tlons may be written in the form used by Synge (1965 < if

L is the hypersurface of discontinuity, with equation

f(x;} = 0, and Ty, s the material energy tensor, them

7 . :
T, f,, = (0, (1,1,1)

(C) indicating any quantity that is continuous across o |
The above conditions state, in effect, that only the second

derivative of the may have & discontinuity aciross a

Sy
Junction,
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More recently, this consensus has been modified by the
work of Dautcourt (1964), Israel (1966), Papapetrou and Hamoud
(1968, 1979), and Evans (1977), In effect, the junction con-
ditions have been altered to permit the occurrence of discoi-
tinuities in the first derivative of the g, , i.e., g, = g,
This alteration, however, has been proposed as a matier of
convenience, for the practical purpose of solving the Einstein

equations - for theoretical purposes, the junction concditions

(1,1.1) continue to be valid,

In the present analysis of the problem, we proposc to
probe a little deeper, To begin with, the above problem is

really equivalent to the following two problems

(2) To determine the highest order of continuity, for the

Sy s that can be taken to represent physical reality,

(b) To determine the lowest order of continuity, for the
8, » that is mathematically fcasible and consiatent

with our belief in the eguations of relativiiy,
We will attempt to answer these guestions within Dinstein's

theory of relativity, for definiteness, although the conclu-

sions are equally applicable to other classical theories,
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1,2 Relativistic charascterisation of matter

In attempting to solve problem (a)} we observe that the
existing constructions of the material energy tensor, corres-
ponding to a real material distribution, are macroscopic and
outmoded, According to the modern understanding of maiter,
matter consists of various combinations of elementary particles
(such as electrons, quarks, light quarks, mesons &ud neutrinos),
although the only particle that can be called elementary, with

certainity, is the electron,

Since the theory of relativity is formulated without
regard to scale, it is quite essential that it should be con-
sistent with the empirical fact that matter exists in discrete
clusters at the microscopic level, In particular, it should be

possible for particles to exist in the theory, Thus, although

L

some attempts have been made (for instance, Synge, 19663 to

incorporate the particle niture of matter, in the representation
of matter by the material energy temsor, these are not satis-
factory, because it is not clear, = priori, that partiicles can
exist in the theory,

In trying to characterise the distribution of matter,
corresponding to an elementary particle, with non-gero rest

mass, the simplest possibility which arises is that of a point
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mass, This possibility has been rejected by Dirac (1962%) on
the following grounds ¢ a point mass would behave like a black
hole, real particles do not behave like black holes, hence real
varticles are not point masses, However, given the empirically
determined masses and charges of real e¢lementary particles,

the Reissner-Nordstrom solution assures us that the above arg-
ment 15 not applicable T0 real charged particles, Given,
further, that real particles are often charged, the argumeint
loses much of its significance, Nevertheless, even in the
Relssner-Nordstrom metric, there is a singularity at the origin,
so if we accept the point of view that real particles arc point-

like, the cannot be continuous everywhere,

&y
The other possibility, for which there is some empirical

support, is that of an extended mass distribution, The stabi-
lity of gsuch a mass-distribution is a difficult problenm,
especially in the case of charged particles, because of +the
inordinate imbalance between gravitational and electromagnetic
forces, Given that electrons, for instance, are reasouably
stable, if we subscribe to the view that real particlcs are
extended, we seem to be faced with the alternatives of intro-

ducing new phenomenology or abandoning the existing theory of

relativity at the microscopic level, However, in view of the
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carlier results on stationary surface layers (for instance,
Papapetrou and Hamoui, 1968) there is a third possibility,

viz,, the may not be of class CJi as is usually supposecd,

iy
if we accept the theory of relativity, and Occam's razor, we

are forced to accept the third possibility,

The conclusions reached above may be summarised by saying
that the existing theory of relativity (without any additional
hypotheses) is consistent with the existence of particles only

if +the are at mqst of class ¢°

Sy .
In considering discontinuities in the g, , o% thedir
firgt derivatives, as a part of physical reality, and not as
~an approximation, the conventionzl methods of correliting a
naterial distribution with @ material energy tensor (via the
anzlogy with Newtonian hydrodynamics) breal down, if only
hecause of the possible appearance of ‘functions' of thc form
5 (square of the Dirac &-function) in the material encrgy
tengor, There 1is, of course, nothing ‘unphysical® &bout the
corresponding matter densities, since we have just denonstrated
thot the conventional prejudice concerning the existence of
Smpoth matter-densities has no empirical basis, However, to
svoid any problems regarding the physical interpretation of

such matter demsities, here we will adopt the alternative of
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considering the ag logically primitive, In other words,

Sy
the notion of spacetime would be accepted as basic, and the
notion of matter would appear as a derived concept, If o shell-
like model of elementary particles is contemplated, as in

Dirac (1962a, 1962b) or Raju (1979, 1980a), the occurrcnce of

all matter would be related to the occurrence of discontinui-

ties in the 8y 1 OT their derivatives,

The process of accepting the as basic does have

SI7
a fluid-mechanical analogue in conventional shock-wave theory,
Here, the Rankine-Hugoniot equations characterise a normal

shock (of infinite extent) in terms of the flow-field behind,
and in front of the shock, However, the present methods are
more general, and instead of using fluid mechanics as an analogy
for deriving results in relativity one can apply the present
methods to derive the general equations for a curved shock,

Finnlly, taking the as basic might appear to reduce the

Sy
Einstein equations to simple algebraic equations, But it will

be seen in the sequel that this does not happen,

1,2 Products and compositions with distibutions

We now go on to consider problem (b) and decide whether
the occurrence of discontinuities in the 8y, » OF their first

derivatives, is mathematicolly feasible and congistent vith
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our belief in the EFinstein equations, The effect of such
discontinuities on the smoothness of the Christoffel symbols,
Hicci tensor ete,,can be easily seen from the usual eguations
(1,4,16), It is, thus, clear that the mathemntical aspcoe’ of
the problem consists of the following-:

(1) Defining products of distributions (i,e,, defining

2

entities such as 6§, 6 6' ete,) in a logically

’
consistent manner, and interpreting equations con-
taining such products, Investigating the volidity

of the usual algebraic laws for the product,

(2) Defining compositions of distributions with ordinarsy
functions (i,e,, defining entities such as &6(g(x))
and investigiting the possible validity of a chain

rule,

The problem, however, is not a purely mathematical one,
because, as will be secen below, many definitions have been
given, all of which suffer from the drawback that our belief
in the Einstein equations is reduced to 2 purely phenomenslo-
gical one, Therefore, the physical aspect of the problem
introduces the additional constraint of defining the above

entities in such 2 manner that our belief in the Einstein
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equations would continue to be justified, A new solution to

this problem is given in Appendix A , following Raju (1930b),

The simple results obtained there, effectively solve the
mathematical problem associated with the problem of junction

conditions - the may be chosen to be discontinuvous, We

ST
observe that no new phenomenology has been introduced, and the

results derived using nonstandard techniques could very well

hove been derived without using them (Robinson, 1966), However,

the solution is not quite complete because (i) the Ricci tensor

aneed not remain symmetric ¢ and (ii) in case the are

} S
chosen as discontinuous, there would be four expressious for
the Riccl tensor because of the failure of the commutative law,

and the correct expression remains to be determined,

One final point that needs mention ¢ according to the
above techniques, one camnnot arbitrarily prescribe the 8, OB
the two sides of a hypersurface of discontinuity, This is
because the hypersurface would evolve according to the eque-
tions TV = 0, which, by virtue of (1,3,3) and (1,3,4},
would be aﬁuoverdetermined system of differential equations,
involving the defining function f of the hypersurface, Thus,

only those hypersurfaces and functions can be chogen that

&
satisfy the consistency requirements, Because the above
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cquntions are nonlinear, the consistency conditions, in the
general case, cannot be written down, and they have to be
written down secperately for specific problems, However, as

an illustration (from fluid mechanics) we observe that the
normal shock equations are valid, provided pE P T = G
i,e,, strong shocks would curve due to the effect of viscosity
(4 = viscosity, P = pressure, 0 = density, U = shock velocity,
ond the superscript + refers to the undisturbed fluid ahead

of the shock),

1,4  Applications

As an illustration, and as one of the applicaiions of
the above methods, we now propose to check, for censisiency,
the results obtained by Papapetrou and Hamoui (1968, 1979),
The problem is to determine the motion of the spherically -
gymmetric layer of matter, at the junction between the
Schwarzschild and Minkowski metrics, It is assumed thot 8,
are continuous across the hypersurface, and that some of their

first derivatives have essential discontinuities,

Since different coordinite systems can sometimes give

rise to physical differences, we start with the radiative

coordinates used by the above authors ¢ x° = 'y x‘E = 1

2
x =90, x> = %, VWe zssume that the hypersurface = is
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spherically symmetric and spteelike, so that its equitiocn can

alwaye be written (locally) in the form
r = f(w (1,4,12

The exterrnal and internal metrics arc respectively given by

dﬁf (= %?) du2+ 2dudr - r2(d€2+ Singedﬁg), r > f(w
(1,4.2)
as? = 4 U%+ 2a U &R - R%(a6’+ sin%easd , B < P(W),

wvhere R = () is the equation of the hypersurface in the
interior coordinates (R, U, e, ), Carrying out the changes
of variables r —> z =1 - f(0W), R—> Z = R ~ F(UY, the

~

internal and externmal metrics may he written

as? = (1+2F)av?s 2avaz - (z+m)2(a6?s sin“6ag”), 7 < o,
a8; = (1-2 + 2rn)av?+2audn - (s+8)2(26% 8126102 . 55 o,

(1,4.35
e suppose that the coordinates (U, 2, 8, @ can be obiained

from the coordinates (u, z, 8, #) by the change of varianbles

U

it

a(u),

' (1,4,4
Ye, ¥ > 0,

Z
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2ac that the Junction conditions1

58l ™8 (1,4,5)
are satisfied, (1,4.4) and (1,4.5) togetheF yield |

PO = £{u),

ary = 1 (1.4,6)

at(at + 227) =1 - B4 oape

These equations were obtained by Papapetrou and Hamousi (19651

In the present calculation, we require the same coordi-
nries throughout, and in the coordinates (u, z, 6, 7} the
oxternal and internal metrics are given, (using the junction
coné¢itions) by

Ia)

”
A - Tf%%T +2£)du° +2dudz-(z+1) 2 (467 +5in°03g%) , 2> O,

r..‘
&
il

as” = (1 - L vofr+2a7Y17) dulr2dudz- (Yo+f) 2 (a6%+510%000%) | 2 < 0,

(1,4,7)

1See further, equations (1,4,8), (1,4,10) and (1,4,15),
—"‘wﬁ:"“

/‘5‘“’“" ima”ru s,
A8 Nt T U N
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1.4,2 Notation and the seneral formalism

For simplifying the czlculations, we iniroduce the

following notation

X'=X (2 = H (2}, the Heaviside funciion,
(8 ,) .
(1,4,8)
XT=X (2 = 1 -H (),
o))
If h(u, 2 is any function such that
h(u, z) = h+(u, z) X+ W (u, z) X7, (1,4,9)
then we define
[n] = lim |, h'(u,2) ~ lim _ h™(y,»), (1,4,10)
7z —>0 z >0
hl =% lin , b"(uz) + & Llin b (a,z). (1.4,11)
7 =0 7z —=>0"
Ye ohserve the following properties
X7y =6, X7, = -8,
’ ’ (1.4,12)
X5 ETEAL AT X2 %, KT X =0
X+.6=X“.5=%69
()]
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e o .‘,,‘?,;"? Ltk - %‘

Further,
Chy + 0,70 = [0y + [npJ,
‘Eh1 hg] = hy | Ehgjsifl:h'}jfos
' (1,4,14)
(hy + hy)| = hy| + hyl, '
(hy hy)| =hy| hylf, if [hy ] =0 or [hy] =0
Cxd, 3 =[Chgd

With the above notation, we may put
&y = & X+ &5 X7 | (1,4,15)

With the usual formulae

.
(o =2 (guu,o' o v gvo,#r)' R
B a a a B a B =
By = lua,y - lw,a = Tun Tap * Tup [oa, (1.4,16)
1
0 - L gg,

we obtain, in view of (1,4,5) and (1,4,12)

B i oyt HE
Ml = X" 25, (1,417

T

It follows that the Ricei tensor is given by

o+ + Toned —
Ry, = Ry, X + Ry, X~ + 8

where S, = I:IL:] ¥’+U— EI:;,:]S, |

.U"U 14
(1,4,18)
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The material energy tensor is given by

R Y A S

~xd"s, C (1,419

o
-] SMU .

€3]
!

Since the interior and exterior fields have hee:: chosen +o be

free, the only equations to be satisfied arec

7 [0 (1,4,20)

We observe that while seme of the Christoffel symbols are
discontinuous, and, therefore, not defined at z = 0, (1,4,20)
5til1l makes sense, This is because only products (of 5—func—
tions) with the Christoffel symbols enter into (1,4,20), and
these are well defined, Hence, it is not necessary to rcwrite
(1,4,20) in any other, more compldécated foxm, as has bee:: done
by earlier authors, To further simplify the derivetion of the

equations of motion, we put

¥ + s ny. . s
a =g (H,Z) =1 . TE:ET ¥ 2 f',
2" = &ﬁfu,z) =1 . %?,+ 2F 4 2a'yvz’
2
Y= p () = (2D Al
BT = b7 (n,2) = Yz + £)°,
a =a° X '+a X~ .

b =b" X"+ X~
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It follows that, denoting 3,1 by =2, etc,,

B =edy (LB g E5405
[ =0, [v,] = o, (.4.22
[ad=2 B -ayn, [y =2e0-1,

2 R
al = ;% £t + 2fW b | = - 2ff*, (1,4,23)
a.l* =£‘nl2-+ at Yyt b1] =~ £(y+1),

The junction conditions (1,4,5) have been used in wribing

down the above equations,

1.4, The equations of motion

Because of the new notation and techniques, the
various steps in the derivation of the equations of motion
are given below, in detail, In the new notation, the non-

vanishing componernts of the metric tensor are given by

+ + + +
o = g7 T = b“
SO = e (1,4,28)
'3 == e

81 = 1, gz3 = b Sin- €,

61 _ 2N = i

TO e g - b_":. ’

N . - (1,4,25)
filr 1 ., a- 33 sl =2 s

gL = , g, =D, Sin .
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Similardy, - the nonvanishing Christoffel symbols arc given by

o9t =-tei, EERE R
FEIRE BRI

b* =3 & arvay), 22 =3lv, (.20
SR A I

Bt sl E o on), EE o-cet e

3% = Th tsud e,

The distribution part of the Ricei tensor is given, according

to (1,4,19), vy

So0 = - Clepds = -z3a| Lals,

51 = Llog*2Meds = ~%[CayJs = s

01 00 *-= 1o2- -z Ly 10

84y = 2 ['[‘13]5 =_b"‘1[ Eb1]6, (1,4,27)
Spo T - EI_nga - “%‘ail Eb.‘:lﬁ‘,

) - 2
835 = ~ [ 3370 Sgp Sin” €,
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The same tensor, with raised suffices 1is given by\

00
S = CvyJs,
01 1 -1 ‘ 10
S = -5 {a; +2" b, Jo = 57,
11 1 2, =1
S = [aa + 2a%p b1:}6 ; (1,4,28)
522 & 1 ab” [b1 el
%% = 522, sin e,
and its trace by
~1
S = ~ 2ab Cv,J6 -2 [a,]s, (1,4,29
The components of the material energy iensor are given by
00 o =
t = I Eb“] ] 6 '
R 411 :
| (1,4,30
22 1 -2 1 =T e e
t = zab” | [ by ]+ 5D Ca, s,
£ = 22 /sin’ e,
The last two of the equations (1,4,20) are identically
satisfied, and the other two are
00 00 0 00 0222 L
t:U=t,O+(FOO+]'Og_)t +2 5 t°° =0,
* ('1,4,51)
v _ ~1,00 1,22 _
t o, =l t * 22t =0,
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= 1.8z

Explicitly we have to solve

along with at' Y =1

af(a’ + 2£') = g

The validity of constant solutions, which can be casily

checlted, implies that these equations are consistcnt, In fact,
made
following a suggestion/by Bapapetrou (1980; private communice—

tion) we show below that the first two of (1,4.32} rofuce to

identities by wvirtue of the last two,

Thus, the first of (1,4,32) can be written in +he forn

al P~ -2 -1 £ = %.313. (1,4,33)

’

where we have used the values of the bars and brackets, given

in (1,4,22) and (1,4,23), Prom the last two of (1,4, 52)

al Y- 2¢'y -1 =0 (1,4,34)

Substituting in (1,4,33), we have an identity by virtue of the

i REC\ASIDN. DDOETH
i OO VASICON- PG

waina of g ! piver in (1 4 23 Cieijisns

- e ad
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(1,4,32) can be shown to be an identity by repcated use of

(1,4,54),

It follows that the hypersurface of discéntinuity

corresponds 10 a material distribution, The definins fuaction

f can evolve arbiirarily, and some additional conditvions,
like an equation of state, are necessary to make the motion
of the hypersurface determinate, This point is diccussced

in greater detail in section 2,4,

These results, therefore, agree with the resulis
obtained by Papapetrou and Hamoui (1968 ¢ 1979)
as an extra equation is required for specifying the motion
of the hypersurface, However, the techniques developed here
are more general and ars easier to handle, Thus, ecaxlicr
authors could not write the equations of moction in She simple
form (1,4,20), beczuse the r;ﬁ are undefined at 5 = ¢
and (1,4,263 nakes sense only after the product of & Jisconti-
nuous function with a delta function has been defined, Again,
with the theories developed earlier, it is computationally
very difficult to handle the azisymmetric case, and these
theories are not designeé to deal with discontinuities in

A

the With the present theory, a solution to hoth thesc

By o
cascs is feasible, bul would be given elsewh-re,


http://www.cvisiontech.com

- 20 -

1.4,4 Other applications

One of the reazons for the apparently overdeiermined
nature of the equations (1,4,32) is the restriction that the

functions @ and Y, defined by (1,4,4), be functions of

P

the single variable u In the next chapter, it is piroposed

to drop this restriction, and use the Reissner-lfordstrom
nmetric to construct a shell-like model of extended charged

mrticles,

Other applications, to singularity theory, are obvious,
Much of the work in singularity theory uses hypotheses which

imply that the are continuously differentiable,

&y
Therefore, according to Section 2, these results are not
congistent with the existence of matter in the form of yarti-

cles, and, hence, are not applicable to the real universe,

1,5 Conclusions

In the existing theory of relativity, the &y, CAANOT

be everywhere continuously differentiable, Discombinunitics

in the are permissible, The spherically.syumetric

€
surface layer at the Schwarzschild-Minkowski junciion can be

sfétionary,
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CBAPTER Il

A RETATIVISTIC MODEL OF THE TIECTRON

2,17 Introduction

In this chapter we consider the following two problems

(i) Can a charged, spherically symmetric, surface layer

exisgt in a more-or-less stable manuer ?

