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INTRODUCTI QK

A complex Banach spece X 1g said to be an L1—predua1
if X is isometric to I'(¥) for some non-ne gative mecsure & .
YellEnown examples of L' -preduals include the spuce C(X) of
complex~valued continucus functiions on a compact Hausdoril space
and the abstract M-spaces of Kakutani. In [19], Grothendieck
introduced a class of L1~preduals, novw known «s G-spaces, and
conjectured that those are all the L1~preduals. In his 1964
memoir [35_], ILindenstrauss settled this conjecture by exhibiting
& wide class of Banach spaces, other than G-spaces, which are
L?—preduals. He also gave several characterizations and interest-
ing properties of L1apredualség:tern$ of intersection properties
of balls and extensions of operators. Since that time, the theory

of L1—preduals has attracted wide attention. LT-preduals are now

somnetimes called Lindenstraucss spaces.

Let PJ{X —>X be & linear projection., We call P an
L projection it ||xfl = |{Bx|l + ||jx-Ex|| for all xeX. The range
of an I-projection is called an L~ideal, As a consequence of the
results of Alfsen-Effros [ 2| and Hirsberg [227], one knows that
a norm closed sotospace J ( A(K)* (where A4(K), the space of
continuous complex-valued affine functions on & compact convex
set K 1is equipped with the supremum norm) is an L-ideal iff J
is the linear span of a split face of the image of X in A(K)*
under the evaluation map. Through the combined efforts of
Lindenstrauss [357], Semadeni [45], Hirsberg and lazar [21],
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it is known that a Iindenstrauss gpace whose unit ball has an
cxtreme point, can dhe realised isometrically as the space A(E)
for some compact Choquet simplex XK. Now, Rllis [147] proved
that & compact convex set 1s a Choguet gimplex iff every closed
face of it is split. In view of the one-tc-one correspondence
hetween I-ideals and split faces mentioned at the beginning of
this paragraph, all these results suggest the possibility of
characterising general L1—preduals interms of I-ideals in their
dual spaces. Several such chardcterizations are obtained in the

first three sections of the present thesis.

The following theorem of Iima [ 28, Theorem 5.8 plays
an important rble in the proofs of our results ¢+ Let E denote
the set of extreme points of the unit ball of the dual of a
complex Banach space X . Then the statements (1) and (2} are

equivalezﬁ.ﬁ
(1) X is an L1-predual

' *
(2) line {f} is an I-ideal for each fe¢E and if feX
f£ll =1 and P(E) = 0 or f for all L-projections P on
e ] 0
X then feE.

A closed subspace M (C X is said to be an M- ideal if
MO = f£eX T £(x)i=0 ¥FxeM} iscan I-ideal. M-ideals were
'introduC‘ed by 4lfsen-Effros [2]. In that paper Alfsém.—-Effros
introduce & topology on E, called the structure topology, whose

closed sets are obtained by intersecting E with w’-closed
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I-ideals in X*. This topology is the analogue for general Banach
spaces of the faclial tovology on the ext:eﬁﬁe boundayy of & compact
convex set [ 1] and of the biface topology on the extreme bourdary
of the dual vmit L;all of & Iindenstrauss 'spaoe, introduced by
Effros [12]]. When *he scalar field is real, we characterize
L.}_preduals in terms of this structure tcpolegy on E and in the
complex case obtain some general structural characterizations of

various sub-classes of L1-preduals. J
We now give a brief sectionwise summary of this thesis.

In scetion 1, for a complex Banach space X, we define the
concepts of T-faces and T-dilated sets, analogous to bifaces and
symmetrically dilated sets of E.G. Effros [127]. We prove that
wvhen X is a Iindenstrauss space, the linear span of the w%—clgsed
convex hull of a dilated sét is a w*-closed L-ideal., 4s a conse-
guence of this result we‘ge’c. that line P is a w'-closed L-ideal
for any w'-closed face P of the dual wit ball Xj: and
~ line c(D) (e (@) s%ands for the w -closed comvex hull of D) is

a w'-closed L-ideal for any w*-compact set D (T E,

For a Banach space X such that Xj: with w*-‘bopology is
a standard compuct convex set in the sense of Rogalski [40:], we
show in section 2 that if lline ¢(D) is an I-ideal for all
w'—compact D (C E, then X is an Lq—predual.? We give an example
to show that this in.general does not characterize L1-preduals.

interms of the Alfsen-Effros, structure topology on E, we
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-characterize real L1-predqals as those renl Banach spaces X for
vhich the sets jé.fEE CIEX)| = 1} are structurally closed for
2ll xeX with |l x|l = 1. At the end of the seciion we give an
cxample to show that this structurzl characterization does not

extent %0 complex Banach opiceSe

Section 3 deals ‘.Ji't-h‘ the charecterizations of ILindensirauss
spaces using w -closed faces of the duﬂi unit balls Using results
of Hirsbherg and Lazar ]:21]' and the -ioérallel face characterizaiion
of simplexes due to Briem [[7_] we show that if 4 (C C(Y) isa
closed subspace containing constants and separating points of the
compact Hausdorff space Y, then the arssump‘tions that line F is
an I-ideal and (line F) []X;'= c(TF) (where T is the wnit
circle) for all peak faces of the state space of A, imply that |
A is an L1—predua.l. For a general Banach space X we show that
if line F is an I-ideal for uny w -closed f.ce F of X;e then
X is a TLindenstrauss space.. The Bishop—'Phe-lps theorem [ 5]
plays a cruciél role “here ag 1t does in an ahdIOgous characteriza-
tion of simplexés due to AJJ. E1lis [14_]. We also give & charac-
terizationin.terms of the M-sets, first defined by Hirsberg in
[227]. We then give the partial complex &n&loéuer of the structural
characterization given for real Banach gpaces J.n section 2 by |
showing that if %f‘sE vt x)| = 1} is structurally closed and
P ={feXy § £(x) = 1] is split in CO(P|J-iF) forall xeX
with [l xf{| =1, then X is an L1,-predua1.
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4s an application of the lust theorem, in sceticn 4 we
give & new proof of a theorsr of Tima [297 which asscrts that

complex E{4) - spaces are T -preduals.  (For the definition of

E{4) - spuces, sce [25]).