(ii) Can such a surface laver oscillate ¢

More specifically, these problems are considered in whe context
of the problem of constructing extended, shell-like mocdels of
elementary charged particles, In this context, the cignilicance
of these problems rests on the fact that relativity theory
deals with matter, and matter consists of particles, Therelore
it would seem eossential, for external consistency, taas parci-
cles should be allowed to exist in the theory of relativity,
Various reasons favouring an extended model of the clscuron
for example, are well kncwn (for instance, Dirac, 1962a, 1962Db),
however Raju (1980a, 19804, 1980e) has put forward some new
arguments, Although these new arguments favour a shell-like

structure for elementary particles, such structures are also
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recrired on purcly relativistic grounds if extended particles

are to exist in relativity theory,

At this stage there arises a very fundamonial cuestion,
Since the nexus between relativity and nuclear physics is, &3
present, so hazy as to be almost imperceptible, can it De
seriously asserted that 'particles' according to relativity
have any resemblance tc the particles sncountered in nuclear
physics ? 1In fact, is there any serious justificaiion Tox
cxtrapolating relativity to the domain of microphysics 7 Mawny
physicistis believe that there is no such justification, amn
that relativity can be applied at the level of microvlyzics
only after it has been integrated with guantum mechanics,
However, it must be emphasised that these beliefs are not born
out of any theoretical necessity or empirical compulsion,
Moreover, the theory of relativity, as it exists today, is
valid without reference to scale and is supported by firmer
evidence than mere dimensional considerations, Finally, if
ve were to accept the interpretation of quantum moc:anics,
prroposed in the next two chaplers, as a thoory of extcnded
particles - since it is claimed that this interpretation is
forced by the existing formalism - then there is every reason
to construct models of elementary particles based purely on

ralativistic congidevations
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In the last chapter a necessary condition for tae
oxistence of particles in relativity, without the introduc-
tion of new phenomenology, was pointed out, According Lo this
uecessary condition, the components of the metric we.:scx cannct
be differentiable everywhere, Here it is pointed oub Hhat

above condition is also sufficient for the existeuce of &

realistic model of elementary particles,

2.2 Specification of the hypersurface

+

We will assume that the shell, or surface layer, 1s
cuagi-isolated and spherically symmetric, Both uncherged and
charged surface layers will be considered together, The
external metric will be taken to be of the Schwarzschild itype,
in the case of uncharged surface layers, or of the Relssner-
Fordstrom type, in the case of charged surface layers, It will
be understood that the curvature of the shell is largew than
the critical curvature (Schwarzschild radius) so thot the
external metric has no singularity, The inferior metiic will
be assumed to be any metric that can be transformed to the
Minkowski type by nmeans of scme coordinate transformatlions,
Mhe components of the metric teasor will be taken to be con-
tinuous across the shell, with ossential discontiaunliies in

some of their first derivetives,
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He will use curvaturc coordinmates (t, r, 8, 7., as
opposad to the radiastive coordinates‘(u, T, ., @7 used carlier
in Chapter I. in the case of charsed surface layers, o
varticular simplificetion is obtained by the uce of rudintive
coordinates, ‘e will suppose that the equation of the hryoer~
surface, © , corrcsponding to the shell-like distribusion of

(charged or uncharged) matter, is given by

r o= £(4) . (2,2,1)

&

Transforming to the coordinates (t, z, ©, #) by neass of the
transformation r» —> z = r - £(t), the oquation of 3 ig

3imply gz = O

-

The external metric is given by

a8 = g (g r D at? - 20 ¢ Tasat ~ g as® - (o3 ()

+ S

1

- D
vhiere g = il

. _ 3 It * A
g =glz,t) = (1 - To+2r . fonpy2? 6252080

1
g *
k. being zero in the uncharged case, The internal meiric is

given by

dsf = (1-F'%) a7°_ 2P+ az ar - az°- (z+P)°a ifl2

b

Ve g g o/
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vhere (7, 7, €, @) are obtained from (t, z, 6, # Dy means

of the transformations™

iy

a (t, =z)

(2,2.5)
B (t, =)

Z

Here, R = F(T) is the equation of the hypersurfacc in 4he
interior curvature coordinates (7, R, 8, #), in which the

metric is Minkowskian, 4s before, 7 = R - (D),

Wle suppose that the components of the metric tensor are

continuous across the hypersurface, That is
[g#,u] = 0 (2,2,6)

in writing down(Z2,6) we arc using the earlier notation

given in section 1,4 2,

3L

"In Papupetrou and Hamoui (1968) and Chapter I the trans-
formation functions a,B in (2,2,5) were restricted %o
be functions of the single null coordinate,


http://www.cvisiontech.com

- 26 ~

2,2 The equations of motion

+

Writing 8, @S gzu X+ 8, X~ , and using the proper—

carlicr A
tiew do¥ived -/ we have, from the usual expressions for

the- Christoffel symbols and the Ricei tensor,

il

L ot J22 ]
r;a r;c X ¥ [Lc X ’
(2,3,1)
+ + - =
R »R%X+RMUX+S

£y g 1

B a + 1 )
where . 8§, = [ ]';m ] X,u .- [y J 8(2) (2,3,2)

from (1.2,13), Since the interior and exterior fields have

been chosen to be free, the equations of motion are, as before,

tMU.
D

= 0 “ 7(2_3.3)

vhere £ o g _ % gMU S. (2,3,4)

gHv and S being defincd as usual,

To simplify the derivation of the equations of motion,
tie internal and external metric tensors will be written in

the form

* 5 oz a
ds = a° dt2 + 2 4tdz + ¢ d22 + Db d Lfl2 (2-3.5)
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whers

a

L. a
T g

il

i

I
L)
ol

+
Hy
S

it
I
g

» Py

functions

il

I§

i

With this notation, the Christoffel synmbols arc given by

- 27 -

' = 2\ 2 2 1
= = it = A 7 3
(g ==’ =) a (1.7 )at @t 2T o, B,
BT o= _ (M)
~1 oo = (1_F'2)a = !32 - 2F'O' B
z Z' 7
il =2 (1-F'9) p
g L SL 104, - ﬁtez
1
- F (atBZ + azﬁt>
(2,3,6)
y €tc, denoting the vartial derivatives of the

a and B,

£

g1+(e ey - @ a; — N2y a‘)

+ o+

g1+(e Co - 2¢7az)
‘1(20ic + >
814 e c1 ~ 2¢* p1
-1 i ot

g‘[_,_(gc bO - e b-T)

+

|-22 S:i.n‘2 &

1 1. x

) bi L

1]

I

it

g?;(Zaiaf + eiai - 2dieg)
g?l(afei = 2@?0%3
Sl - ool — 2vtel)
gy, (2a L? - cibi)

[’221 Sin® 8

A
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Z el N, S Dy o
12 = 3 b %] 3 5 by by
X 3.."2
réB = . 8in € CCos & ré3 = Cot 8 (2,3,7
whers
g:f » ef ~ 4 a* ot (2,3,8)

axd &d,, is denoted by Bq, ete

The components of the distribution rart of the Licei

cngor ars given by

on + L r-010:'6 -

i1

a![a1:}5

N~

[#2]
>
l

" 2 0 1 =
oy ]:gl_og + I_ona 2“16[[31 _15
s, = 1 1N N
510 = - Lijpde =-ze¢|[a; s
2 ) 1, =
S19 = L2hz * [igds = 5 Lav 'y - ea, J6
B N 1 _ 1 =
Lor Bk “[:52]5 "‘Ealtqua
S35 = - [ [35]06 = S,, Sin° @ (2.5,9)
33 = = 35* = 22 D1 0)09

in arriving 2% (2.3,9) we have already used the :wie-
tien conditions (2,2,6) to comclude that Ca, = [y ] = e 7]
= [e,) =0, Thus, [aT] is & function of % that is idewti_

Cally aewo, heneey e ] = |a] vo ' = V.
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The Ricci tensor with raised suffices is given by

00 1

59 = 7 [2ca, + Sl

s = | %r- Leay + 2aeb"1b1 18

s'T = 'ji |:2aa.1 + 4a2b"1b1 s

§?2 = . %ab"gi Loy o

$?? =  8°2 ssin? e (2,3,10)

and its trace by

=l
La; + 2ab” by ]6 (2,3,11

nof >

The naterial energy tensor is given by

99 = vy [p 36

501 "oy 10 a1 Ll

£22 = %b_” [31 + ab1]5

2 = 422 s 5in? e (2,3,12)

Two of the equations of motion are identically st

1z
¥

A

ficd and the remaining two are given by
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t
o
"

00 o)L 00 , ,~0 , ,22
t,O + (oo * Eig)il T 2y | 477 =
(2,3,13)

1, ,00 1, .22
loo | £+ 2[5 | 4

“hoze equations have to be satisfied along with the Junction

coz:ldi_'tions
[ = [v] = [cJ = [e] = 0 (2,3,14)

Using @5 44 etc, to denote the boundary valuecs of

a,(t,2) o (t,z) at (t,0) and letting

2m K
A s 1 o =4
e
1 2 2 ‘
B = —a"g- (CLO -~ £7) . (2,3,15)
0 LS
- X * P
D = — (£ @ ~f ao)
o]

the values of the various bars and brackets, involved i

'2,3,13), are given below, We observe that the junction condi-

tion 'Eﬁ] = 0‘ has been used to eliminate the extra variable I

La]

a1l 29y ai B

v £°2 % = 0 (assumed throughout)
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) 2= Bqﬁ_ ﬁ1a;1 (B, + 2f‘a1) h
[e] = - 2¢a~1 . 2Be oy + 2678, (2,3.16)
[ao_d = [boj = [coj = [eoj =0 2,3,17)
[, = 4425 %% . 2f'a;D - 2a_a'p + 21 p,
(6,0 = 288y + £7ajazls 1)
Ec1:] = A'A-e + 2a13a;2 f’D " 2a1a11}3 + 2:31;'3”
» 2afa7lp D + 2r" ez (ay 8y v P41
Ceqd = 26'a"a7% 4+ 42"a2aTp _ 2D (aya,
+ a1;311) + 23;@1 + 2a151D
+2r o=l (alp, aPrq * 4B (2,3,18)
al = ai B
b = -2
c| = ~ A~
e] = - o2¢'a- (2,%,19)
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1 LI S~ B 2 LI | ! - ¥
al = zTAATTGTHET) £ £ AT - £ Da +Tau
b | = - 2£f
QO
. 1 + v D v2__'1 1 ? -
ol = pTAATT - £ efa D+ agdy B ByBy - Byl
v _1 1 '
- £ oag (agBy v ayhy)
N w1 o v D 1 1 1
e, = f AT + £f'AA T - T aTD + B(aoa,] + aoa1)
I ! i
~aBD - £ a(a By + aB) (2,3,20)
N P - TR 2 ' v t 4
D I = o f{(1 + B, + f'a a—1)
1 1 1 0
L3 . v v 95 .2
cql = mAATT - £ o TaiD + aga 0B
2 -1
- BBy -2y Ppeg D
- f“o.""I (a, B, + a ) (2.3 21)
o %1171 1711 2el)

1t follows that we have § equations involving
6 variables f,o_,¢,,B,,a,,,8,,, since the equation h] =0

hes been used to eliminate the extra variable F
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2,4 Discussion

It is apparent that the above sauations arc under-
deternined, and that the presence or absence of chavge does
not, in any way, affect the underdetermincd nature of the
equations, The physical interpretation of this indeicrninacy
is simple, 1In the macrosoopic case, the matter in the shell
would consist of parivicles, and the motion of the shell bocomes
deterninate only after the interaction between these particles
hes been specified, That is, the cquations ars underdeter-
nined because of tho absence of an equation of state, Ounce
an equation of state has been specified the motion of the
shell becomes completely determinate since only one morve

cquation is required,

In the microscopic case the situation becomes a little
more difficult, This happens because the concept of an equa-—
tion of state is cssentially a macroscopic concept deriving
its justification from the kinetic theory of fluids, This

heory, however, is based on the assunption that maticr
consists of particles interacting amongst cach other in a
certain mammer, Therefore, the very mention of an cquation

of state would be based on the assumption that the naitter in
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the shell (e¢lementary particle) can be further subdivided

into other 'particles' which interact amongst %themsclves like
gas molecules, Melither do we have any justification for such
an assonption nor Aoes this process cf subdividing cleucite v
particles have a logical conclusicn, 1t follows that, in the

microscopic casa, we nust look for some alternative procodure

12 neke the mobion of ghell determinate

.
Before pointing out this alterﬁative proceduire, we

re-exanine the old argument concerning the effect of Hhe
relative strengths of electromagnetic and gravitational forces
on the stability of clectrons, for example, The point is that
this argument is based on the assumption of a particular equa—
Tion of state for the material in the shell, As seen above,
whis implicitly assumes a subdivision of elementary nariicles
into smaller particles interacting amongst themselves by means
of gravitational and clectromagnetic forces, Disoarding-the
coﬁcept of an equation of state, rather than introducing new
Phenomenology, seens, thercfore, the best method of countering

this argument,

The correect procedure in the nmicroscopic casc is,

sinpl to prescribe an egquation of motion, In the ndcroscopic
Y g
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{

casc, this is equivalent to prescribing an equation of shate,
But, in the microscopic case this eguation of moition nust he
independently verified without refercnce %o an equation of

state,

Thus, according to this theory, matter in its ultinate
form is closely related tc the occurrcnce of essential discon
tinuities in the first derivatives of the field funetions,
in general, the occurrence of cssential discontinuitics in the &,
1s only a necessary condition, but for the shell discussoed
above this condition is zlso sufficient, We reiteratc that
by prescribing an equation of motion we have not introduced
any new forces, Instcad we have rejected a particular cxtra-

polation fronm the macroscopic to the microscopic level,

Next, it is necessary to consider the problem of @scor-
taiﬁing the validity of a particular equation of notion that
nay be prescribed, The procedure we propose is necessarily a
- 1ittle indirect, Mewtonian dynanics can be expected to
an accuratce description of the motion of the centre of nass o
the particle insofar as this motion rercins unaffccted
notion of the shell in the centre-of-nass frane, But, in

gencral, the motion of the shell, in the centre-of-iass franme,
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is bound to modify the motion of the centre of mess, The
form of this modification may not be immediately apparent,
This will become clear in Chapter IV where we show that a
description of the dynamics of such particles leads o nany
of the main Teatures of guantum mechanics,

One last point that needs nention, We have cusimed
that relativity theory is valid in the interior of the elzc-
tron, Is such an assumption justified ? Thgs, Dirac (1938,
1962b) has asserted that the interior of the elesctron does
710t lie in the demain of physics and one can expect & braai-
down of physical laws there, Simildazdy, TYukawa (1564, and
the rsferences cited therein) has suggested a breakdown of
Lorentz invariznce in the 'interior' {(region of exieunsion)
of an extendad particle, Our results indicate that this issue
is not significant, as long as we assune that the parvicle
%%nteracts at its boundary with the external world, Vhelher
or not we assume the continued validity of physical laws in
the interiof of the electron, we cannot say anything about
the motion of its boundary’ A definite statement concerning

the motion of the boundary can only be made in the wake of

gome new empirical or theoretical developuent,
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Actually, the breakdown of Lorentz invarisnce in the
interior of the electiron can affect the external bhehaviour of
the electron only in the sense that an sxternal stimulus

applizd at one 'point' on the boundary instantancously affects

o

the motion of the entire boundary, Tub, this can also b
expacted 1o happen hecause of the infinite ‘mass densiuvy® at .
the boundary, Naturally, this discussion of microscopic
phenomens using macroscopic notions is bound to be gsomewnat
misleading, Nevertheless, breakdown of Lorentz invariance
in the above sensc would imply the existence of advanced
radiation that can be detected empirically (Appendix 3 and

enclosure),

2,5 Conclusions

It is possible to construct shell-like models of
cxtended charged particles, without significantly modifying
reMgiivity at the micro~level, and without introducing new
vhenonenology, Shell-like structures with a 6-fmction

nass density can evolve in an essentially arbitrary mamner,
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CHAPTER 11X

INTERPEETATION OF THE INDETERMINACY
RETATIONS

3.1 Introduction ¢

Heisenberg (1927) initially formulated the inmdeder-

minacy relations in the form

5 Op 2 ﬁ, 5,1,1)

where Gq and 5p denote the 'uncertainities', or standard
deviations, in the (i th) position coordinmate ¢ and the
canonically conjugate momentum p (of an eleciron, say! and

'ﬁ is the Planck constant divided by 2 n,

A number of interpretations of the indeterminacy
relations (3,1,1) have been proposed (see, for insfunce,
Jamme;?'1974), Motivated by Heisenberg's thought experimen
and the above way of stating the indeterminacy welatious,
the conventional interpretation asserts that it is impossible,
in principle, to specify the simultaneous values of caacni-
cally conjugate variables to an arbitrary degree ol cccuraey,

Alternatively, the so-called statistical interpreiction


http://www.cvisiontech.com

asserts that the product of the standard deviation of two
canonically conjugate variables has & lower bound, In this
paper, it is pointed out that these assertions are mislead-
ing, if they are considered as interpretations of the precise
form of the indeterminacy relations, The corrvect inberpre~
tation necessarily leads to the conclusion that the particles
described by guantum mechanics have some finite

extension in any state, 4 somewhat similé@;_ but less
general, approach was developed by Yukawa (19500, 1950

based on Born's reciprocity relations,

3.2 The formal statement

Within the classical axiomatic frameworlk for quantum
mechanics (von Neuman, 1955), the indeterminacy relations

take on the more precise form
a, Var (Q1¥ ) var (B} ¥) >k /4,
for any state ¥ * | (3,2, 1)

Qhere ’3‘ and ﬂ} are hypermaximal operators, corrcsponding
to position and momentum, on a Hilbert space H, Zhe state;
¥, is an element of H common to the domains of 45 and 4},

and Var (,]| ¥) denotes the variance of an observable in the
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state ¥ | The above inequality was first established Wy
Robertson (1929), and it was pointed out by Ditchburn (1930)
that the apparent discrepancy in the right hand side if due
to ti:2 assumption, by Heisenberg, of a gaussian distribuiion

Tor position,

5,5 gQualitative differences

The left hand side of (3,2,1), however, introduces
some qualitatively new features, which, though secmingly
inconsequential, lead to & real discrepancy, The first
feature lies in the concept of position * the form (U 1,1°
suggests that the position is a classical rancom variable,
whereas the 'position' appearing in (3,2,1) is an operotor,
Following Wigner's (1932) observation, it is known tha’t the
gquanvum mechanical position cannot be a classical raandom
variable if linearity is to he retained,

The second new feature is the explicit apveoarcice of
the state in CB,é.1), Although Heisenberg (1927 usecd the
analogous concept of the wavefunction, (3,1,1} does nol
eiplicitlyinclu&e the state, On the other hand, in tac
axiomatic formulation, it is meaningless to speak of cxpecta-

o

tions and variances, without first specifying the state,
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The third, and most important,ncw feature is that the
variances in (3,2,1) depend only on the observable wid the
gtate; because, by definition

var (B1¥) =<9% %, 9> - <Ay, ¥ (3,5,1)

{, , .,»> denoting inner product in H, Thus, once an operator
Gj, or a unitary egquivelent, has been assigned to the position
observable, the variance in position, in a fixed siaie, is a
fixed quantity governed by equation (3,3 1), In porticular,
the variance in position, in a given state, remains fized,
regardless of any intention to measure the momeuium, simvlta-
neously, or otherwise, Finally, in contrast to (3,71,1),

(3.2,1) holds even if the position and momentum are mneasured

at different times, provided the particle is in the same state
on both occasions, i,e,, if fEF iz measured at time ¢ and i;

.

is measured at time t°, the (3,2,1) holds, provided ¥ (L} =
¥ (")
¥ (t) = ¥ (') does not, in general,imply that t = %7,

The last equation is trivially true if + = 1", but

]

s,

Hence, simultaneity, which was explicit in (2,1,1), is not

logically necessary for (3,2,1),
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5.4 Talsity of the conventional interpretation

Due to the presence of these new features, a part of
the usual interpretations of the indeterminacy relations
stands falsified, To see this, with regard to the conven-
tional interpretation, we observe that there are two possibi-
lities @

(2) The term ‘'simultanecous’® is inessential, and it is the
case that it is impossible, in principle, to spccify the
values of an observable, to an arbitrary degree of accuracy,

~

(b} The term 'simultancous' is essential, Hercc, if either
of the canonically conjugate variables is measured separately,
it can be measured, in principle, to an arbitrary degree of
accuracy, This point of view is based on Heisenberg's thought
experiment, whng_suggests that Gq and Gp are dependent on
the design of the measurement process, hence, ultinmately, on
the intentions of the observer - if the observer chooscs to
measure the position of the electron more accurately, he can
do so, without qualitatively altering the electron, provided

he gives up all hope of measuring its momentum,

The conventional viewpoint has generally beex tnonght

to be represented by viewpoint (b)! However, as equation(3,3,1)


http://www.cvisiontech.com

--4_3_

shows, in axiomatic quantum mechanics, Gq depenés only on
the state (or the instant at which the measurement is carried
out) and is independent of the intentions of +the obguerver,

It Tollows that 6q cannot be altered, leave alone meade
arbitrarily small, Hence, the implication of viewpoint (b)),
that Gq cair, in principle, be nade arbitrarily small, is
false, Consequently, viewpoint (b) itself must be falsc,
Simif?érly , the 'statistical interpretation® wiich gecms to
be né\;ore than & verbal restatement of (3,2,1) needs to e
supplemented with the statement (3,3,1), Otherwise, there

is the danger of committing the customary fallacy that only
the product, and not the variances indinvidually, must be honnded

velow,

The abovqiﬁgasoning has demonstrated that the uswmal
interpretations of the indéterminacy relations are fallacious
within the framework of axiomatic guantum thecry, It is
possible that this incompatibility arises from an vnfortuate
choice of the axiomatic framework, However, with a historical
perspective, it is clear that the axiomatic formalism has
contributed a great decal to the success of quantun mechanics
in practice, whercas the indeterminacy relations, in the form

(3,1.1), hawe usually been reserved for philosophical disputes,
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An additionsl reason for believing in the falsity of
the usval interpretéetion is that it makes certain woicoiiscious
assumptions, Thus, when it is suggested that Gq can be
nade arbitrarily small (by letting 5, becomo large), il is

agsumed, & priori, that the particle is a poini mass, and

that it is meaningful to speak of its cxact coordinsics,

Such an assumption is usually justificd in classical physics
because of its great simplifying value, and becauvsge, in
classical physics, it can be demonstrated that this simplifying
assumption is frequently of no consequence, However, ii
guantum mechanics the assumption can at best be justified, a
postcriori, as a consequence of the formalism, Such Juatifi-
cation is unlikely % be forthcoming within the existing

formalism, in view of the discussion above,

5.5 Extended particles

While keeping open the possibility of a diastic revi-
sion of the axiom scheme for quantum mechanicg, hewre we will
consider only the possibility of providing an alicrnative
interpretation, more suited to the existing formalism, To
begin with, it might be thought desirable, from the opora-

tional point of wview, to relate equation (3,3,1) to the outcome
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of Some measurement pracess, In that case, it is clear that
equation (3,3,1) implicitly dofines, and refers to the outb-
come of, an ideal or optimal measurement process, The last
assertion is valid because, by deliberately introducing
errors, the observed spread in position, in a givoen siate,
can be made larger than that prescribed by (3,5,1), In any
as a conseqguence gf (3,2,1) and (3,2,1),

case,

Var (0 17) 2K (1)=X> 0, (3,5.1)

where X 1is independent of the process used for measuring

the wvariance,

For a single particle, of non-zero rest mass, the
inequality (5,5,1) necessarily implics that the particlce has
some finite (as opposed to infinitesimal) spatial exiension
in the state ¥, For, suppese this is not the case, i,c,,
suppose the mass of the particle is concentrated atv a poimt,
Then, by (3,5.1), no process of measurement will eveor serve
to reveal the exact coordinates cf this point, Operationalily
this is absurd -, because the essence of operationalism lies
in the assertion that there is no dichotonmy between physical
reality and the results of measurement processes, Iven

otherwise, it would not be possible to assign any spccific
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coordinates to this point (&t which the mass has hourn supposed
to be concentrated), because the validity of (3,5,1) would,
thenﬁhave to be accounted for in terms of secondary (hidden)
causes, or hidden variables, Without going intc the currcnt
status of hidden variable theories (reviewed in Clauser and
Shimony, 1978), it should be pointed out that this asscriion
would lead to a denial of (3,5,1) under some conditiomns, and
hence to an extemsion_gr rejection of the existing Tormalisn,

As such, the assertion, of point masses, would be a statement
of a belief about empirical facts, ard would not counstitute
an interpretation of the e¢xisting formallsm, which it contra-

dicts,

To sum up, if the existing formalism is accepied, then
it is operationally meaningless, ané theoretically inconsis-
tent, to assert that the mass of the particle is concentrated
at a point, Sincc the mass of the particlc is assumcd o
exist, and since it camnnot be said to exist at a point, 1t
nust necessarlily be distributed in some manner, i,c,, the

particle has some spatial extension depending on the state ¢

3.6 Indefinite localisation

In considering the manner in which the cxtcnsion

depends on the state, we observe that it is s1till possible
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to have an analogue to the process of letting & Tead to
= o (o] 0

gero, The analogous procedure consists of measuring whe

position of the system (particle) in states ¥ with
L

var (/q\ ! Hn) ..<..- 1/n9 o= 192!3!-0- (59601)

However, in admitting the pbssibility of states with arbitia-
rily small dispersion, we also have to admit
2
var (D1 g 2nh /4, n=1,23,,., (562
VA Ak
Now, because “p is self adjoint,
Dy 2 .
var (p{v)= [ x" KEa (@x)¥_, ¥ ) - x < I (@)Y ’{>j
™ o () AR U ST

(3,6.3)

where Eﬁﬁ(dx) is the spectral mecasure induced by fﬁ, Since,
for any state ¥ |, (Eﬁﬁ(dX) ¥ %) is a probabiliiy meusure,
Var (ﬁ;[ Tn) can satisfy inequalities of the form (3,6,2)
only if c(/ﬁ) is unbourded, The implication of <his fact
is that incgualities of the form (3,5,1) arc pessiblc ouly if
the momentum is allowed to a2ssume unbounded values, [ the
usual interpretation, it is only the 'measurencnt crror’ in
nomentum, and not ﬁhe momentum, per se, which has to assume

unbounded values ‘in the process of letting Bq tenrd fo zero,
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This obscervation is not vnique to the axiomatic formalism -
it is also true if p is reéarded as a classical random
variable, Even in the framework of de Broglic waves with
wavelength A = h/p, 1/2 ), regarded @s a measure of Ihe
non-localisability of the particley can be made arbitrarily

small only by 1e%tiﬁg-the momentum become arbitroerily large,

Now, the possibility, of the momentum bccoming arbitra-
rily large, is customarily admitted in guantun nmechanics,
although it is possible to chqose onc of the operators, corres-
ponding to position and momentﬁm, ag bounded, Thc cuslomary
choice has the unfortunate conseguence taat the kinotic
cnergy, or the free-particle hamiltonian, becomes unboundoed,
Onc of the arguments against such & possibility is that the
encrgy of a 'free' particle can increase only st the cxpeuse
of the cnergy of that part of the universe which is causally
connected with ihe particle, If the energy of this part is
asguned to be cénéerved and finite, the cnergy of the papticle
can increase indefinitely only if the encrgy of the rest of
the universe can be allowed to decrease indefinitely, i,c,,
the encrgy of the rest of the universe must be allowed wo be

unbounded below, Alternatively, the potential encrgy of the


http://www.cvisiontech.com

—4_9-...

particle must be allowed to be unbounded below, this poten-
tial being croated by other particles in the universe, Hence,
a beam of frec elecctrons should behave like a beam of elze-

trons in an infinite potential well!

¥

Thus, apart from the obvious risgks, faced by a theory
which claims to be fully operational, there arc coriain
theorctical difficulties in admitting the possibilits of
indefinite localisation, in principle, 1In short, the conclu-
slon, that particles (having non-zero rest mass) described by
guantum mechanics nmust necessarily have some Tinitc spatial
cxtension, is independent of the state unless the possibility
of producing an indefinite amount of energy is cxplicitly

adnitted,

Although this conclusion is interesting in itsclf,
it is made even nore interesting by the fact that simildn.-
conclusions can be drawn using the theory of relativity,
Thus, according to relativity, a mass point, of mass I,
will be surrounded by the Schwarzschild singularity of radius
r o= 2Gm/02, Henece, & mass point, in its interacitions with
the external world, should behave like a black hole, Sixnce
real particles cannot be said to exhibit such behaviour,

according to relativity, real particles are not nass points,
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apparently, the only known way of preventing an extendcd
nass distribution from collapsing, without introducing

H
altogether new phenomenology, is to  attribute a shell-like
structure to the distribution, as was done in the earlicr

chapter, The components of the metric tensor, or, at least,
2

their first derivatives, nust have a discontinuity at the

surface of the shell,

Once such 2 shell model for extended particlos has
been construdted, it is natural to think of interpreting
guantum mechanics in the context of such extended »narticles,
This apparently naive expectation is partially boruae out in
the next chapter which proposcs to interpret quantun
nechanics as just the approximate classical statistical

dynenics of such cxtended particles,

3,7 Conclusions

The usual interpretation of the indeterminacy rela-
tions is fallacious within axiomatic quantun mechuniecs, Within
the axiomatic formzlism, the indéterminacy relaticngs uccessa-
rily lead to the conclusion that the particles (having some
non-zero rest mass) described by guantum mechanics have some
spatial extension, in any state, 1In no state can such parti-
cles be indefinitely localised, without explicitly adnitting

»»»»»


http://www.cvisiontech.com

CHAPTER IV

L

INTERPRETATION OF QUANTUM MECHANICS AS
A THEORY OF EXTENDED PARTICLES

4,1 Introduction

The problem of interpreting quantum mechanics is well
known, and a review of the better known interpretations can
be found in Jamwmer (1974), More recently, a large class of
(local) hfidden variable theories have apparently been falsi-
fied (Clauser and Shimony, 1978), although the relovence of
Bell's inequalities has been questioned - for insiance,