In section 5, we study complex G-spaces (for the defini-
tion see [36_]). Ue charwcterige them as those Bunach spaces X
for which the functions |x| I E —> IR defined by |x|({E)= [f(x)]
are étructurally upper semi-continucus for all xe¢X. We prove
that for a complex G-space, the intersection of any fapily of
M-ideals is an M-ideal, & result proved for the real scalsrs by
U, Uttersrud [47] and P.D. Taylor [46]., We then attempt to
solve & problem of Uttersrud [47_], of characterizing G-spaces
as those Banach spaces X for which the interscction of M-ideals
is an M-ideal end line {f} is an I-ideal for all feB. Ve
show that if 3£eB § lime {f} isan I-idesl} is w'-sequemtial:
dense in the w'-closure of E and intersection of any coumtable
number of M-ideals in X is an M-ideal then line [f} is an
I-idecal for @all f in the w'-closure of E. This enables us to
settle positively Uttersrud's question for the class of separable
Bansch spaces whose unit ball has an extreme point and for separ-
able L1-preduals. We also give simple and transparent proofs of
results which are more general than those obtained by N. Roy in

[437) and A, Gieit in [207] in this context.
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In section 6 we censider C_ and 00(["') spuces (for
the definitions of thase snuczs see sceticn 6). We charactsrize
GU— spices 48 thosc compliex Banach spuecsg X Tor which
ix] ¢ E >R is lower seni-continuous in the structure tovelegy
for a1l xeX or, equivelenily, any relidive .} o -closed
T-inveriznwt subset of E is structuraily closed. We show thot
C, - spaces are thoge G-spaces ¥  which have the following
property : for any I-ideal N in X" the wnit ball of W
{closure taken in w'-topology) equals the w'—closure of the unit
ball of N. If every T-invariant subset of E happens tc be
structurally closed, or, every L-ideel in X is w*-closcd and
line jf§ is an I-ideal for all f£:E, then we show that X is

isometric to ¢ (T").

Some of our results when specialised to A(K) spaces,
yield churacterizations of Bauer simplexes waichare sharper than

some of the ones existing in the literature.

In section 7, we give new and simple proofs of some
results of Wulbert [46] on L'-preducls which are isometrie to
closed, self-adjoint subspaces of C(Y) for a compact Hausdorff
space Y. Using Bednar and Iacey's characterizéation of real
I:Tﬂpreduals (sce [3___]):imizerms of barycenmtric maps and the
corresponding complex analogues due to AJK. Roy [42:], we show
that if the real part of & closed, self-adjoint subspace 4 of

1

C(Y) is an L'-predusl then & is an L1—predu€al. We give an
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cxample of @ clooed subspace of a C(X) which is an LT-preﬂu-:al
but the real part is net an L -predual thus proving the falsity

of Proposition 3.5 in [48]].

In scoticn 8 we coneidor iscnotrice of a(K)-spaces. We

deloribe o class of isometries for A(K) and give a sufficient

cordition on an isometry,in torms of fuclelly comtinuvous functi
on the extreme bowndary of X so that the isumetry in gquestion

-

s in the proscribed class. We then glve a complete descriptio
of isometries of A(K) when ¥ is a Choquet simplex. OQur rosu
extond the classical Banach-Stone theorem for C(Y) and a theo
of 4.J. Lagar [27]. When X is o simplex we also completely
desceribe isometries of 4°(K) = iaaA(K) s alp) = 01; , where

is a fixed extreme point of K. Ve use these resulls to obtain
a conplete description of bi-contractive projections (i.c. proj
tions P with P <1 and [JI-P] ¢ 1) in A(X) fora

simplex X,
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Notation and terminology &

Tet ¢ denote the complex plane and T, the unit circle
in ¢.
Por a Banzch space X, let X, = {XE:X s lxl) ¢} ana
S o= iXe:X s M= ='1}.. Let E denote the extreme points of
3 . 3
Xy« Forany D (_X et ¢(D) denote the w -closed convex

hull of D. .

H

All closures wmiless otherwise mentioncd are taken in the

*
w —topology. Iet =-—> ,iio denote convergence in w'  and

structure topologics respectively.

For a compact Hausdorff space Y and a probability measure
# an Y let Supp # denote the topologicual support of #. TFor

vyeY, let 6(y) denote the Dirac measure at y.

For a compact convex set K (always considered in a locally
convex Hausdorff topological vector space) let E(K) denote the
extremc points of K. For D (J K, we denote by CO(D) the
convex hull of D, Por & probability measure # an XK, let Y®)
denote the resultant of #. We make free use of standard concepts

and notations of convexity theory from [17].

We now recuall briefly some notations and definitions of

complex Choquet theory (see [[13, 377]).

For any compact, absolutely convex set X amd teT, lct

at denote the homeomorphism x —> tx . For ge C(X) define a
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wher~ dt is the Heor netsure ca T

Por & complix Borel measwre # on ¥, define
hom # 2 ) —> C(X) by (hom K)(£) = # (hom £), £eCK).
Easy to see that hom # is & linear map and |fhom & || £ || #1l.

. b . Q * *
Alsg M —> hom £ is wi-continuous from C(X) onto CE) .

If d¢ = h d{#] where h is a Borel measurable function

*
of modulus one, define R : ¢(X) —> C(X) by

(Re) (g) = Igg(h(L).L)dluj(L), beCE®, geCE.

Then we have | R4 || = |l # |, hom (R¥)) = hon #.

Iet 4 (C ¢(Y) be & ciused subspice scpurating points
of Y but not ingeneral comtaining constants. Let ¢t ¥—> A:

denote the evaluation map., 4 complex measure # on Y is

called & bourdary measure if |4 oe"1 iz & maximal measure on

*

Aq .
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SECTION 1

T-faces and T-dilated scts

Let X be & complex Banach space, For any p,qe X,

i

write p.<a if o ll=]la~-p |l = llp /l. The operation A~ was

imtroduced in [27) and is & pertial ordering on X.

In this section we develop complex analogues of some of

the results obtained in [12], Section 5.