Lochak (1977),

Here, we propose to adopt an altogether new approach,
The logical basis of this approach is the assertion (Raju,
19804) that an interpretation of the precise form of the
indeterminacy relation necessarily leads to the following

conclusions ¢

(1) The usual interpretation of the indeterminacy rela-
tions is fallacious within the axiomatic framework

for guantum mechanics,


http://www.cvisiontech.com

(ii) The particles (of non-zero rest mass) described by
quantum mechanics cannot be localised, and, heunce,

must correspond to extended mass distributions,

It is,therefore,natural to think that the preculiar
pattern of gimilisrities and differences between classical
and quantum mechanics arises because of the extended =nature
of real particles, In fact, by virtue of (ii), there is a
deffinite theoretical necessity for interpreting cuantum
mechanics as a theory of extended particles, In this paper,
it is pointed out that many significant concepts of guantum
mechanics have a natural counterpart in the conivext of a
semiclassical description of the dynamics of extended parti-
cles, Looking at it in another way, the ideas presented
below also have a direct bearing on the problem of describing
the dynemics of extended particles in & manner that is Lorentz

covariant and compatible with quantum mechanics,

ﬁ;2 The model for extended particles

The further development of this theory requires a
model for .extended particles, Apart from spherical symmetry
in the rest frame, the main restrictions to be imposed on

such a model would be the following
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(A)  The particle interacts at its boundary witl the

external world,
(B) The particle pulsates uniformly in the rest frame,

Stated more mathematically, restriction (A) asserts that the
mass of the particle is distributed (in the rest frame) over

a spherically-symmetric hypersurface, i,e,, the perticle is
shell-like, TFrom the point of view of relativity, swvch shell-
like models seem to be necessary to overcome the classical
pnenemenological argument concerning the imbalance beiwcen
gravitational and electromegnetic forces, A similay assump-
tion has alsc been used in time-symmetric electrodymamics by
Dirac (1938) and Raju (198(8), although the cmpiricrl con-

sequences cannot be said to have been conclusively verified,

Such shell-like models have been construcied by
Pirac (1962b), for instance, by introducing new phenomeno-
logy to offset the inordinate imbalance bctween gravitational
and elecctromagretic forces, On the other hand, as scen
carlier such shell-like models can be obtained by suitably
altering the usual junction conditions in relativity, In
fact, the results indicate that charged surface layers can

exist and that oscillating solutions are possible, Althcugh


http://www.cvisiontech.com

_...54-_

oscillating solutions also occur in Dirac's (1962)
model, the advantage of this approach is that no new

phenonenology is introduced,

Thus, we have a picture of an extended particle os an
oscillating surface layer, obiained with or without additional
phenomenology, With this picture we proceed with the inter-

pretation of guantum mechanics,

4,3,1 Planck's constant

The first step is to introduce an analecgue of
Planck's constant into the theory, and comnect it with the
particular model, of extended particles, under consideration,

This is done by defining a constant h, by

1 = {A
EO hO UO ’ \:,2.1)

where EO is the energy, and Uy is the frequency of oscilla-
tion, measured in the rest frame, However, if (4,2,1) is to
agree with the usual quantum mechanical relationship, some
more restrictions are necessarv on the model of ecxtended

rarticles ¢

(C) The oscillations of the particle are linecar,
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(D) The frequency of oscillation, v, s is proportional

to the proper mass,

(E} The constant of proportionality is the Flanck's

constant (with ¢ = 1),

As the results in Chapter II show, these restrictions
are not unreasonable for a realistic model of extended parti-
cles, With Diracts (1962) model, in the linear approximation,
restrictions (&) ~ (D) are satisfied though (8) is not, The
consequences of any possible nonlinearity are evaluated in

Section 7,

Thus, in the context of extended particles, the wave-
particle dwality, implicit in (4.2.1),is interpreted as arising
from the pulsations of the particle, Incldentally, we obscrve
that the frequency of oscillation also leads to a loveniz
covariant description of the c¢nergy of the centre~of-mass of

the particle,

,ﬁ 32  The wavefunction

The next step is to introduce statistical considera-
tions into the theory, This does not require any further

restrictions because a particle in the real uvniverse ig never
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isolated, The external field, therefors, is at best sfatis-
tically determined, For instance, the brownian modion of the
stars (Chandrashekhar, 1943) would induce fluctwations in the
external graviatational field, Similiarly, the random rotion
of nearby charged particles may be expected to produce small

fluotuations in the sxternal metric,

As a result of these fluctuations, the extension of
the particle (i,e,, the éurvaturo of the sphericel shell) and
the phase of its oscillations, at any instant2, are random
variables, We can combine the two to obiain a single, complex
valucd random variable ¥ , B 4% |¥ is, then, just the

¥l being whe extension),

mean surface area of the particle (
. = " 2

and this must, presunably, be finite, Thercfore, ¥ ¢ L™ =

i )Y ,3,m, (), 2,® being & standerd borel proba-

bility space, ¥ would he taken to correspond to the guanhum

mechanical wavefunction,

2 7 3 - 1 3% N o -F -
it is poecsible to spcak of *the curvature of the shell 4t any
instant', under the usual restriction that the norm2l to the

shell be time=]like.
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This assignment of a random variable to the state can
be viewed classically in terms of incomplete information,
Dut,vecause the entire cosmos is responsible for keeping this
information incomplete, it is concievable that it is impossi-

bls, even in principle, to have complete information aboutihe

tate

*

[&]

4,4 The Schrodinger eguation

Suppose the particle is in equilibrium with ifts surround-
ings, then the random process ¥ (%) is stationary in the narrow
seuse, i,e,, if p(tT, tg,,.‘.,tk} representa the Jjoiny dis-

tribution of ¥ (t4), ¥ (t27 resssy (%) then

p(t1 + 5, b, * S"“"tk + g8) = p(t1, t2"""tk)'
(4,4,1)
{(4.4,1) merely states that in statistical equilibrium a change
c¢f the time-origin has no physical significance,

Because ¥ e I?, gtationarity in the narrow seuse
implies stationarity in the wide sense, That is, E ¥ (%} is
independent of %, and the covariance E ¥ () ¥(s) is a
finction only of the difference t-s, 1t follows (Rozanov,

1967} that the map U(t), defined by

T(t) ¥ (8) = ¥ (t+s) (4,4,2)
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extends to a group of unitary operators on the subspace

H, = span J ¥(s), s ¢ IR g, (4,4,3)
L
Y

U(4:  extends trivially to L2, and, by Stone’s theorem, there

exists a densely defined self-adjoint operator H; on L2, sucn

that

UG(t} = exp (- i Hyt) (4,4,4)

The operator H1 satisfies the differential equation

% - ) .
ﬁU(t) = - iH U(t) , (4,453

or, since ¥ (t) = U(t) ¥ (o),

3y y
igr o= H ¥, (4.4,6)

Iet H = ho H, (4,4,7%

wiere h o is defined by (4,2,1Y, then the spectrum of H

e

Jjust consists of the enefgy values of the particle, hence H
is the Hamiltonian operator of quantum mechanics, H is
trivially bounded below, and if hy, is indeed the Planck's

constant then (4,4,7) is just the Schrodinger equation,

]


http://www.cvisiontech.com

_-.59...

Thus, in the present theory, the Schrodinger equation
arpsers s & consequence of (4,2,1) and some very geueral

statistical laws,

4,5 Quantum probabilities and the operator representation

Wigner, in 1932, observed, and later proved (Wigner,
19727, that a joint distribution for position and momewtium:,
consistent with linearity, does not exist in quantus mechanics,
This observation has led to numerous attempts &2t formalising
the notion of quantum probabilities, in the belief that they
are significently different from classical probabilitics (in
the sense of measure theory), On the other hand, one can very
i2ll adopt the point of view that Wigner's theorem asserhs o
failure of the operator representation, and that it is possible
1o Tormulate and work with quantum mechanics without introduc—
ing specifically 'quantum' probabilitics, Porther, ot the
very heart of the problem lies the insistence that the position
and momentum be random variables, In the extended particle
cilgz, this insistence may simply not be justified,

> B

Before considering the extended particle case, we first
consider some peculiaritics of the probabilities appeaving in

quantum mechanics, For definiteness, we consider the probabi-


http://www.cvisiontech.com

- 60 -

lities regarding the ith position coordinate 45 of a singie
varticle,
(i) The state ¥ itself generates a probability, since
8 H2 corresponds to the probability that ‘G? takes

on some value,

(ii) Correspending to cach state ¥ we construct a random

mneasure (i,e,, & hilbert—-space-valued mezggsure) 5
B = B (MY (4,5.17

E Dbeing the spectral measure induced by the self-

adjoint operator corresponding to {I,

(iii) Representing the state space as an L2 space of randonm
variables with zero means, we see that the probability
Qg (), that /a takes on some value in the region

A @I; m

| BAY ¥ [J°
0w ||

Q\E' (A) = (4-'5.2}

is essentially =2 ratio of the veriances of two complex

valued random variables,
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hs Wiener (1958) has observed, a substantial part of
the mystery of guantum mechanics lies in the fact that these
peculiarities have never been satisfactorily prlaiﬂeda. This
myslery can bz resolved, at least partially, in the extended
particle context, PFirstly, it is quite meaningless to speak
of the ‘*position' of the perticle, since the particle sinmul-
tanecously has several ‘positions', It might be a litile more
moaningful to speak of & portion of the particle lying in some
region A, But, if the particle happens to be very small, say

10#30

cms across, a tremendous amount of energy would be
recuired to resolve a portion of the glrticlg, So, for all
ractical puposes, and for the range of energies for which
quantum mechanics has been tested, it is quite meankngless to

gpeak of & specific portion of the particle,

The next best thing one can do is to speak of the proba-
bility that the particle, on observation, would be found in
somc region A, Since observation involves an interaction with

the externnl world, and since the particle interacts av 1ts

“Mathematically, & single »robability measure, P, con aliays
be represented as the variance megsure of the random measure
induced by a stationary stochastic process with covar.iance

=
pu]

\I
funection /f, vhere ‘E igs the PFourier transform of ¥,
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sarface, this probability would be propartional to the total
surtnce area of the particle in A, 3But, for a given region

L. the surface ares of the particle actually in A is & random

=
variable dependent on the state, and its mean value would be

taken to represent the abvove probability,

To summarise, one can speak meaningfully only of the
probability of finding the particle in a certain region, and
the probability of finding the ith position coordinate in
region A is given by

E Xy (A,w)

5 5)
E Xy (R,w) (45,3

Py (W)

vhere Xy (A,W) is the surface area of the sphere with
comtre O (say) end radius |¥| thet lics in the cylinder set
over A in three dimensions, Thus, we sae that || ¥[[ is
indeed proportional to the probability of fTinding the particle
somevihere, and, to cvaluate the probability of finding the ith
vogition coordinate in A, we do have 1o construct & random
poasure, Moreover, &g is customary in guantum mechanics, only
tae probability measure, and not a specific randon variable

distributed according to it, can be assigned to the dynamical

variable,
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Peculiarity (iii) requires a closer study, Ue first
evrivate the probability Py (A), Since E XY (A) iz addi-
vive, it is sufficient to evaluate this probability for
regions A of the form (we , s |, This is done in Apnendix C

and leads to the expression

2 2
ETEO'QG“S /o

i

E Xy (s, w) + 1Y o s Erfe (-8/0), s < O,

2,2
47[02 N 2T£02e_s /o

+YT o s Brfe (s/o), 5> O,

(4,5.4)
where rfc(z) is the complementary error function, Using

the asymptotic expansion

Brfc(z) =

21 o 2
I e-y dy f = fi.'l == 12 & ce o } [) (405¢5}
Z <

ST

(4,5,4) may be written in the form

2, 2 2
E:CT (S, V\F) = no.ze_“s /G I1 e < -..ooa)' S<O’
L e T
. 28 j
(4,5,67
2, 2 2
= 4n02 ny nc2e-s /o {j + GP - 7, s> 0,
: 2s” MT

In arriving at (4,5,4), it has been assumed that ¥

has a complex gaussian distribution with me2n zero and

7
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; 2 . A . ) )
variance ¢ , There is some virtue to the gaussian distribu-
tion; however, the choice of a different distribution would

have only a slight effect on the empirical consequences of the

Also, the parameter o entering into (4,5.4) is not

theory,
arbitrary, and is restricted by physical considerations,

¢ would be, approximately, at most half the order of megnitude
of ‘the medn extension of the particle, With the chcice of a
complex gaussian distribution for ¥ , for example, o would

be of the same order of magnitude as the mean extension of the
porticle, In gencral, for a realistic model of, say, the

eleciron, o would be quite small,

We now claim that these probabilities do vary in an
approximately guadratic mamner with the stete, More precisely,
a map, ¥ —> Ly , from the set of states to the set of finite
positive measures, on the real line, would be said to vary

quadratically if

2 Parallelogram Law °

2,

LN
Ll

-5

e

u‘f‘*a + Mg_i = 2yt 2% g

by (R = Jlg|?
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Hith iy (A) = £ﬁiE Xy (&, w), we see that property 1, Tor
, lastance, is satisfied if | a | is large compared to o/s,
Since o/s  is small, we can, for an approximate theory,

agpune that 1 is true for all values of o

We now observe that, for each borel set A, there

exists a sesquilincar map

(B, ¢) —> 4 (4, (4,5.5)

¥, ¢t
vhere
22 ‘~= L J 12 - M + il L, o~ iy . !
¥,0 " 4 )\ "¥+g T T¥_g ¥+ ig ¥-1g r
4,5.9

is a complex borel measure, Hence, there cxist operators

3

E(AY such that

“w,g (A = <CEM Y ¢ >, (4,510

E(4) > 0, since

CEMYE,E> = (1) = He (B) 2. 0, (4,5,117

by oy
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If A1 and A? are digjoint then

<CBALTA) Y, ¥ oy (A TAL)

i

g (Ay) + iy (A,)

i

CBAD Y, 9> + CEB@M,) ¥, ¥

1}

CEGD + B ¥, v, (4,5,12)
Since (4,5,12) holds for all ¥
B(A UA) = E(A,) + B(A,) (4,5,132
for disjoint A1 and As, Furthér
E(§) =0, (4,5,14)
trivially, and
CECRI¥, ¥> = 4 (R) = |[T)|® = <¥, > =
ST, B> p (25,15
inplies
E(R) = 1, (4:5,16)
where 1 is the identity operator,

that
It fOllOWS//E(-) is & positive-operator valued neasure,

E(.) is a projection valued measure if

YoM e, B = Hy

-

Ay A5, (4,5,17)
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fn alternative formulation of condéition 4, which is closer
to the apirit of statistical mechanics, is obtained by noting
thet B())  is a projection valued measurce iff B  is addi-

tive, i,e,, iff the rendom process

Y(s, w) = VE(—=,6 s ¥ (S 1B]

is & martingale, These conditions are however not eagy to
interpret physically, On the other hand, sgince projecsiols
are wcukly dense in the convex set of positive contractive
operators, & reformulation of quantum mechanics in terne of

positive operator valuad measures (Davies, 1974) has certain

asdvantages, including the existence of joint distribuiions,

1,6 Further problzms

The correspondence propesed in the precedins csectiouns
incicates that an interpretation of quantum mechanics as o
seniclassical description of the dynanics of extended pariti~
cles is, at least partially, feasible, However, a final

decision on the pogsibility of a complete interpretation of

quantun mechanics, along thesc lincs, must be deferrca till

the following issues are resolved
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(i} to determine whether the probabilities for momentun
also vary quadratically, and to obtazin, explicitlﬁ,

the relationship between position, momentun ond Tae

hamiltonian

(ii) to determine whether such extended particles can hive
angular momentum with properties analogous to ©nin

angular momentum

(iii) to determine whether the behaviour of such extended
particles can be described in a Lorentz covariant

manner,

Although no definite solutions to these problems are avaliluble,

at present, some possibilities are suggested below,

As far as (i) is concerned, we observe that the vorious
(semiclassical) dynamiceal variables connected with the cxicnded
particle are, essentially, a little fuzzy around the corres-
ponding ciassical values for the centre of mass of the particle,
Since, one can obtain the Schrodinger equation from the Hewho-
nian equations (for instance, Nelson, 1966), it is likely that
the present methods would lead, approxinately, to the usual
equations of quantum mechanics, for & Tairly large class of

potentials, Slightly different methods would be required,
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however, since the present theory ascribes only & probability
distribution, and not & specific randonm variable, to = dymni-

cal variable,

Regarding (ii) we observe that there are the wideppredd
nisconceptions that intrinsic anguler momentum is intrinsi-
ctlly quantum mechanical (for instance, Iandau and Iifshite,
1957, p 186) and that a seniclassical explanation of spin rist
necessarily involve a rotating extended pariicle (for iunstence,
HeGregor, 1978), Intrinsic angular momentun can be defincd
for a classical 'point' particle (Synge, 1965), and fo= an
axisymmetric extended particle the net angular momentur: need
not be zero, Further, a semiclassical explanation for ihe
Davisson~Germer experiment is impossible only if the structure
of the dipole is zssumed to be independent of the external
ficld, Since the last agssumption is quite false in tac
present theory, an explanztion of spin may be difficult, bub
can not be rcgarded as impossible, s priori.

(iii) does not appear to be an excessively difficult
problem, since, by using a multicomponent wavefunction, an

elipsoid can be described in much the sane way as a sphere,
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4,7 Enpirical tests

If this approach to the interpretation of quantum
mechanics is correct, quantunm theory would fail in ceriain
situations, Quantitative predictions in concreie axperinental
situations ray take some time to develop, Qualitativcly,
howvover, some situations, in which some of the axioms of

quantun theory would fail, are immediately discernible,

(2) According to the present theory, the probabilitics
given by quantun mechanics are approximately correct fow
regions that are large compared to the mean extension of the
particle, So, one can expect failures when | s |, in cqua-
tion (4,5,4), is small, In practice, such situations would
occur only when two particles interact at very high energies,
It nay not be feasible to test the other possibility, viz,,

that of o being large,

(b)  With extended particles, at high encrgies, departures
fron spherical symmetry are bound to occur, One way of test-
ing this would be to look for quadrupole moments in the casc

of charged particles with spin,
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(¢} 1In case *he oscillations of the particle are nonh-

linear, failures at low energies are alsc possible, In such
o case, the pulsations of the particle may be congsidercd as
2 superposition of oscillztions at different frequencies,
This would imply that the de Broglie relationship, » v = CE/V,
is only approximately correct, and that other tyavelengins'
can be associated with the particle, for the same valve of
the cnergy, These wavelengths would be observable as h—> <,
i,e

., 21 low cnergies,

4,8 Comnclusions

1t is, at least partially, possible to interpret
quartum mechanics as a semiclassical description of the
dynanics of extended particles, If this interpretation is
correct, then quantum mechanics would fail at very high, and,

poscibly, at very low energies,
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APPENDIX A

PRODUCTS AND COMPCSITIONS WITH THE
DIRAC DEITA-FUNCTION

A1 Introduction

The notion of the Dirac delta-function has beou:
rigéZ?ously fornulated in Schwartz's (1951) theory of distri-
butions and Mikusinski's (1959) theory of operators, In both
these theories, pointwise products (of two distributions, or
two operators) and compositions (of a distribution, or operator,
with an ordinery function) are irregular operations in the sense
of Mikusinski (1961), However, in many concrete situations in
physics, such irregular operations arise, and are dealtb with,
without due regard to rigour, Although this problem has been
mmown for nearly three decades, it remains incompletely solved,
Ihe carlier attempts at defining, or using, pointwise products
of distributions (Konip 1953, Guttinger 1955, Gonzalez-
Doninguez and Scarfiello 1956, Mikusinski 1961, 1966, Fisher
1971, Thurber and Katz 1974) have largely been inspired by
possible applications (Guttinger 1955, Thurber and Katz 1974,

Taltahashi 1954) to the renormalisation problem in guantum fidld
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heory, 1In particular, most of the effort scers to hvwc et}

into proving the fornula

g % 5" (& 1,13

'] ¥

wnich nay be of some use in guantum nechanics, (A 1,1 ) as

first established by CGonzalcz-Dominguez and Scarfiello gy

P
Simil arly, compositions have been defined in only o fou
e

sinple cases (Lejasicwicz 1957, Fisher 1974, Tewari 1977 ond
pmony interesting expression lie outside the scope of thceae
definitions, Naturally, these operationg, if suitably defincd,

a2ave a nuch wider range of applicability, The two examples

siven below illustrate the gereral situvation that might arise,

(a7 Junction conditions * 1In general rilativity, the oxact

degroe of smoothness that can be assigned to the componunts of
the netric tensor, 8, » 48 not known, In certain sitvations
it moy be physically permissible to choose the By E ¢ (For
instance , Lanczos 1924, Papapetrou and Hanmoui 1968, 1979, Bvans
19775, Mathematically, however, this leads to difficulties in

view of the usual fornulse
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L
= [t =

1

liro = 58,0 * Buo " Bro 1) o
; = = a - a p a B b 3
RM?\ B [:MI,}\_ ol r/_.f,;\’q - |_LL7\_ '_(1‘3 + E‘LB r?\a . (A ']‘t_,:)
Rﬁ&?\_ﬁz_gﬂ?\R:_KTm\ ,
A .

2

in varticular, if the were chosen to be discontinuous,

B
ns suggested by Raju (1979), the components of the Ricci tensor
would involve functions of the form 62_ Thus, either ome has
t0 solve the problem mentioned in the first paragraph, or

abandon the formulee (4 1,2) and develop altogether new

techniques, that may or may not be reliable,

(b) Curved shocks : Shock waves arising in practice are

usually curved, and the equations of continuity and momeitunm

-g%+ div(e ¥ = 0,

<l

ik

* (TP F =~ UP - P W+ div S (A 1,3)

ct

(vnere 8 is the viscous stress tensor}), immediatcly lend to
the above problem if the density ¢, pressure F and velocity

v are chosen to be discontinuous at an arbitrary hypersurface,
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Mathematically, the above problems canbe solved by
suitably defining entities such as 5° 3 but, physically,
there is & subtler problem, An arbitrary definitiocn wouid
reduce our belief in the equations (& 1,2) and (4 1,3) o a
phenomenological one, and, thus, would not be of much value
to the physicist, Further, one has to bear in mind tuc Tach
that the 'discontinuity' that occurs across a shock front,
for instance, may not be a discontinuity in the mathematical
sense of the word, i,e,, sometimes the representation by
discontinuous functions is chosen just to make the problem
tractable, and because such a representation may bhe apprroxi-

nately valid,

ln view of this, certsin elementary concepts from non~
standard analysis are useful, and lead to a very simple solu-

tion of the problem of defining irregular operations,

A 2,17 Products

1
We let D, D denote the space of test functions and
distributions respectively, It is well known that the product

?
of T e D and f ¢ D can be defined by

<Tf, g> = <1, £g >, (& 2,17
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for eany ge D, < T, h> Aenoting the value of the functional
T at h, This product is well defined, and the Leibuig
formula holds (Rudin 1974}, XKonig (1953) has constructed
nroduct spaces of distributions, and mapped these spaces back
into D in a manner that preserves the formula (4 2,1} in the
form

<TS, g> = <7, Sg>, (A 2,2)

It is asserted that (A 2,2) makes sense on the null space of 5,

with TS = O there, Thus, we have

6{x~a) 6(x~b) =cq 8(x-1),
' ' 4 2,3)

§6 =
where €14 Co, €3 are arbiitrary constants, The product, in
general, is neither commutative nor associative, In fact,
there is only one possibility concerning the association of
factors in a product T,,T,,,,., T, either T (T,(,., T,))
or (..,(T1 To)...) T,. The usual example for the failure of

the associative law is

-1

X (x6) =0 #£6 = (x )5 @ 2.4

L]
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o
The main problem with the product, so defined, lies
in arbitrariness in the choice of the constants C14,Coy Cx.
In praciice, the choice of the constants is tailored to neet
the needs of 2 particular application, Needless to say, bhe
tailoring does not always £it the physical requirements of the
rendering our continued belief in equations of the

piroblei.

?
type (A 1,2) and (4 1,3) iavalid,

Mikusinski (19671) on the other hand, has proposzd a
general theory of irregular operations for distributions, If
R is a2n operation defined for test functions, R can bLe

extended to distributions by defining

R(f’g’ ooo:! = lim R(E- y T] !000\ (ﬂ' 2-5}
no—> e b B
(~here €. » N, are fundamental sequences converging to

£y8,...), provided the scquence R(E,, M, »y,) is funda-
mertal, The sequence vy, cun be obteined as f£(xX) 6, where
6, is 2 sequence comverging to &, and (X) denotesconvolu-
tion, It is asserted that the éxtension of the operation R,

so defined, exists and is unique, Mikusinski (1966) uscs this

definition to obtain the formula
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2 1 A2 11 o
5 _ ._.é.. (}_{.) = - w-é« ....2.. i (.:"5. 2 3 6J
i F X

ant. also the equality (& 1,1), The 1,h,s, of (4 2,6) is

congsidered as the ddstributional limit of Si - jg (% €Y, 5h32,
Y . i

no nmeaning being assigned to the individual terms,

Pisker (1971) also obtains the formula (4 1,1), vsing
essentially Mikusinski's definition restricted to binary ciera-
hY

tions, Thus, the product of three distributioans (f,sz,).h, even

if it exists, is not necessarily equal to the limit of the

sequence fn,gn,hn, but, is given as the 1limit of the szquence
pn‘hn’ where p is the distribution f,gz, Applications are

to be found in Fisher (1972, 1573), The product again fails to

be associative although it is comnmutative, The last two

theories do not ascribe any general meaning to the symbol 52,

ant, hence, are not applicable to the sort of problems proposed

in the introduction,

Thurber and Katz (1974) do not really define procucts

using the nonstandard extension, *D , of D' Instead ther

gecin o consider

: |
A aea) = (B°/2 gorP (z-8) @ 2,7

’
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wiere n is a positive infinite constant, as a fracﬁioﬁal
pover of the delta function, Naturally, there are various
types of delta functions in this theory, i,e,, the theory of
Thurber and Xatz deals with nonstandard extensions of sequences
converging to the delta-distribution, and not with the delta

digtribution, per se,

A 2,2 Definition of £ g

3
Consider the nonstandard spaces *D and *D (Stroyan

L
and Luxemburg,6 1976), Define, for £, g e D

1

fn = 1 (D sn’

(A 2, B)
5, (x) = n om0,
f.g = lin  *(f_, 8 (4 2,9

n=mw%

¢ being o symmetric, infinitely differentiable function vith
+ oo ’

Jo(z) dx =1, with o(0) # 0, and with support contained

in the interval [ -1,17], The » in (& 2,9) denotcs the

nonstandard extension of the sequence of distributions £ , g,

and the notation linm refers to an evaluation of vhe w -tk
n=w

term of this sequence for a fixed positive infinite integer w.
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The nonstandard representation of a given distribution is,
nearly unique, in that any two representations would dififer
by an infinitesimal W distribution, If two (noastandard)
digtributions, hy, h,, differ by an infinitesimal distribu~
tion, we write h, = h, .,

The product of two distributions, defined by (& 2,9:,
T
alyvovs exigts in *D

LY »

In case f 1is a funcition, the prodiuct
defined by (A 2,9) differs from the one defined by (A& 2,1} by

an infinitesimal distribution, (4 2,9) extends (A 2,13, and,

in particular, we have

2 *
8- = 5,(0)5 (L 2,100

2
62 turns out to be an infinite distribution, i,e,, < &7, &>

[N
5]

1
infinite for g e fin *D (Stroyan and Luxemburg 1976),

Naturally, the choice of the infinite subscript w and
the scguence 6n is non-unique, and different choices will
dead to. different distributions, However, this does not affect
the final result, which should be a standard one, and wiich
should not involve the nonstandard elements, For the problens
proposed in the introduction, this comes about in the follow-

ing manner ¢ for standard real numbers a, b, c,
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as+bs+e = 0, (2,11
HET a=b=c= 0, (L 2,12
froof : ¢ = 0 trivially, and (4 2_11) implies that
X b , o o o
a = 5;7Tﬁ is an infiniteginmal,

Since a has been agsuned
to be & standard real number, a = 0, leading to b =0

In the present theory, also, it is possible to dcfine

fractional powers of the delta funcition by

Il *

& = &7 s, (4 2,13)

leading, in particular, to the infinitesimal distribution
VB = 6720 s,

A 2,5 Properties

The comnmutative law fails, since

)
ot
=1

o]

o]

(RS

] L
-5, (0)s + 5 (0) s ,

(A 2‘14)
whercas

(A 2,15)
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The associative law also fails, in general, since

I

(286 = £(0) (85") = - £(0) 6, (06 + £(O) & (D)o,

(A 2‘16)

whereas

it

£(58) = - (£(0)6_(0) + £ (0))6 + £(0) 5 (08, (42,17

As is obvious from (4 1,2) and (A 1,3), a situation
frequently encountered in applicatiions is the multiplication
of o delta function by @ discontinuous function, To cover

this situation, we have the following theorem,

Theorem 1 ¢ If f is & function with a simple disconbinuity

at O +then

133

£,6 % Ceo") + £ s, (A 2,18)
where f,8 dis defined by (4 2,9},

Proof ; It is sufficient to prove that

(£ (D 8, (0 = 5 [0 + £(0N7], (42,19
Kow, frbm (A 2,8)
£ (» Gn)(O) = £(-y) n o(nydey, ‘ (4 2,20}

\\\\


http://www.cvisiontech.com

‘- B3 -

wirich gives, by 2 gimple change of variables (ny = x)

-1 :
(£ (@ 8 (0 = [T [£E) + 2B ] o(x) ax, (4 2,21)
0

since o 1is symmetric, with support contained in [ -1,17],

since f is continuous in a neighbourhood of zero

£ = £(07) + eqln,@)
" 0 S_ x <1 9 2‘22)
(2 = £(07) + ey(n,x)

where [eq(n,x)| £ 5,(n) and |e,(n@]| £ ey, for O $x g1

and lim &, (n) = lim s,(n) = 0, Hence
1 2

12 @ 60 - g[20D + £(0M ] <5, + T,

(A 2,23)

Since eq(w) and e,(w) are infinitesimals, the theorem holds,

Corollary 1 ¢ If E is the Heaviside function, H(x) =1, for
x> 0 and H(x) = 0 otherwise,

*

H,6 = %0 (4 2,24

[

. AN

£ 2,24) is also valid with Fisher's (1971} definition,


http://www.cvisiontech.com

-~ B4 -

Iheorem 2 (Leibniz rule) ; For f, ge D,

1=0
) % .
Proof : By definition, (f,g)(k) = (f g)(k). Since, I

is @ function, the validity of the Leibniz rule for the product

{2,1) implies that

('3 k - - !
(fw . g) (k) A5 % (]i;) f“fl). g(k-l) . (A 2’26)

i=C

f(i). (1) %

Since, by definition, f(i) g(k—i) (4 2,2%)

w o ?
holds,

Corollary 2 ¢ If H is the Heaviside function,

*
H,o' = Ls'l 62, (4 2,27
L 3 * t t *
Proof : (H,0 = (38 = H s6+H,5 =62+u, 5
Theorem 3 : If 2y4 by, and ¢ are standard real numbers

T a. 5(1)(X~Xo) 5(3)(X_X0) + I bk 5(k)(x—x0) + ¢ o 0,

iff a.. b, _=o¢ =0
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Zreof : The proof is similar to that of (& 2_,11) -~ (4 2,12}

and will be omitted,

A 2,4 Extensions

Products of the form BCK). x™ are apparently useful

in quantun renormalization theory, and we will now expliciitly
1

*

evaluate such products, starting from the product &, %~
The definition (A 2,9) cannot immediately be used, since the

Ffuuection x“1

, Not being integrable in a neighbourhocd of zero,
does not induce g distribution, However, on the subspace

(0 =-{g e D, g(0) = O}-, x~1  induces a linear functiomal

<x N g>= g, x ax< w, ¥ g e DOY, (A 2,29)

gf—-—.g

This linear functional is continuous since, for any

Cx

= ¢

]

compact X,X (C [~n,n_] and for any g e D(0O), Supp

o

o0 | 1
PlElads m b @esil J @y e ﬂ Ve, ™ ax) (4 2,30
o <4l

e =}

30
1

Tarlg [ e, 1 jax + 2 log n [l

P og®@), x

(A 2,31
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Now, for 0 < x {1

1[ 1g'(8X)I, for some €, 091

lg(x) ,x~

fA

g !, . (A 2,32)

Hence,

| et .x ax| ¢ 2llglly + 2 og nllglly . @253

It follows from the Hahn-Banach continuous extension

theorem, the topology of D being locally convex, that %=

] v -
admits a continuous extension t¢ D , I &1/}{ and A‘l/x
1 ! .
A - A
Mo 1/x Vvenishes on D(O) ,

Hence, the most general cxtension would be of the form

are two extensions of =z

L ‘ _ ” -
1/x + ¢ &, where c¢ is an arbitrary constant and 1 /%
is any particular extension of X_-T_ A particular extension,

7\1'/}{, is given by
A -1
< Mgr8> = _Of Calx) - g(o) } =7 ax, (4 2,34

Hence, < x"1, g>=cgl0) + J [agx - g(O)]’x’J g

(& 2,35)


http://www.cvisiontech.com

o B =

Similarly,
18 n~1 i =n {l}(X)
<x T,g> =3 (17 ¢ (O) + f L g(x) - 2 Bt T
i=0 3 i=1 1]
(L 2,362
oy o=t ()
Now, < 5 (1) X B g > is finite provided lim [g(xi,x ](1
x—>0
exists, and, in that case,
5(1{).X—n, s £ 1im (DX C e(x) ‘x-n](k)
=0 (A 2.37)
k ' . (n=-1)
= lin (DF 3 (O (Ial}'})?:-gn,ri
x—>0 i=0 Rk b4

The limit of any of the terms in the above summation exists,

iff g 6*3(0,1,.;.,1(‘*11—1) i{q)e b, ¢(0) = = @(1(*1'1-1)(0).___0},

and, in that case =

(k—-i) (X) i 5.(—1{"'1’1) (0)

1lim _ . (4 2,38)
=0 (n+i)}
That is
o pn o % (DE g E ok (Dt
. * (l‘l-‘])z“‘- ' =0 i" n+ti (A 2.39)
g « D(0,1, .., knal} .