—_ %
Definition ¢ 4 w -closed T-invariant convex set H (_ Xy is

called a T-face if

1) FpeH,p#0, p/llpll ¢ H

2) peH, g2 p => qeH (hereditary property).
Exanples & TFor any ﬁeE, {ap: le] £ 1, oe¢ ¢} is a T-face.

1 N (CX* is a w’-closed hereditary subspace then N,
is a T-face.

I
#*

Let I-Lp denote the smallest T-face containing p.

-

Definitions We say @& w —closed set D (C X: is T-dilated if
for all peD, E(H)) Co.

Remerk. ¢ For pekE, H, = {u.p e | &%, Gs¢}. Any w—closed
T-invariant D (T E, is T-dilated.

*
If peXy,BH) CF and for 0< A< 1, Hy =Hyy

{3
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a- 91 &

We now quote & charsctorizaticn of complex L1 ~praeduals
from EfPr08 137,

A complex Bancch space X 1is an L-i ~nredusal 15T hom /J,I =
hom Ho whenevex M1 y Mo GPE maxinal probability neasures on

Y. with cornon resultant.

1

Por the rest of this section we assume thut X is &

*
Lindenstrauss spice. TLet K = X, o

Definition ¢+ For any peX, let o, = R (hom #) where # is a

miximal probability measure with J{(&)

{1

ndle

Inview of the result quoted above it is casy to sse that

ep is a well-defincdé nap and Qp represents .

Ieppma 1.1. 1) If | p|] =1 then 6(p) =
2) For pek, p<0,6(p)=|p'.e]|p])
3) For p,9eX,qLp, 6(q) ¢ e(p)
4) Supp 6(p) H, ¥pek
5) 4 w'-closed T-invariant convex set H is a
T-fuce iff ¥ pPe X, » # 0, Supp 6(p) (_ H
Proof ¢ 1) Follows from Iemma 3.6 of [ 37 ), since  R(hom #) =W
in this case.
~2) Let peK, 0< |Ipll <1 and “, 1" be maximal
with () = p, Y'Y = p/ |} pll.Fix q=E,
If A= ol u' s (- u p n)(;a((p + 58(- Q).

4?~.-'af"ﬂ
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By Effros charultivraz-idlin, Lwi A = Lor

%
han A = [l p || hom & , becauvse

(hom 8(¢)(g) = (hom g)(g) = =(hom gl(~¢) =-hom 5(~q)(a)

i}

for geC(X).
Therefore we have

8(p) = R (nom A)

R(J| o] hom #') = || p {l.6Ce/ |l o).

3) Pollows from the observaticn 6(p) = 6(p-q) +9(q)

which is easy to deduce frdm 1 and 2.
4) TEnough to show that for pek, | p} = 1,
Supp 6(p) H .

let 4 be maximal with Y() = p. From Proposition 1.2.3
n

) a
of [17], = get a net i'z 7\;5(13;)]] where ?t;s L Ol ol

i=1

= n
g ‘ i R 4B “ @& _«a '
l 14 - l , .n l S I

i=1 i=1
n

a ay W* ) N

ii1 A; 6(p;) E> w4, since |lplf=1, Ajp{4 P ¥ianmde,so

that p;e Hp ¥ iand a, Hence Supp 4 = Supp €(p) C Hp .

Ierma 1.2, For any T-face H of K, ¥ = linc H (i.e. the complex

linear span of H) is a w-closed I-ideal.

Proof ¢ We first claim thet Ny =H,

n
Let O;lp.eN,I,thel_'l p= I

. aiqi,qiaH,di;&' 0¥ i,
i= :

L o
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el i

3¢ p= A 12;1 hi‘biqi where A = ii !ai‘, i T ‘ai!’
. ) . X . n » .
Ay = logl/h for 1< 4 ¢m. Since q = R
a/llail ¢ . Therefore p = A.flqll.a/ |l g Il isin H, since

Mila il € 1. Hence N, = He How by the Krein-Smuliun theorem,
I is w-closed,
To show that W is an I-ideal, we need to show that

co )

N ={q

Suppose O £ x

0 (see [27] page 11C) where

LN ]

p £ q, peN—'-—:-)p:O}.

ary+ (1-a)r,, xe W, 0 £ e N, 0¢Ca< 1,

il

(To simplify matters we are considering convex combination of
only two elements. However, it will be clear from the arguments
below that the same proof works for arbitrury, finite, convex
combinati.ns).

Since N’ is closed under multiplication by +ve scalars we get
thet v, /ffr; || isdin N, let p=x/| x| and

B=oaflryfl +(3-c)|fr, Ife Then we have
-g;-(ﬂ-Hr.l [ €xy/ Hrq 1D +(1~a)||r2]l(r2/ liroll)) =x/8
= |jx|]/ Bop+ (=[x ] /B

Choose a maximal probability meusure # with Supp 4 - Ny
Y(#)=p (such & choice is possidle because of 1) and 4) of

Iemma 1'1)0
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t
Also choose naximal neasures ‘U';j on K, supported by N

with }’(uj) = T4/ Hrj I (see T2, page 113, Iemma 4.3). By Lffros'
characterizativn allry |l hom 2, + (1-a) iz, |l hom 4, = il hom #

ané since hon Mj is supported by TN’ =W and hom # is
supported by N we must have hom # = 0. Hence X = 0 sinece

hom # represents X, giving the required comtradiction.

Iemna 1,3. For any w -closed M-invariant set D (C K such that

Supp 8(p) (C ¢(@) ¥ peD, ¢(D) is a T-Tace,

Prcof ¢ Inview of 5), Iemma 1.1, we need only to verify that
Supp 6(p) (T c(D) ¥ pec(@e ILet pec@), p# 0, Iet £ Dbe
a probability on D with Y(¥) = p. Iet 4' be & maximal measure
on X, dominating # in the Choquet ordering., Then by Theorem 2.1

*
of [12]], 3 nets of measures {4, { an {u(‘lg such that #_ ¥4,

i w* t no’ a a T Yo a .a o
ry =—> &, where h, = % cia(pi), Hg = T c4 ?s.i ¥ a and P\i
i=1 i=1
1 By
. : a a a al e - a
naximal with Y(A)) = p], p]eD, ‘U’i} (C [o,17], £ cl=t1¥s
i=T i=1 -
Since vy e D, Supp 6(p;) (C c(D) i.e.