(e W

—
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ollows that

14

G —n* BT 4 )y @D® ) ok (DE
fs) x = z c. . 3 + =" § ., 5 (F) e
. s=0 ki (n-1)1 j=0 + {n+i)

(4 2,40;
with the added proviso that all the constants cii e " be

S . n . )
infinite, if the constants ¢y in equation (A 2,36) ave chosen

To be finite,

The Ieibniz rule, in the form

t %

¥ _, o~ 6(k+1).x-n

[6(1{), X—n] 5( .

(a 2,41

is satisfied on the subspace *D(0,1,,..,k+*n), because

e+ i i 1 i
3 ky DY L gy D BT ey (DY (& 2.42)

We have, thus, achieved a legitimate method of sub-
wracting infinities, The method is not fully satisfactory
because the constants c? can only be fixed phenomenologically,
Further, the formula (A 1,1) is not valid, since

+* ¥
5 x__1 = -5 (A 2,43)

on *D(0) |
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A3 Compoasitions

- .
If g is a ¢! function, g(xq) =0,g (x) # 0,
6(g(x)) is usually defined (Gelfand and Shilov 1954) by

carrying out a formal change of variables

h(x,)
< 8(g(x)), h> = i =W he B
lg'(xj)i
e,  6(g() = —1 (xx,). 3,1

Ig'(x1)[

t 00 ‘
Here, we will define, forany f eD, ge C, g" #0

*
flg(x)) = 1linm *(f, (g(x)),
n=y
f, = £ & 6, A 35,2)

fie distribution defined by (4 3,2) always exists and is given,

* using the change of variables formula for ordinary functious, by

P YCRL)

< f(g(x)), h> ;
T gt g @) |

1%

=i
<, g (f)) S A 3,3)
g (g7 (x|

Horeover, the distribution defined by (4 3,2) is nearly unigue
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fete

. that a different sequence Sn or a different infinite
T
zongtant w  would lead to a distribution fw’ (g(x)) which

would differ from fw (g(x)) by an infinitesimal distribution,
The chain ruvule is valigd,
Theoren 4 (chain rule} ¢ If f e D', g ¢ ,g8 #0,

[£(gx) ]

LI

£rig(x)) g &), (A .0

Proof : The nonstandard proof follows immediately from the

usual chain rule, One can also see this direcily, since, for

2y h e D,

'
]

< [flegN ], n - < flgx), n' >

13

R (g @)
, =
lgt (g~ (x|

- R
(.
AN

L
\Jl
S

- < 7T

aid

< (g, g (x),h >

<P (glx)), g (x).h>

£ ) ne @)

=<f' 7 1
le' (g~ (x))]

’

<-f,+ [ @]

v o~
<, h' (g %z)) N
lg' (g~ (x))]

fi

—

since (g“1)' = 1,/g'(g_1).
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In case g has several real roots ST STRINAPS W
g' (x;) # 0, the definition (& 3,2) reduces to the usual
definition for & distribution of finite order, provided

v gNx)) # O,for x e supp £, since

or
o [

(1) RN S R Call€5)
<8 {gx)), h> = n (-1)
v (8l 121 e ]

The chain rule continues to be valid,

A 3,2 Multiple roots

Incase g ¢ ¢ has multiple roots at xq , then (& 3,3)
can no longer be used, since g'(XT) = 0, In this sifvation,

Fisher (1974) and Tewari (1977) have adopted a limitisg procedure

to define 5(0) (x2m+1), yielding
a(r)(x2m+1) _r! 62mr+2m+r(x) . 2mr+§m+r—1 oTT 6(1)
(2m+1) (2mr+2mer) | =0 1 ’
& 3,8)

are arbitrary constants, the functional having been

vhore Oﬁm

extended in the usval manner, The distributions corresponding
5(r)(x2m)

2m

+o

are not defined by Fisher (1974), because x

is not invertible in a neighbourhood of gero,
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If the definition (4 3,2) is used, G(r)(gtx» ig defined

Fe] oo o
for g e C, regardless of the nature of the roots of g(x,, Thus,

(=3

ST, 0 > = lm 5flr)(g<x>> § (xrax, (@& 3,9
. n= o

and
o0

= Glgr) (g(x)) ¢ (x)ax, & 5,100

by
n
e X . I 2 r g .z s oo

then Iw is x finite, since I~ 1is finite, the inicgraid

heing continuous with compact support, If g 1is invertible in

a neighbourhood of zero, Ii is finite provided ol ¢(gf1(x3/
x—>0
| . —_— i . em+t e
|lg* (&7 (x))| exists, In particular, if g(x) =x , ‘the

definition (A 3,2) agreez with (4 3,8) on the subspace

CI‘ﬂl

i s in thas

p(0,1 2or+2m+r-1) , However, the constants

‘Sese

theory, are not arbitrary, To evaluate these constants, we

. . . i,.
sclect funections hi e D which behave like x7/i !} ina =z

reighbourhood of zero, Thus,

(k)
hy (o

i
o

, 1#Xk

ks & 3,11
1

hi (0

n
N
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Forther,
(r), 2m+1 * iarm ¥ .. ()
CETETT () > = (DT = Lim T st 2melyy gy
n=y o -
Do o o (@ ax
n =y —0 .
-1/2m+1
% n
2 27 o™y ax,
n=w _n-'i /2m+1
(A 3,12)
since
G(I‘) (m2m+1) = 0
if x > qo1/emt] (h 3,13)
or x < —n~1/%m*1
(A 3,13) holds since o , hence U(r)’ is identically zero

outsi¢e [ -1,17], For sufficiently large n, h, (x} may be

replaced by xl/ij , and carrying out the change of variables

o . 1/2m+1 -
y =n x, in I,
o1 /2m+ 1 i
Iy M=) 7§ o1 o () (2™ Ty L
_g1/2m+1 il

_ A 3,14
1 n(2m+r—1) ()

(¥) ¥y ay.
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(2n+r-iY 1 -
iv ) Wit ey @

. :
it = (-nt

i *
5
—
53]
L

(-1t 1
W

A 2,3 Lven functions

Compositions with even functions occur in meir- 3ituations
in physics, Apart from situations arising out of the =xanrles
mentioned in the introduction, we may mention the Scamrszschild-
Tetrode~Fokker action (Hoyle apd Varlikar 1964)

Tr-dn gy s AT

1

l._\

L e’ i
S lia elea IZ(l)ﬁ[:z(l) "Z(j})(z(i)ﬂ'" Z(j)#’)] Z(J)Mdzjldz_.] .

(g5 20 16
where e; = charge, m, =mass and gz, = zi( C. ) = world line

of 1ith particle,

As pointed out sarlicr, compositions with cvew functions
have not been defined previously, because a change of wriables
camnot immediately be carried out, However, expressions such
as 6 (x2m) still make sensc, and these still induce distribu-

i o R 5
tions/*D  because Gn(x ™) induces a distribution for cach n,
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- Purther,

1im OQJ' Sn(x2m) g(x)ax

<8 (x2m),g>
W 1, VA s

L lin o no(m®™ g(xax
n=w
~1/2m
- . 2 . 2m ~
= 1lim f no{nx ) gxidx
bl e 3,17

since swpp o (C [-1,17], Fow

~1/2m ” ~1/2m

el
T | n o(n sz) g(x)dax = [ = + & 3,18)
-1'1'.'1 /2m _n—‘l /2m o

In the first integral we carry out the change of variables
¥y = X, ylelding

~1/2m
L 2m :
I = | no(nx™ (g + glx) Jax, (L 3,19
0

Substituting x = (z/m) /2 0 x ¢ n /B

, | |
Lo [o@ {e0 /7287 + gL-(a/m '/} o/ (=20 /204,

(4 3,20)
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The integral in (A 3,20) is finite provided

Q-2m)

lim [:g(y1/2m) + g(—y1/2m):], y ‘m exists, The limit in
>0

question exists and is gero provided g & D(0,1,2,,,.,2m-2) ,
. . 21
Since g has compact support, 1111; I, =0, i,e,, § (x =)
n—>oo

is infinitesimal for g ¢ fin *D(0,1,2 2m=2), I% follows

Yo ey

that

i
i
[\

Zm)

5, (x a0 5(1) 4 3.21)

O { =
To evaluate the constants aim we select, ac before,

functions hi 80 that

2 * i
6, &M, n; > = (Dt a "
1’*_1 /em

i s h 2m Xi
lim | no(nx ) [ +
n=w 0 lv

ik

p
\

i
x) Jax

o

(A 3,22)

Substituting gz = "n'] /2m X

2m-i-1 1 ; -
I, = 3—— 1 0G™ [zt + (0i7az. 4 3,23)
i} 0
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s df==

" . e
om % i, o (et
ai - ('-1) IW = i

1 : s
I o(z°™ Czt+(-z)" Jaz
¢

(A 3,245

More generally, we obtain by the above procedurc

T+ 2m—2 .
5(1‘) (sz) N B g TT 6(1) (1 3.25)

i=0 &

*

2mr+2m—i-1
W

, 1, , :
aim = (1) ({O‘(r"(zzm) Czt + (ez™ az

{ir& 3. 26)

il
Compositions with oscillating functions also occur, for
instance, in the study of oscillating surface layers in rela-

tivity, PFor this purpose, we reccord

it *

§(1-Sin x) = k # 6(x - i"”fngﬁ{) (A 3,27)

n
2 i /2 '
X =f_2;f fO c(1-Sin y) /T+5in y ay, (& 3,28)

Before concluding this section, we observe thal the
= oo - - x . ™~ .
hypothesis g ¢ € is not essential for defining f£(g(xi), for
+

' . '
feD ,f(g(x)) exists in *p' provided fn(g(m) e D for

cach n, i,e,, provided fn(g(x)) is locally integranle,
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A 4, Derivation of the Rankine-Hugoniot equations

it is usually asserted that the Buler equatioms (4 1,3)

are not valid at discontinuities, where one must: use, forx

instance, the Rankine-lugoniot ecquations, The Ranidine-Ilugoniot

equations are usuwally stated in the form

] hY
pO(U - llo) = p('[T - as, \
(4 4,1)

e (U - u ) (o - u) =P - Fs
where U = shock velocity, and the subscript o refers to the
undisturbed fiuid ahead of the shock, We proposec t0 derive
these equations from the usual equations of continuity and
nmomentum (A 1,3} thereby demonstrating that the equotions
(3 1,3) are indeed valid at discontinuities, To %his end, we
observe that the equations (4 4,1) are valid for normal shocks
of infinite extent, and a two point flow-field in two dimensions,

with a2 simple discontinuity at the surface of the snock,

To derive these equations, using the present mechods, we

suppose that the hypersurface of discontinuity is given by

y=y(t) =Ut, U= %E% = constant , (4 4,2)
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Further, let

p=pPm X+ X, ,

u; = uy X+ u; s, | i=1,2 (n 4,3)
P=P X_+P X,
shere :
X, = X(i"r(t) - (x) = H(x - F(t)) ,
A 4,4
X =1-X,,
H being the.Heaviside function,
We observe that
N
g—ii = 8(x - F(¥) Y, g% =~ 8(x - F(t3),
S N & 4,5)

It
L

U 6(x - (1)), s U Ak - T .

ot Jt

The ecquation of continuity, in two dimensions, is

oo , 3¢ w9 W)

ot ey DY

Substituting (4 4,3) in (4 4,6), we have

—DX_ + {\}}’X-p ()X + + ax_

= 0 (4 4,6)

p F+P a—_b—+ uTr U..]WZO, & 4,7)
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Substituting (& 4,5) in (& 4,7) leads to

+ o+

ug - P7 oup) 6(x-F(t.) A 4,8)

~(e7 ~ 0™ U s(x-F(1)) = (p

Hence, by Proposition 3,

of (U~ u) =07 (U~ u]) h 4,9

which is the same as the first of (A 4,1) with e _ =90 , ¢ =p
= + -
u, = ugy,u =ug,

The momentum egquaiion is
u u N )
O Y d% _ Sp_ QP e
PW+Pu1ax—ax-——-ﬁ (& 4,10)

Substituting (A 4,3) and (A 4,5) in (A 4,10), we have
D P % ul Tu7 X)) (o -~ up) 8 (x=F(t))
--(Uu1 -Uu.l) o 5(z-g()) + (» 0y X+ ° u; )(_ (u.,]-u,] & (x-y(t
= (P"- P*) 6(x-F(t)) , (A 4,11
Hence, by Propositions 1 znd 3,
Jg-(uf!'-u:]‘) Cotug+ PTuy — e'g~p"U] =P~ P, (A 4,12)
Using, (A 4,9) leads to the sccond Rankine-Hugoniot cquation

0" (U - u;) (u; - u;) =T B, _ (1 4,13)
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Sometimes a third Rankine-Hugoniot equation is used, and this

can be derived similarly from theé encrgy equation,

A 4,2 The effect of viscositg

If turbulence is present behind, and in froui of, the
shock, the effect of (eddy) viscosity may be taken into account
by including a term of the form & ;?2 u in placc of the viscous

stress temsor in (A 1,3), DNow, (4 4,5) yields

O (il =) Bl (& 4,14
3= j = i e
<3 (A 4,10
a + = ¥ = 3 ‘

j;g = () - u) 6 E-F)

Hence, by Theorem 3, we would have an 'additional equation of

the form

M(u? - uy) =0 (& 4,15)

which mist be regardsed as a consistency condition, Using

ecquation (A 4,13) this can be put in the fiorm

= a +\ .
I . ’UIEP : 2 = Q0 - (A 4’ v1 6 /
P (uq - )
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If we only have N 2\ O, the Rankine-Hugoniot equations are

only approximately applicable,

The physical interpreiation of this consistency condi-
tion is that the Rankine-Hugoniot equations are not valid for
strong shocks -~ strong shocks would curve due o the cffect of
viscosity, It is proposed to Jdevelop a general theoxry of curved

shocks, using the above methods,
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APPENDIX B

CLASSIiCAL TIME-SYMMETRIC ELECTRODYWAMICS

o
Y

Detailed abstract

Maxwell's equations are time syrmetric, but whoe
advanced solutions arc rejected on semi-empirical grounds,
However, it was pointed out by Dirac (1938) that a Lorentz-
covariant derivation of radiative damping necessitates the
usc of tine-symmetric solutions, The problen of the absorber
theory of radiation is to recover the usual retardcd solutions
starting from time~symmetric solutions, Wheeler and Feymman
(1945) proposed that this could be dore by incorporating the
response of the 'absorber' (rest of the universe) with thoe
clenentary timc-symmetric field of & particle, Hogazil (1962)
and Hoyle and Narlikar (1964) modified this theory to include
“the expansion of the universe, The above two theories suffor
Tron gerious drawbacks,

In the present theory, these drawbacks are renoved by
attributing & ‘rigid' shell-like structure to elenowtary

particles, According to this theory, relarded radiation
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will be approximately consistent in the expansion-phase

of a universe evolving from an initial singularity, Tho
theory predicts the existence of small anounts of advanced
radiation and compaircs this prediction with the results

of Partridge's (1973) experinent,
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APPENDIX C

C 1« Evaluation of the digtribution Ffunction

Let X(s, w) =X ((=~, s], w) (¢ 1.1)
and Fs(t) = P{w, X(s, w) < t}- (0 1.2)
Clearly Fs(t) =0 for t< O, _ (G 143)

and for t > 0.

{woats,m s v}= o acimifo ool <oy

and 211|‘i'!(s+]‘¥|)_<_t} U{w,]‘fl & sand4n]‘i{!2< t}
'(01.4)

since,

X(g, w) =0 1f s< - 1% ,

=2n |¥| (s+ ¥ ), if-]¥] < a<l¥], (C1.5)

4 ¥)%, 11 |¥] ¢ 8-

The probability of each of the sets in (C 1.4) ig evaluated

belovre

(1) P {s < - I‘F}}

It

P {IW % S S}

= F}gl ("S)

(C 1.6)
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where F[‘l’[ is the distribution function of |[¥]

(2_) P {[Yi <8 and 4n}‘£[2gt}=0;, if g< o0 (q1.7)

= FWI VE/4m) , 1f % _<_4-Tie2

Frg (s), 1Tt > 4me?

it

(3) P S-1vl ¢sgl¥

and 2r»l’i'!2 + 27mg | ¥ -tg_o)Z.
The quadratic equation 2= xz +2% s X - % =0 always has two

real roots since the discriminant 4 = 4/ s2 +8n % >0,

gsince t > 0.

Let
~2% 5 /AT §° + 8wt
+ = :
s + (t) e
1,2 ‘
= =8/2 £5Vs" +2t/n (C 1.9)
then 2% |¥|° + 275 |¥] -~ t< 0 iff
s. L [¥i < s, (C 1.10)
If s> 0 then
- S 1 2 s
8. T 3% Vs +2t/7f5,‘§'$ S, (C 1"”)
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and s, 2 s 1f

_.2§+-;-\/52+2t/n_>_ s,
iege, 1ff b >4m g, (Q 1e12)
Thus the above probability is zero if + < 4n s© amd is
otherwige

Fig| (s,) = Pryp (o). (C 1+13)

If s< 0 then

s. == g = % Vs + 2t/ LA g»g < g (G 1.14)

and 8, 2™~s, since t > 0.

’

It follows that the above probability is Fiy| (s,) = Fjy| (=s)

for all t > 0.

Thus
F(t) = Py (/AR if ¢ 4n s
s | | _ s>0 (¢ 1.16)
= Fl.i,l (s+(t)) if £ > 4—# g
and Fs(t) = FIYI (s+(t)) if s <0, (G 1.17)

E Xg(s, w) = £x¥ aF (%) (C.1.18)
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has been evaluated below agsuning that ¥ has a complex

gaussian distribution with mean zero and variance o

C2¢ Evaluation of the integral

I=f ta4 F_(%) (C 241)
0

age I If s < 0, then

F(t) = i (8,(t)) (C 2.2)
where |
1 Fg (x) = ig x X /20" dx, x 2 0, (C 2.%)
= 0 x<0

and s+(t) 1s defined by (G 1.9) and for simplicity we take
=N 2] '
! % = )
I Zli= 20
Integrating by parts, making the transformation

t > v o=+ St %; (C 244)

and observing that when t =0, v = ~g gince g < O

I = fm v e‘(V‘S)2/8°2 av (C 245)
~§

wi.th

v—>7 = Vv =g (0 2.6)
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_2,,.2 :
I =41 o 8 /2" TnV2 o 8 Erfe (~s/ V20) (¢ 2.7)

Cage IX

If s > 0, then

-F(t) = E’YI (\/t74ﬁ) if t < 4n &

with F

and

i

= Frﬂ (s+(t)) 1f t > 4n 32

and s,(t) as before and

I1 +I2

4 ng2
S ta F[gl /4 )

8]

= = 47mg® 3-32/262 + 872 [1- 6-82/20‘2]

4{532 t 4 Fl,g| (S+('t))

reduces as in case I above to give

T

2

2 2
- anl /27 2 APRE

(AVE" /20 Erfe (s/249)

(C 2.8)

(¢ 2-:9)

(C 2.10)

(C2+11)

(C 2:12)
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1.. Introduction.

The scalar wave equatios in flat space:
2 - . r
DPylr. 1) =4mpl(n 1) . (1.1

(where O = K’—m’/ar’) is the wave operator, ((r, 1) is the wave amplitude at the A

space-time point (r, ) and p(r, 1) is the source density at (. 1)) has two types of solution
(Davies 1974): ¥ = ¢(r. 1*) and ¢, = ¢(r,17) where :

gtrn=| GoteoyRISF
A '
R=ir=r] ¥i=(tR.

These are known (with obvious notation) as the retarded and the advanced solutions;

{1.2)

and represent waves propagating into the future and the past respectively. In curved |

[ 4

space, with metric tensor g**, the corresponding retarded and advanced solutions for
the scalar and vector wave equations

8'."’;“ =0 ‘ “ J)
8uvAc:‘w+ R"Aa = (}A (1'4)

where R”® is the Ricci tensorkmve been studied by De Wiu.pnd.Brehme.‘-("l}QﬁO}.,
Mathematically, any normalised combination

§=0p, +(1-0), (1.5)

is also a solution, and the choice of the correct solution depends on the boundary
conditions imposed. But, physically, boundary conditions cannot be imposed at will,
and the existence of solutions with an advanced component would contradict our usual
ideas of causality. The advanced solutions are rejected for this reason. However, it was.

pointed out by Dirac (1938) that this semi-¢ mpirical rejection inay not be well founded,
because a covariant derivation of the rudiative damping force leads to the expression
e?(z* +2#1%) = e3)(FI. - Fu.) - (1.6)
‘(where e s the charge, z* the world line, Fr., ® the retarded and advanced fields of
the particle and dots denote differentiation with respect to the parameter), apparently
necessitating the use of advanced solutions. )
Thus the problem is to specify the physical natore of¢he boundary conditions which
give rise to the retarded solutions of experience, starting from solutions of the form
(1.5). This problem is tackled in the absorber theory of radiation, initiated by Wheeler
and Feynman (1945, 1949), and developed by Hogarth (1962), Hoyle and Narlikar
(1964, 1969, 1971, 1972), Davies (1970, 1971, 1972a) and others. This direct particle
interaction theory uses the Schwarzschild-Tetrode-Fokker action

= "Z m I (i G:Z'm.-)!n dr, fi ,;f"e' I 2315[(25}'_ 5"(!1)('2111.- "’z(lbp)jéil!u d7, dv
: inf - F =
(‘l )

(where 2, = z,(7,) i> the world line of the ith particle with charge ¢; and mass m;, 7, is the
ith particle proper fime and & is the Dirac detta function).

In analogy with field theory, the last term, of (1.7) can be used to dcfine the
four-potential

Aufx)= );. € ﬁ 8l{x*—z :Jg)f»!.. =Zipu) i S35 ’ (1.8)

This four-potential satisfics the Lorentz condition A*,, =0:and the electromagnetic.
wave equation. i
.D’A“(I) -ﬂﬂ@ﬂl- &lx — Zub‘&fiim,'d;l‘r
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For ¢onsistency with (1.7), the uniqueSolufion of (1.9)&
"= MAL+AL) o (1.10)
where A = A4(17), A% = A% (' Land
A:-;-a‘guﬂf EeayRdY, (1.11)

If we Te-introduce fields F*,, defined as usuitl by

o Y (- Il L
!-lr"'Ar.r At.p.

: el 1482y
rv = i\rJ‘-ib:Jl‘
then the electromagnetic ficlds ohtained inukiis Theory are given by
F* = F7" +)FL", (1.13)

Hoyle and Narlikar (1964} have generalisedk this procedure to curved space, using the
appropriate Green functions in the action (1.7), Equation (1.13) can also be obtained
from the physual argument that Maxwell's equations, being time symmietric, should not
by themselves impose an arrow of time an the solutions,

The wsual retarded liclds are now obtained by adding 1o (1.13) the radiative

damping term

" Fras=1F=}F.. {.14)

(Tensor indices will be dropped hentefofth as they are ndét necessary;) For a given
particle, the term (1.14) was interpreted by Wheeler and Feynman (1945; WF) as the
response of an ideal absorber to the elementary time-symmetric field of the charged
particle. Thus the existence of purely retarded radiation gives a condition on the real
universe, namely it should be totally absorbing (e xample—static, Euclidean universe)
Hoyle and Narlikar (1964 HN) gave the ditfering condition that the universe should be
opaque along the future null cone and transparent along the past null cone (example—
steady-state model). In the following, shortcomings in the arguments of both WF and
HN are pointed out, and it is shown that 4 more plausible condition is that the universe
should be opaque along the past null cone, but not totally absorbing.

One other possibility that needs to be mentioned here isfthe common presumption
that purely retarded radiation exists in the universe may simply not be true. Attempts
to confirmathe presence or absence of advanced radiation experimentally have been
made, and are continuing (Partridge l97’. Herron and Pegg 1974, Pege 1975a, Davies
1975). However, it is hardly possible fo interpret the results of these experiments in the
absence of a satisfactory theory. The present attempt to construct a satisfactory theory
arises from an attempt to remove the ditliculties faced by the carlier theories of W and
TIN; Ilence these dfiiculties will be considered first.

2. Theory T-n;: oS- LA :_;I"i Treou s LediEse,

2.1, Self-consistency;
The fundamental problem of lime-symmetric electrodynamics (Tse:) is to reconcile the
following two facts; the action principle (1.7) permits only time-symmetric fiekds, while
the usual fields of experience are, at least approximately, retarded. In WF itis proposed
that this problem could be looked upon cither from a general point of view or as a
matter of explicit calculation. Ouly the pencral point of view is used in HN, and we
consider this first,
The total ficld acting on a charged papticle i is given, accordingto (£.13), Hy
Fu=2LFI+3 T F, 2.1
[ L] I

where the field of the jth partidle is-indexed by j, and the summation ranges over all
oraer particles j i the universe. On the other hand, to account for the observed fully
se. rded ficlds and radiation damping, the total fictd should be of the form

Fuu= X Fl ey = FL). (2:2),

Izl

Ehat £
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The problem of self-consistency is, then, to decide the circumstances under which
(2.1) is consistent with (2.2). A necessary and suflicient condition for (2.1) to be:
consistent with {2.2) is, clearly,

L (Fi-£)=0. 23
3 A4

The gencral point of view, mentioned above, dims to show that (2.3) is valid undex

various plausible physicai conditions. However, by subtracting (2.3) from 2.1
Fo= Y, FL+3F, -F) (2.4

o

and, conversely, (2:1) and (2.4) together imply (2.3). It follows that (2.2)’is consistent
with (2.1} if and only if (2.4) is, i.e., retarded fic!ds with radiative damiping are cansistent,
if and only if advanced fields with radiative anti-dampirig are simultancously consistent,
Two explanations have been offered for this apparently paradoxical situation.
According to' WF, the particles on the pastnull conc of i may be assumed to be in astate
of random motion. i.e., their motion is uncorrelated with the motion of particle i
Hence. ¥,.; F} is small compared with the radiative daniping term. Ontheother hand,
the fields F. are highly correlated with the motion of i, and it may be imagined that
¥,.,FL = —(Fi - F}). According to HN the retarded ficld is attentuated; hence, £ iFl
is small compared with £,,,F4. Both these arguments appear to be unacceptable—the
first because the assumption of random metion, when signals can be propagated along

. the past null cone, appears to be unrealistic, and the second because it involves an

application of the refractive index only to response fields.

Moreover, it is casily seen that these arguments make sense only after the world
lines have been prescribed according to the principle of retarded causality. Thus. the
question arises: *Whgy shou!d the world lines be determined in this manner?’ Since the
action (1.7) determines both the fields as well as the world lines, it has to be shown that
the world lines obtained by using purely retarded fields are identical with the world lines
given by the action principle 8J = 0. In particular, given that £,(10) # 0, we have toshow
that the soldtion to the comstrained problem

8J =0 e, (n))=0 Zilrid =0 {2.5)

(where 77 (7,0) vorresponds to the value of 7, at which the past null tone at z,(7,,) meets
z;) is also a solution to the *unconstrained’ problem

6J =0 F{r0) = 0. (2.6)

Neither WF nor HN have demonstrated this, and it is not clear how this can be
pussible without having all the Lagrangian multipliers equal to zero. Since the
Lagrangian multiplier corresponding to a constraint can be interpreted as the sensitivity
to that constraint, it would follow that the real assumption is not just that accelerations
along the past null cone are zero, but that the solution to the variational problem (2.6)
remains unaffected by small accelerations along the past null cone. In this context the
explanation due to HN might scem more appealing; however, this explanation does not
appear 1o be convincing to the author and somne others (for instance, Davics 1978,
private communication), as it allows the refractive index to distinguish bectween
stimulus and response fields.

The other method proposed in WF was that of explicit caleulution. Here the
problem is considered as follows. Suppose particle i is disturbed {non-electromag-
netically) and radiates the time-symmetric field

Franice =2F e + F). 2.7)
This field, in the course of propagation, disturbys other particles in the universe, which,

in turnfradiate time-symmetric fields. Itis required to show, by explicit calculation, that
these elementary responsc'ﬁcld#\up to produie the absorber response field

F.-\:npnr-\e = ;(F:' _F: } (28)
the total field attributed to particle i is then
F{m =F:ln"lcle + F:cbpims'c = F:'r t?..g)

-

odd /(
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In the calculations given in WF (derivations I-111) to calculate the absorber response
the fully retarded field of the particle i is used to arrive at the expression (2.8).
However, to calculate the total field atiributed to particle i, the expression (2.7) is used
for the field of the particle. Thus the ‘cycle of reasoning’ used in WF is potentially
circular unless :

Fi=Ft+ Fl)=3{F| - F,} = 2:L0)

i.e., unless radiative damping vanishes. £ 5

1n an attempt to show that the argument is not circular, in WF derivation 11, the total
outgoing disturbance is denoted by (?) F:. and equation (20) of WF ™ads

total disturbance. = proper retarded, + ficld apparently
diverging from field of source diverging glom source
source itsclf actually composed of

parts convegng on
tndividual absorber
particles.
(2.11)
The method used hy WF is such that results for the advanced field can be obtained by
replacing ‘retarded’ everywhere by *advanced’, and *diverging’ by ‘converging’. Hence,
if it is not assumed, a priori, that (?) = I, we. also have

total distyiihance = proper advanced  + response field + response field'
converging on field of of past of future
source source itself absorber ahsorber
apparently apparently
converging on converging on
source source
2.12)

leading 10
(=)= 3+ =+, (213}

which implibig(?) =0. Tiius, the argument jn. W) is circulat, unless radiative damping'
vanishes.

2.2, The divergences of TSE

The source of the above inconsistencies can be traced 1o the fact that explicit cal-
culation, cven in the two-particte case, leads to divergences, and these divergences are
bound to persist in the n-particle case. Thus, consider two charged particles i and § with
charges ¢, and ¢; and masses m, and m,. Suppose a disturbance acts on particle i giving it
a non-relativistie acccleration '
Sil=Ae™ @.44).

wlhere A is the amplitude and w is the periodicity of the disturbance.

As a result of this acceleration, particle i radiates the time-symmetric hields
{(F; +F.). The field Fi interacts with the particle j at a later time giving it an’
acceleration ]

.5;(:;‘% f"-;ff_',s sin(y, K) expf-iwlt~Rel (2.15)

where R, is the interparticte separation in the retarded case and e is the unit electric
polarisation vector, the direction of which is taken to be negative if it has a positive
component along 841). /

The vorrespunding advanced feld of j interacts with § simulianeously with the:
original disturbance to produce an additional aceeleration

elan s Te ol 53 23 .
Alp{t) =~ ——Lsin*(s,, R)A ™. (2.16)
2 mgny

e '!J
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Simitarly, the advanccd[rctarded intetaction between i and j leads to an additional

acceleration
2.2

A= 1881 inton RIA &1 .47
2 mm, -
where R, is the interparticle separation in the advanced case,

Thus, starting from the assumption that the acceleration of i at time 1 is §;(¢), we
have reached the conclusion that the acceleration of § at a timednfinitesimally later than
tis 0,(1)+ AL6, (1) + AT6;(¢). 1t is usefu] 1o try to sum up all the changes arising as 2 result
of these stimulus and response fields because, if as a result we arrive at the value
61(0) # O for the acceleration of i, the above reasoning goes through with o; (1) in place of
,7). In fact, singolaritics are present at alt points atong the world lines of i and j where
the interaction actually takes place. Thus, as a result of the interaction between j and j,
the field at any poist of space-time due to an arhitrary (non-zero) initial acceleration of i
i3 indeterminate.

Schulman (1974) encountered a similar prolilem with respect to the differential
eqhation:

B0+ ()= taxli-n)+ipx(+ o)+l (2.18)

(where a. .7, @ are constants, 7, o > 0, and ${1) is a given function), and has supgested
the use of boundary conditions 10 make such an equation tractable. In fact, the
initial-value problem for such equations remains unsolved. Schubman has also sugges-
ted that a difference in the valuesof 7 and o could, perbaps, account for the suppression
of advanced interactions.

Wheeler and Feynman (1949) have attempied to resolve this ‘paradox’ by saying:

that impulsive forces do not exist in nature. Huwewer, if we were to accept this pointof
view then the action (1.7) must be abandoned, because it assures the existence of just
such impulsive forces. In this paper a somewhat similar point of view is adopted, and
this is considered in greater detait betow, In particular, time-symmetric ficlds will be
Jealt with, without reference to any activn principle.