Supp R(hom 7&;) (C c(D) and hence hom }\; hags its support in

c(D) as hom (R{hom 7&;)) = hom (hom ;\g) = hon A; . So
n

T
honm N-a = B
i=1

¢ q a . : vt !
c; hom A has iis support in c(D). Since ¥, <> 4

Tl 1
and 'hom' is w*-continuous we get hom Hoy > hom 4 so that

(]
hom # has its support in c(D).
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Lol =

¥ - P
Therefore Supp €(p) = Supp E(hem £)) C c(D),

Corollary 1.4, TFor any dilated set D, H = c(D) is a T-face

and DﬂE is a structurally closed set.

Proof ! ILet peD, by Lemma 1.1, 4), Supp 6(p) H, CH.
Therefore by above lemma, H is a T-face and if N = line H,

since NDE = H ]E = D-ﬂE, apply Lemma 1.2 to complete the proof.

Corollary 1.5. If. D (C E is a w'-compact T-invariant set then
line ¢(D) is a w -closed I-ideal and (line c(D)), = c(D). 1If

P (CK is a w -closed face then line F is a w*-closed I~ideal
and (line F), = c(T.F). | g

Proof .o Flrst part is easy to see.

Iet P (CE be a w'-closed face and put H = c(TF). If p=taq,
q=F, teT and £ is a maxinal measure with Y(4) .= p then the
measure Mooy represents q and since F is a closed face,
Supp (kooy) (C P. Therefore Supp (p) (C H. Hence by Temma 1.3,

H is a T-face. |

Ciearly line F (___ line He¢ Since F ;i.s;"_'?‘ w*-compact
convex Set it.is easy to see that 6 = (tj.ax 0L a1, Xe F}‘jis
a w -compact convex set and that TF (T ¢-G+i(G-G). Conse-
quently c(TF) (C line F. Therefore line F is a w'-closed
L-ideal and (line F), = c(TF). ]
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SECTION 2

. - . . ; . o
Some characterizuticas of complex I -predudls

Iet X ©be a complex Banach spice. We continue to denote
X? by K. In the previous-section, we proved that if X 1is a
Iindenstrauss space then for any -ﬁ’%ncompm‘t T;-invﬁriarrt set
D (C B, line c¢(D) is an L-ideal. We now show that this property
actually characterizes L1—preduals among o certain class of BanaChr

spaces which includes the separable Banach spices.

Theorem 2.1. Let X be a complex Banach space such that E 1s

h*—Borel and for anpy nmaximal measure # on K, “(E) = 1 (K is &
standard compact convex set in the sense of Rogelski [407]).
Assume that for any w —compact and T-invariant D C:'Q,,line c(D).

is an I-ideal. Then X is an Ll-predual.

Proof ¢ We first claim that line c(D) is w —-closed and
(1ine c(@)), = c(D).

Since c(D) i3 a w -compact comvex set and line c(D) is
norm closed by [ 9] ve 5.9 we'get that line ¢(D) is w -closeds
If ¢(D) is properly conmtained in (line c(ﬁ))1lthen;thgre is an
extreme point p of X in (line c(D))1 sh§h that p £ c(D).
By hypothesis line {p}_ is an IL-ideal, Iet N be the L-ideal
complememtary to line {p} . Since D (CE and p¢D, D is
T-invariant, we get that D (C N, Let gec(D) and let # be a

probability on D with Y®) = g. If P denctes the L-projection
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I

associtted with line {p} then since line Ep is w'—-closed and
. * o P ) —— e
£ —> P(£)(x) is w -Borel oca K (for any xe i), satisiying

the bary centric calclulus we get (see [2_] page 113)

P> (x) = é P(z)(xYa(z) = 0 (eince D (C M) ¥ x.

Therefore P(q) = 0 i.e. qeNe So c¢(D) (C ¥ und hence

line ¢(@) ( W. A contradiction.
Therefore (line c(D))1 = c(D).

I? we can show that whenever | pfl =1 and P(p) =0
or P for all L—prdjections By Bn X* then' peE, we will have
verified all the conditions of Iima's characterization of
LT—preduals quoted in the introduction und it will follow that X
is an L1ﬁpredua1. ™x such a p and let # be & maximal proba-
bility measurc with Y(#) = p. We will show that # is supported

by & single point and thus peE.

Tet D be a w -compact subset of E and let N=line c(TD)
and let P denote the L-projection associated with N. The con-
dition on p dimplies either pe N or pse N‘ (the I-ideal comple-
mentary to N). lrite Mg = #/TD, Ly = 4/E - T (here we make use
of the fact that E is w*-Borel). If My £ 0, let
a4 = Yﬂij/’ﬂ Mjll) and let krj = ]luj | a3 otherwise put 4=0.
Then we have p = ry+ T, &and since ||rj||$ 1, 1 = |lol] = |lzq il +

Hr2|f. Since 1rye c(TD), we get that ryelN,
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If pel then p = (I-P () = (I-Pp)(ry) and since
I @~ (r) i < fr, |l we must heve 4 = O. Therefore 4(T) = O.

on the otherhand if vpeN then p = PD(p} = T, PD(I‘Z)
implies v, e No If rs #0 then since £ 1is supported by E, we
. " t
must have & w'-compact set D (_E -~ TD such thut “#(D ) # O

let & = Y(&-(&) ami u =20 Yes. We con write pEryrury
D

for some veK where 1= [ir,ff - flufl + [|v]l « This implies that
we No Since Ny = c(TD), there exists & maximal probability
measure A on K supported by TD such that Y(d) = u. Then
if ﬂr':: !i/D',. the measure A-M' is & boundary measure ammihilét-
ing 4 (K) = {da AK) t ao) = Ol Since line c(T’D )J.saw ~closed
I-idcal by Theorem—4.5 of [2.], we get that A-g /1D ¢ a (0.
Since A is supported by TD we get.thcx'l'. u and hence A are
in A _(K)° and so u= Y() = 0. This contradiction shows that
r, = 0 and hence 2{E - TD) =