3, Sighut velocity for advanced radistion

The roots of the above paradox lie in the assumption that a charged particle is a point
charge which responds instantancously to any incident radiation. Now electromag-
netic, gravitationa! and quantum-atechanical considerations (Dirac 1938, 1962a, b,
Raju 1979) indicate that the charges we cousider must be distrihuted over a finite
region. However, considerations of finiteness alone are not suflicient to remove the
ambiguities noted above. The hypothesis of extended charges implies that the velocity
w.;h which the actual interaction between two charged particles takes place (signal
velocity) is not the same as the wave velocity. Now, in the retarded case the signat
velocity is Jower than the wave velocity, and, as Kamat (1970) has suggested, this is true
in the advanced case as well, Asa result, alarger time interval is required for the actual
interaction to take place in both cases. Naturally, in the advanced case this time interval
is measured in the backward direction. Hence, the interaction with signat velocity takes
place earlier than the interaction with wave velocity and not later, as suggested by
Kamar (1970). By symunetry, this ‘advance’ in the advanced case just compensates the
usual delay in the retarded case, and this brings us back to the situation in § 2.2.

However, ict us consider instéad a model of an extended charged particle which
interacts at its boundary/Shett-like modets of this type have been proposed by Dirac
(1962a) and Raju (1979). The boundary of the particle in these models may be
considered to be rigid in the sense that spherical syinmetry is maintained, or in the sense
(of Dirac 19620) that signals can travel instantancously in the interior of the particle. In
this situation the ume interval for preliminary interaction in the advanced case is
fractionally longer than the corresponding time interval in the retarded case (see ligure
1). It follows that, in all cases, the time intervat for an actuat interaction is fonger in the
advanced case than in the retarded case. There is, therefore, a systematic bias ¢nsuring
that the signat veloctty for advanced intcraction is smaller than the signal velocity for
retarded interaction, i.e,, the time interval in which the actual advanced interaction
takes placeds longer than the time interval in which the actual retarded interaction takes
place. The relevant interaction diagram would be as in figure 2 and not as in ligure 1(b)
of Schulmian (197-4).
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Thus the notion of an extended charged particle as a (rigid) shell leads fo a natural
physical justification of the hypothesis of lowered signal velocity for advanced radia-
tion. The notion of an extended particle was also used by Dirac (1938) to account for
pre-acceleration. However, Dirac’s explanation of pre-acceleration.is not fully satis-
factory because, for the one-dimensional equations ofimotion,

m(Ww —aw)=f(r) (3.1) .

(where m is the mass, & = 3e2/m, e is the charge, w(r) =sinh™ ((+), z(r) is the world
line of the particle and f(r) is the force due to the external field), Dirac ()938) proposed
the special vatue of the initial acceleration, given by

{0) = 3; [ e @:2)

It is clear-that in response to an impulse at =0,
firy=Ké(th (3:3)

£he particle acceleration, given by
fiss
W(T)=;K &= i

={ >0, {3.4)

is non-zero (though smali) for large negative values of 7. Dirac (1938) attempted to
éxplain this by saying that 1he classical electron has no boundaries and can, therefore,
‘feel” the impulse at large times before it is actually applied. This explanation no longer
appears reasonable in the context of a definite model for the electron that has a definite
size or some size smaller than a definite size.

There is an alternative explanation in the present framework, because the charged
jparticle radiates and interacts with other charged particles if an impulse is applied, at
7=0, say. Due to the lowered signal velocity of advanced radiation, the eflects of this
impulse are propagated (in a rapidly decaying manner, if retarded radiation is
approximately consistent) along the entire portion of the world line for r £ 0. Thusitis
not the indefinite size of the electron but the lowered signal velocity for advanced
radiation which acoount, for pre-acceleration at large times before .an mlpulse is
applied.

Finally, we note that there is no serious disadvantage associated with the fact that
the hypothesis we are making apparently does not have an immediate generalisation to
the quantum-mechanical case (see, however, Raju 1979). This is true, if only because
any really successful theory of quantum mechanics will incorporate relalnws;u. coysi-
derations, and be able to treat particles with an extended structure.

«#. The absorber response

We consider only the case of an isolated charged particle which'is disturbed by some
non-electromagnetic force and radiates time-symmetric fields. As pointed out by
Hopgarth (1962), Sciama (1963) and Hoy!le and Narlikar (1964), the effective interaction
with the absorber takes place across cosmological distances. At these distances, the
partof the universe (the past absorher) which interacts with the advanced component of
the field of the charged particle must be considered to be physically distinct from the
pait {the future absorber) which interacts with the retarded component. The situationis
further simplified by the fact that the charged particle can receive only retarded
radiation from the pastabsorber, and only advanced radiation from the future absorber.

It will be understood in the following that we are dealing with plane-polarised fields
of a fixed frequency w, Since the theory is lincar and since the results are indepdent of w,
the results hold by Fourier superposmon for more complicated fields. Following figure
3,welet ST and ST 2 ‘be the varmus stimulus fields for the past absorber and the future
absorber, while R] and R} denote the corre: ponding response fields. Because the
difference in time intervals for retarded and advanced interactions depends only the
{average) size of the charged particles, and not on the interparticle separation, all the
absorber particles can be lumped together in the interaction diagram. However, the
multiparticle nature of real absorbers might affect another assumption, that of linearity,
which, in this context, refers to spherical symmetry (Hogarth 1962). Such possible
depastures from linearity will not be considered here and we assume that all the
response fields are linearly related to 1he stimulus fields, the response factorg being!
given by p and f for the past and future sbsorbers respectivély;
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Denoting the advanced and retarded source fields by F, and F,, we have
St =3F.=}{F.~F) §\ =1F,=YF,-F)
Ry =3p(F,-F,) R§=3i/(F.~F)

where the first line of (4.1) is obtained by noting that the ﬁ!ld F, is zero in the region of
the past absorber and F, is zero in the region of the future absorber. In the last line of
(4.1) we have temporarily discarded any possible difference between a converging
retarded ficld and an advanced field. However, this does not require any new
assumplion since we have already assumed the particle to be isolated.

The other stimulus and response ficlds are given by

Si=R} .85 =RT R} =pS}
Sh=RI., SE=RN_, RY =fs¥.

We now assume that, from the point of view of macroscopic observation, allithe
response fields act simultaneously with the initial source ficlds. As a particular
consequence of this assumption, the resulting clectromagnetic arrow of time, like the
thermodynamic arrow of time, will be applicable only at a macroscopic level.

With the above assumption, the total ficld

[4.1)

(4.2}

Foum= ;l::rif ;’:; + i: ‘25' *"Efi ‘g;;. (;l.:!)

e )

Now, ignoring those terms which ciincel with 2% (R, and aSa_iumih,gflpﬂ-# I,

E. RV =[p+pfp+p(fp)*+.. )UF~F)

"

-(» “}i (o) =y

il E - F.
(——-_l_pf),m, £). @4
Similarly,

- {215 / Lag= _ L

L kU= () - R, (45)
Trom (4.4) and {1.5)

==.1 i ___!2.‘“_._..!;.. ; }: .5_JE;_._____EE__;I o

Fun Z(HI—pf l-pI)F'*Z(Hr—{;I I*’-pf)"" >
Hence the condition for F,, = F is ;

tp=N/i-phH=1 4.7y
of _

pl+N=(1+f). (4.8)

Equation (4.8) is validif either p = I'with f arbitrary, or f = — | regardless of the value of
p. given that [pf[+# 1. Simiarly, we have for the existence of purely advanced radiation.
the conditionsp=—lor f= 1, |pf| # 1.

If we know a priori that p = f = 1 then (4.7) is indcterminate. However, in this case
RE v RY =0 for each n, i.e., the response fiekds cancel termwise. Hence, in the
eapreasion (4.3} for Fy,, we are left only with the original time-symmetric fields of the
particle. Thus. in the case p = f =1 the nature of the radiation is time symmetric. On
the. “herhund, if we only have p = 1, f = | then a mixture of the form (1 —&8)F,+8F,can
exisi, with
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U-p)~x1-pXi-f) _(1-p)
(I~p, v (=)= ~pX1=/) (1-f)
prowided 1 —p)« (1 - j)t.

«i 14.9}

1 Iis is ror the same as saying f « p. For instance. il p = l)l"l(l""unﬁ[- thi0 " ahen ) -preil-His
truc. but nut f«:p,'ln the usual sense.

Strictly speaking, since any measurement will involve only a finite portion of the:
World line of the particle, the observed radiation will always be s mixture, snd the
empirical testability of this prediction is considered in § 6.

S. The absorber mechaalun

ILis now necessary to caleulate the values of p and f for various cosmological models.
The main interest, of course, lies in finding those cases for which p=1, f # 1. We first
consider qualitatively the mechaunisin underlying the absorber response. This has
ncver, in any case, been cleéarly brought out. Thus, for instance, Kamat (1970)
qQuestions the assumption that this respopse is emitied in a *backwards’ direction, and
feels that the existence of a *backwards refractive index' is necessary forthe existence of
such a response. the ather hand, Pegg (1975b) has maintained that the refractive
index arises after consideration of the absorber response, and has quoted the deriva-
tions in WF in support of his contention, However, in these derivations the interaction
of the advanced component of the clementary response fields with the charged particles
in the absorber has not been considered at all, implying that a special choice for the
refractive index for advanced radiation has already been made. As such, the origin of
the backwards refractive index remains a mystery.

This mystery is, however, casily resolved by considering the phase relations for the
elementary response fields. Consider a retarded stimulus field, incident on an absorber
whivh we assume to, be a dilute plasma of charged particles. For the purpose of
understanding the origin of the backward: response field it is sufticient to consider the
~-.+¢ of a plane monochromatic field, which’ we denote at a plane z in the absorber by
k= Fy e, The phase of the field at the position z + 8z, of particles § (see figure 4} is
w({t=~382z). We assume that the damping is very light and the refractive indea is
approximately unity, so that the phase of the re-emitted retarded field of particle  at
Z+ 352 in the direction 8 is

w{l —dZ,) - wl{dz - :x')/cos-vj;.

Vitus in the forward direction (8 =0) the re-emitted retarded fields inteyfere con-
stfuctively and are in phase with the original retarded fietd. In any other direction the
interference is destructive because of the random positioning of the particles,

But, for the advanced field the phase at z is w (! - 52,) + w8z, £ , whereas the phase
at z+62 is w(t—8z,3—w|[(8z + 82,)/cos 8#1. 1t follows that the re-emitted advanced
ficlds interfere constructively in the backwards direction and destructively elsewhere,
Maoreover, they are exactly o out of phase with the incident retarded field. The
wmiditional phase difference of o appears because the re-emitted retarded fields are in
phase with the incident field whereas the re-emitted advanced fields are 7 out of phase
with the re-emitted retarded fields.

This expiains the origin of the backward response ficld, but now thefe 1. a new
mechaism of absorptica at work in the time-symmetry normalisation factor §. Assumi-
ing an extinction theorem of the Ewald-Oseen type (see, for instance, Born and Wolf
1964), only half of the absorbed energy is re-emitted in the forward direction, while the
other half is converted into the energy of the absorber response. Thus, it is time-
symmeiric scattering rather than thermal absorption which gives risc to the absorber
respe. 2. Theo.al abs. ption, if it occurs, will pc icanently remove the energy
avain ile for the ubsorber response. It should be obseryved that secondary and tertiary
scattering also contribute to the absarber response, because in each case the response
ficld exacily retraces the gath of the incident stimulus field. In actuality, an infinity of
lnieractions might take place within the absorber, but we do not have to consider this,
since we can get the magnitude of the response field by straightforward energy
considerations: Thus, if there are sufficiently many charged particles in the absorber so
that the incident field loses all'its energy (by scattering) then all this lost encrgy must
appear in the fu.u of the absorber response, i.e., the absorber is ideal. In this case any
significaut motion of the charged parti-fes in the absorber is confined to very small time
intervals and consequently there is very dittle thermal absorption.
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Applying these considerations to the past and future ahsothers we see that0<p, f<
Land p =1 (f = 1) provided the past (future).ubsorber has a sufticiently large number of
charged.particles.

This brings us to the problein of determining those cosmological models that satisfy
the comtbitions for the existence of retarded radiation. liere we will consider the
situation oily with respect 1o evolutionary models. The past null cone in this case is
opaque { p = 1) due to the initial singularity. Along the future null cone we assume that
absorption occurs mainly hy discrete objects, which ahsarb their geometriccross section
of the incident Nux. In that case, models which expand with R« 1*’* or more are
transparent along the future null cone (Davies 1972b).. These models, which include

the Einstein-de Sitter model, therefore satisfy the requirements for the existence of
retarded radiation. .

‘Fhe situation is not so clear with regard to models with a final sipgularity, hecause, as
seen in § 3, retarded radiation can be consistent even if p=1 and f=1. In particular,
the possibility raised by Gold (1967) is not ruled out. For a source at large times from
Ahe initial singularity, some of the emitted radiation would undergo large bl ¢ shifts and
correspondingly greater losses due to (non-linear) thermal absorption and pair produc-
tion. Hence (| = p) would increase as the source moves away from the initial singularity.
In this manner it is possible that p ultimately falls below the value of f. Similarly, duc to
the peculiarities of absorption in an epoch dominated by advaiced radiation, (1 ~f)
could decrease towards the final singularity.

Thus there is a good possibility that, at least in this case, the cosmological arrow wf
time Jdetermines the eleciromagnetic arrow of time, although a deeper investigation
would be required befgre drawing any fium conclusion.

6: Empirical detection of advanced radiation

In § 4, the conditions for the existence of purely retarded radiation were derived under
ihie assumption that all the stimulus aid response fields act simuttaneously at any point
in space. In actuality, according to the basic hypothesis, the nth response field acts ¢
syconds earlier than the {n - 1)th response field, where 7 is the characteristic delay
ussuciated with the signal velocity of advanced radiation. The precise value of T would
depend on the particuli ¥ model under consideration. However, for any realistic model
of a particle of finite size, ¢ would he very small. In fact, if the model proposed by Dirac
(196.2) and Raju ( 1979) is wed, the value of 7 would definitely be smaller than 107 s,
A magroscopic otnerver wuuld carry out an observation only in a finite time interval, T,

large compared with 7. A large sumber, N = (T/r), of the response ficlds Wwed‘

would act within this time integval, and so the assumption of simultaneity would be
justified provided the series converges with sullicient rupidity. Since retarded radistion
is approximately consistent, i.e., p > 1, the scries would converge rapidly, unless f - 1.
B.... by using increasingly efficient local ahsorbers, in theory it can always he arranged
to have f-— 1 in the laboratory. Hence, if.the theory is correct, advanced radiation can
be detected experimentally

S, sug eaperiment of this nature has already been carried out (Partridge 1975
anud are-.acr proposed (Herron and Pegg 1974), it would be worthwhile discussing these
1heoretical predictions i,. .his context. Partridge’s expoeriment consisted of measuring
the power input ti a horn antenna a3 it radiated alterniaely into free space and a local
absorber. Pariridge assumed a relationship of the type

Pi=(1-6)P, 16.1)

where I*; and P, denote the power inputs while radiating into free space and the Joca)
shatrrber respectively. & ardi- | o the theories in WF and 1IN, 8 & 1), According 1o
ue present theory, U .oseny: of a local absorber would increase the content of
advanced radiation in vize mixtwie, and hence 8 should be negative. The mean valueof 8
obuined by Partridge was (=1-1£1:6) x 10, and Partridge concluded that this was:
not signitcunt. However, in ohtaining this mean value Partridge took a weighted
averige over various phase settings of a phase-sensitive detector, and, for the two phase
settings ¢ = 0% and ¢ = 180° for which the detector is most sensitive, the values of &
obtuing. ..cte significant and negative. Although the possibility of instrumeni.d error
can by oeans be ruled out, these results are certainly suggestive, and the ¢xperiniesi
deserves 1o be repeated with grea.cr sensitivity.
y
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in the proposed experiment by Herron and Pegg, a *dynamic’ local absorber is to be ;
used, which, it is supposed, would ¢ fiect only the value of p or that of f. If only the value (ﬂ
of p issought to be increased, then if £ = | there would be no change in the power input, 1‘ ’
wheseas if p=1, p # 1, then the power input would increase.

—.

7. Conclusion ‘&

Retarded radiation is congistent in those models which satisfy p=1 or f=~1, with
Ipfl# 1. The Einstein—de Sitter model satisfies these conditions approximately. In the
closed Friedman model it is likely that retarded radiation is dominant during expansion
and uuvanced radiation during contraction.

The theory predicts that advanced radiation exists in small amounts, and can be
detected experimentally.
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