Suppose n’dﬁ that Supp #ﬂE contains two linearly indepen-
demt vectors z,,a,. We can find disjoint open neighbourhoods
of Tezy and Te.z, and hence we can find 4 compact subset .D
of E with &4(TD) > O and {E-TD) > 0. The previous reasoning
shows that thesec incqualities hc;lding éimultaneously is impossidle.
Therefore 4 is supported by Tez for some zeE. Since p=YE)
and |{u |l =1, it is evident that # is supporited by 2 singleton

as required.
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Remark 1) Tor a "standard' compact convex set K, Rogalski has
proved in [407] that if for 411 D (_ B(K), D w'-compact, CO(D)
is & split face then XK is a simplexs Since K is 2 simplex
iff Ap(X)  is a Lindenstrauss space (ses [457]), using the
correspondence between w'~closed I-ideals in AIR(K)* and closed
split faces of K, one can see that what we have proved above 1is
an extension of Rogalski's result to those complex Banach spaces

¥ for which Xf[‘ is standard.

2) When X is a real Banach space the second condition in
Theorem 2.1 reads : line ¢{(D) is an I-ideal for all w -compact

D (T B, Por in this casc it is easy to see that line c(D)
line c(DLJ D)e

In [15]), A.J. BEllis and 4.K. Roy gave an example to show
that Rogalski's result does not eXtend to tr2 general non-standard
case, We now adapt that exémple to show that the hypothesis

'standard® cannot be dropped from Theorem 2.1. B S

Example 2.2. Let Y = LJﬁ Y, » ec¢ Lo, 1[} where the disjoint

sets Y each consist of three points é B B o }- Topologise
Y so that each r,, %, is isolated and such that each g, hasa
neigh?ourhood,base consisting of the sets {Sd}tngﬁ: 0< |a-5|<s},

e > 0. Y 1is a compact Hausdorf{f spacec.

Iet A dencte the Lebesgue measure on [0,1_] and let
1 1
?\1=?\/[O$§]9 7\2':7\/['2‘:1]'.
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) |
: f(::a)+f(tc) lf
et A = sz(Y):f(SG) = : and

2
ha If (s 2y (o) :J“f(sa)dxg(a),j

let K be the state svace of 4. From Theorem 1 of [15], we
have that X is not & simplex and not stardard. Since 4 is
self-adjoint using resilis of Hirsberg and Iazar [21] we get

that A is not a Lindenstrauss space.

The map f ~> £|f(1) is wi=continucus from E(A:) onto
E(®). If D (C B(X) is compact then since. D is finite, say
D = [X1,...,Xn7}- , we have that P = GO §x1,...,xn} is a split
face. Using the self-adjointness of 4 once again, we deduce
that (see Corollary 2,7 [227]) CO(R|{-iF) is split in .
CO(KU - iK) and consequently line F is a w*—cloée& L-.ideal.

Proposition 2.3. Iet X “be a complex Banach space and an

L1—predual.\ If xe S then {feE e -—-'1} is closed in

the structure topology.

Proof ¢ Let F = %faK s £ (x) = } xcS. Simce F is a
w-closed face by Corollary 1.5, N= line F ‘is a w —closed L-ideal

and (W), = c(TF). Hence E(N,]):E(CCTF):';.%fsE.|f(x)] = }.

1
~ Thercfore {f eE { |f(x)] = 1} is ':é."istructurally closed set.

The abowe proposn."tn.on was proved when X ls a real
Banach space by Effros in [1 2]. However the pro’é‘f given there

contains an error (specifically, the set H considered in -
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A

Proposition 4.9 of [12]] is not comvex). Interms of the struc-
ture topology on E, Theorem 241 can be phrased asg 'if X is

a complex Banach space with X,} , Standard and any w*ucompact
T-invariant subset of E is smructurallv closed, then X is an
Ltpredual' « We now give a Cl’lu_;_r-C'teI‘l c«ulull of real L:Lndenstrauss

spaces interms of the structure topologye

T

Theorem 2,4. A real Banach spacé X is an .u1 -predual

iff ¥ xe§, {TeE HOll 1% is a structurally closed set.

Proof ¢ Fix % eS and let F = zsz : f(x ) = } Since

?feE [f(x ) ...;%.. E(I\ for some w -cloged I-ideal N, we get

that N = line T d.nd N, = co(FU - F). We claim that N is an

I-space. let J = {xeX I £(x) =0 ¥. feF}.
Define J I X/ —> A (F) by Jlx+IN(E) = £(x) FxecX, feF

0 is a well defined linear 1 ip., Since (X/J)* = line 7 and
Ny = CO(FU -F) we get that

‘ h=x+ail

!

fiu§1]f(x)] ==ngpr:€(}:)| = || 8§+ ]} .

Since E(x +J) =1 and J(X/J) separates points of F, by @

well known argument in convexity theorg we ge‘t that

§(x/3) = ap (D) «
et acip (1), |la H and let G = {fe T a(f)=1].
Iet x, e X, || x ivd =1 E(x +Jd) = a, Since J is an

M-ideal there exists x,sJ such that Hey v xoll = Jilxg + 3] = 1.
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Put x = =L

For any fe & since f£ix ) =1 and f(xy) = 0,

PGty = B0 £Gey)) = FO1 e Ty« D) = F(ra@)) =1

If feX, £ ¢ then f(}:,l,?%‘l if fe¢P  and f(xo);é’l if £/ F

so that f(x') # 1. ‘Hence G:SLfeK:f(x") :‘I}.

. _ " >
By hypothesis line ¢ is an L-ideal in X and hence in
line F (see¢ [27], Part II, Propcsition 1.4). It is easy now to

conclude that. G is & split face of F.

Since any peak face of F iz split it follows from [:14]

that F 1is a simplex and conseqguently line ¥ is an L-space.

To conclude that X 1is an L1-predua1 we will now verify
the COnditiohs in Lima's characterization. |

Let fOSE, O<S<1o

—— *

Using the Bishop-Phelps theorenm [5], get gosX and
ye S such that g (y) = i g, Il and ! £, -8, |l < e. By what
we have seen above if we let G = if e X ¢ £(y) = 1} then 1line G
is an I-ideal and ‘a'dual L-space and g, ¢ line G. If 'PO denotes
the L-projection correspcopding to 1line G +then since
[ (I—PO)(fO-gO) Il < ¢ and (I—PO)(fQ) =0 or f_, we get
that P (f ) =f i.eo f ¢ 1line G, Since f_ is an extreme

0o c 0 @
point of (line G)1 and as line ¢ is a duwal I-space by Lima's
characterization we get that line {fo} is an 1-ideal in line G

and hence 1line Efo} is an IL-ideal in X*.
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it £, it = and 1?(f0) =0 or f for all I-projec-
tionns P on X*, gelt g, and G 'aé before and observe that
£ & line G, Sinee L-idcals in ldine G are precisely those
Tmideal of X which are combtained in line G (see Propa 1e4 L2
Part II) we get that 2(£) = C or f_ for all L-projections®
on line G. BSince line G ls an L~-spacc by Lima's %esult.again,

we get that T is an extreme point of (line G)1 and hence

fo £ E‘.

‘Pherefore X is an L1~predual.

. Remark. It is clear fron the above proof that the condition in
the theorem is eguivalent to saying line F, is .an I-ideal and
(line P )4 = CO(F LJ-—FXjN*for all xa“S, where

| _.ifsag . f(x) = 1},. For a'general‘Banach spacé X and a

w'-closed face P of K, (line ), may not be equal to

CO(FL}—-F) even when line F,_is an I-ideal (see the eXx&mple
below) though such & thing is,always true when X = AE{(H) for
some compact convex set‘ H (and hence our result is analogous to
peak face characterigzation of 31mp1exes). We do not know whether
X will be an L1-predua1 oT not if one merely stipulates that

linc F is an I-ideal for all Xe .
Examgle 2,5 Let X = 1#2 w;th the norm

PRCRONIEE ile,fyl,lx yi}-

Sincequ1‘=vGO i; (@,1),(1,1),61,©)}' it is easy to see that the


http://www.cvisiontech.com

w 24

dual norm is given by

Nt

WG 1 = max 3 1], Tyl e "l}

*
Take (1,1)eX, ond lct P = %(X,y) sl (x,y) ] &1, x+y = 1}

= (e aey =1, xny 2o}
line F = BR® but (1,-1) zco(FU—"‘).

We now give an example to show that Theorem 2.4 is nct true

when X is a complex Banach .Jpace.

Let A dencte the dise algebra on T i.c. .

A= gf e C(T) ¢ f has a continuous extension to the CIOSed unit \‘?

{\ disc which is analytic in the Ainterior. J
It is well known that A is not a Iu.ndenstrauss space (sec [217]).
Iet ca ed, [la f|l =1, F= ifa s f(a) =1}wa.thout loss of
generality we may assume that FﬂS # ﬁ where SA %Ls‘]'lihca%' s‘baﬁe
space of A. Put D= §xeT la(x) =1}, Since b= —5—2
peaks on D, it follows from Theorem 248 of Hirsberg [22:]‘ that
line c(e(D)) is a w"~Closed L-ideal (e I T—>S, is the evaluation

map) and (line c(e (D’)'))1 =c(Te(®@)) .

For any xeD, e(x)(ao) = ao(x)= 1 implies line c(e(®@))
is contained in line F. If feE(F) and f=te(x), x,5eT then
1 = ta_(x) = tb(x) implies a (x) =1=1 so that E(F) C e,
- Hence line c(e(D)) = line F and (line F), = c(TF)s As remarked

i : . *) (.)-__1‘-
earlier this means that the seib --{:f’ e B (A4 j£Ca )] = }13

%0

structurally closed.
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SECTION 3

Facial characterizaticns

Lot X Dbe a complex Bantch space. In this scction, we
. . . . = ~ ; * .
show thit if line F is an I-ideal for all w -clossd faccs F

1

of Y then X dis an L -predual, We first consider the situa-

1
tion for uniformly closed subspaces of C(Y), containing con-

stants, where Y 1is a compact Hausdorff spacc.

Suppose A (C C(Y) is a closed subspace, containing
constants and separating points. Iet S, = §fecd 1f(1) =1}
(with w*-topology) denotc the state space of A. For an arbitrary
compact convex set H say that a closed face P of H is a
peak face of H if P = a™1(0) for some non-negative function a

in Ap (H). Dencte by K tho wnit ball of 4.

Theorem 2.,1. Iet A and SA be as abovee. Then A is a
complex Lindenstrauss spacc if J = line F is an Lhideal‘in >

and J, = c(TF) when ever F is a peak face of §, .

Proof ¢ To prove that 4 is an I'-predual it will be sufficicnt,
using the results of Hirsberg and Iazar ([21]], Thecrem 7) to
show that 2 = QO(SALJ"'iSA) is & Simplex. By Briem's charac-
terization of simplexes [77], it will be enough to verify that

each pealr face of 7 dis parallel.,
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Let @ = CO(F, U- i?,) be a peak face of 2, where
Fy = G{\;SA Fy = .LG-ﬂS are peak faces of S5, . We first show
that (1ine P){1S, = 7, am (line 7)) (-18) = -iTp. Zut

J=15.116F1.

Since J is w'-closed ([[9],v.5.9), ¢ = JﬁsﬁqL is w-closcd
and clearly G':)F,! o If Apyr (1-Mypye Gi 0<AC, pye 5, ‘then
since APy, (1~ ?L)p2 £ Apy+ {(1-AN)p, and J is an L-ideal we
get that Pq, pgs Gi Therefore G' is a face of SA and hem;e
e face of J; = c(IFy). Now if TeE(G) +then feE(S,) acd
£ e'E(CC‘I"F.I))‘. By Milmans theorem we get that £e TF; . Therefore
fer,, since t7,{]S, = for tcT, t£1. Hemeo B(6) C P,

- and since G and F, are w -closed we get that a'= F1. FU
similar argument shows (line F,) ﬂ’- is, = - iFg;

Since J is a w'-closed IL-ideal and JﬁSJﬂL = F, a result
of Hirsberg [227] shows that Jﬂz = CO(F1-U -iF1) is a gplit
face of Z. If A is & real boundary measure in Ag (2)° then
B/CO(R, |) - 1Fy) Delongs to Ap ((co(ry ) - iF1))°. But since Py
is a parallel face of CO(F,|] -if,) we get that  4(F) =
(sce Hirsberg [237]). Similarly we ceén show that A(-iF,) =0
and hence /~(G) = 0e Thercfore € is a parallel face of Z, so

that 72 is a simplex.

Remark ¢ In [6]. Briem has proved that if every peak set for
Re A (real parts of functions in. 4) is a split set for A then

A is self-adjoint and S5, is & simplex. Imitating the arguments
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given In the above preoof one obitains & differemt proof of that

theoren.

We nNow consider the general case.

et A (C C(¥Y) be & closed subspace separating points

% :
of ¥ and et ¢ ¢ A-> K ="4,, be the evaluation map.

Definition ¢ A closed subset D of Y of the form 6_1(TF)

where F is a closed face of X (w.r.t. w*-topology).is called
an M-set for A if e i® is a boundary measure on Y then

M/DEZ Aon

Note that if 14 and if F is & closed face of SA
then the set D is an M-set for A4 in the usual sense (sece

Bﬁréberg [227]).

Theorem 3.,3. TFor A amd K as above the following are equi-
valent 1) A is a compiex Lindenstrauss space
2) Whenever P oisd w*-closed face of K, the set
D = e'?(TE) is an M-get for 4
3) line F is an L-ideal for all w*-closed face F of K.

Proof ¢ 1 => 2 :.'SﬁprSG D = e”1(TF) for a w%-ciésed face
F of K. Lei; #  be a houndary me&sure on Y,lie.Ao.‘and

| 41} = 1. We must show that 4/De A% The measure K = poe™!
is a boundarj‘measuré‘6n X ‘ﬁi%h-resu;tanxvzero and censequently

(see Effros [13], lemma 4.2) RM is a maximal probability
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1 . i
reasure on X with Y@®e ) = 0. Since 4 1is anlLﬂ-preﬂaal
] |
nom (Ré ) = hom (6(0)) = 0 and thercfore hom R4 /T.e (D) = 0.
. 1 .
Since Te(D) is T-inveriant it e5T1ows that hom, (R4 /Tee(D)) =0

and hence }’(BPLQ/T.Q(D)) = ¢ so that g )deU" = 0OF fedh,
Te (D

Choose functicns Ega} in C(K), real valued, ©0£ggz4%1
and g,'s pointuise decrease to In,(p) (indicator of T.e(D)).
Then for feA

0= J fams = lm [ gfdrs
Pe (D) a Te(D)

|1

in [ 1hpe(y)e, (hye@)du]y) —> ()
e Y

Fe

where &4 = hd|#] is the polar decomposition of WM. Now if
yeD then h(yle(yle Te(D) so that g, (h(ylely)) —> 1.4 If
y£D +then n(yde(y) ¢ Te(® -~nd hence g,(h'yle(y?) —> O .

Therefore (*) gives

0= [2BGI G| = [£a ¥ Tea

Consequently D is an M-set :E'o_r A,
2=>3 1 Let F Dbe any closed face of K. Put D = e~ (T.F).
* : .
We define a linear mapping P W s A by P(p)(E) = Jfau
: - £,
for fel, pe A where H is & boundary meadsure on Y Irepre-

senting pe The fact that D is an M-set implies that P is

well defined.
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We claim that line F = Renge P. If pe¥ and A a
naximal mea‘sure .supported by P with Y(A) = p then Aoc s.s
a boundary measure representing p and suppcricd by D. Conse-
quently P(p)(£f) = de(ﬂoe)': F(p) ¥ e i so that P(p) = D

This implies line ¥ (C Range P.

Let O # peRange ®, || p|l = 1. By Hustad's theoren
(see Phelps [377] Theorem 2.2) we can find & bowndery measure
on Y with |J#}] =1, rcprésenting p, Thefore

p(f) = P(p)(£) = ]g-fgm ¥ £ dmplies that YR(4/D)) = p so that-ﬁr

pe c(TF), Hence line‘--F (C Range P (_ line c(T®) (: line F

(see proof of Corollary 1.5)., Therefore line F = Renge Pa

. To complete the proof we need to show that P 1is an’

L-projection. For ' pe A, choose boundary measure # on Y;

represemting p with {{p (= [« ]i.

. ¥

[ fdp = [ famw + [ fdu
Y D . D

For fe ki, p(f)

P(p)(E£) + €p~-P(p))(L) = 1{ far + (p~P(p))(£)-

i

so that 1B || + [lp= 2@ < [0/ + [le/x-Dll =[]l = llell »
Hence P 1is an I-projection.

3 => 11 We first show that for any w'-closed face*® ¥ of K,
(line F}1 = c(TF). If not there is & p in line FnE('K) such
that p¢ O(TF)i-,".béca.usei; line F is an I-ideal and is w -closed by
ve5.9[ 9]« By hypothesis line {p} is an L-ideal so that
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A = line gp} & N where N is the L-ideal complementary to
une-gp} « Since F is & face wnd ¢ TP we get that F (C XN
SC th;t line  (C N. This contradiction shows that (line Py =
c(TF) .

P iy — ( > L] £ e b
If x e4, |ix | =1 ond F = ifsk P Re(f(x_ ) = ‘f}

then since P is a w-closed face if we let J=ixeh t f(X)=0
1‘ ¥ fel
as before (see the proof of Theorem 2.4), the natural map
§ 1 4/3 — A(F) is an isometry since (line F); = c(TF). So
8(a/3) is a closed subspace of A(F) separating points of F
and containing the constant function 1. Basy to see that the
state space of Q§(4/7) is P, If ¢ (CF is a w -closed face
of P then line G is a w"-closed I-ideal in A  and hence in

line F and moreover (line G), = c¢(TG). Therefore by Theorem 3.1,

we get that 0Q(A/J) is an L1~predual i.c. line ' 1is an IL-space.

Since by hypothesis line %p& is an I-~ideal for all
pe BE(K), to conclude that 4 is aJLindenstrauss space we need
only to verify the second condition in Lima's characterization.
But this can be done by an application of the Bishop-FPhelps
theorem and proceeding exactly as in the last part of the proaf

of Theorenm 2e4.

In the following proposition we again consider I-ideals

generated by a subclass of all w'-closed faces of the dual unit
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ball, Purt of the assertion'is & partizl complex analogue of

Thizorem 2.4«

Zrcposition 3.4, Iet 4 and X be as in Thecren 3.3, The

Tollcwing cre cquivalent

1) For all a e d, |l a Il =1, ing(K,) 2 ff(ao)l =13

-

1-f

1}
‘is an M-set and if 3B = 5.57.41(5.0‘ stands for the complex conjugate

of &) then B/D is a closed self—adjoint subspace of C(D).

i

is a structurally closed set and if T = ifs X 3 f_'(ao)

then F is split in CO(FU-iF).

2) For all a e 4, fFa fl =1, D ={ya Y3 ja ()]

1

3) 4 is an L'-predual.

Proof ¢ We shall prove that 3 => 2 => 1 => 3,

3= 21 It follows froﬁ :the-a'bove;'theorem that D is an M-set.
Since A lS a DLindcnstrauss space if we let P =£fe K:f(ao)= 1}-,
then it follows from: the results in Section 4 of [367] that the
natural map § I 447 —> A(F) is onto (we are naking free use
.of notations from the proof of Theoren 3250, |

Tet - ag A “qhen there is a b in A such that
TG+I) =3 (+3)e If yeDd, and oly) = 4f for fe F, tel
then a_(y) = t. Also

aOZyS () =f()=Fo + J)(E) = E (a+JIXf)=ta)s= a, () .dfyj.
Therefore -é'.d.b' is the conguga'te of ﬁo.a on D. Hence B/D

is sclf adjeint.
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It is trivial to verify thet 4/D is iscmetrically

iscmorphic to A/T and hence B/D is closcd.

* *
2 ==> 1 2 If we define P ' A —> a as in the prcof of
Theorenm 345, we get that line ¥ is o w ~closed I-ideals We

clainm that (line F)1 = c(TF).

Enough to show that for 0 # qe o(TF), a/|lall e c(TF)
(see the proof uf Terma 1.2). Iet p = @/ l|all and choose a
boundary measure £ ou Y with [[#]] =1, representing p.

Since P(p) = p, for any fe A

lp(£) | = | ]g fae] < I ] & 1D

= 1=l ¢ B <1 F

So # is supported by D consequently TR R(#oe"1) is

supported by T.F and represents p. Thercfore bpe c{TT).
Hemce {f<E@) 1 [£(a )] = 14 = (line P)[|B(X) .

Using self-adjcintness.cf 3B/D, if is casy tc sce that
P : A/ —> A(F) has self-adjoint range and hence is onto.
Thorefore F is split in CO(F[} - iF) (see [267], page 246,
Temma 12) as P is the state space of @ (4/3). |

1 =>73 7 A careful obuervatlon of the procf of Theorem 2e4
shows that once we establish that the map E".,A/J'——b A(F) is
onto for the face F then the arguments there work verbatim in

the complex case giving thé required conclusion. Bubt that P is
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onto follows again fron Lermu 12, page 246 of [26], since F
is split in CO(FLJ-—iF)e

Renark ¢ In the proofs of several of the preceding theorems, &
crucial fact was that line P is an L-spuce for a w —closed
face F. It may seem that if one agsumcs the condition line F
is an I-space for:all w ~closed faces F of the dual unit ball
of X then X would be an Li—preéual. However X = A}{CK)
where X is‘the ﬁnit square in 132: provides'an easy counter

B R TS

example .
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SECTLION 4

An application

Tet X be. a complex Banach space. A family

iB(a,l 5 ML= )}1_ . of closed balle in K is sald to have weak

intersection property {(w.i.p), if _' B(f(a ) , T3 ) £ @ for
i=1

all feXj.

X 1is said to be an E(4) space if for every fa.mz.ly

{B(al =t )}l _q of four closed balls with w.i.p, lﬂ B(ay , ;) # 2.

These definitions are due to Hustad [25_] (E(4) spaces
were defined in a different way and the above definition is a
theorem in that paper). Iina has proved that [29, Theorem 4.1
any E(4) - space is an LJi -predual. 4&s an application of
Proposition 3.4, we give a different proof of this theorem. Our
proof uses an idea from & short proof of that thecrem given by

Ath Roy E41]a

We need a characterization of E(4)-spaces given by Idma
use
[297]. We state it in a differemt way since we do nct/the nota-

tions of that paper,

Theoren 1 (4, Tima) ¢ Iet X be an E(4)-space. For any
* * 4‘ * ] *
Xy 2%y ,%3,%X,e X with kg‘l X, = 0 there exist yi5 in X

guch that
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DGR Esxy) = (0,395,743, 594) (7212007230724
" T3937320 057540 (Vg10Y 4207430
and 1o+ Y13t Y14 = 0 F Voq * Vo3t ¥y
V347 Y32% V54 = O F Fuq 7 Va2 Va3
2 Yxq U= lgpq e Nagdt = v s lixa = Hagoll « Nasoll + gl
“33I|: Hyqzil ~ “323” *”3@31|3“x4!F:“Y14H +]|Y24“ TI|Y34”°

Theoren 2 ¢ Tet 4 C o) be a closed subépace separating

1

points -of Y. If A 1is an E(4)-spacec then A 1is an L -predual

. § o B :
Procf ¢ TLet a_e4, i ao|[ =1, F=gfedyd fa ) = 1}. Bince
A 1is an BE(4)-space it is not difficult to see from Lemma 1 of

[30] that line {p} is an I-ideal for all pe:E(A:).

It is clear from the —esults in Secti.n 3 that once we

verify that F is split in CO(FU—iF) apd that line F is an
I-ideal we will have verified all the comditicns in (1) of
Propasition 3.4 and the cdﬁbluéidn will follow .

Siﬁce F is a peak face it is easy to see that F is a
parallel face of CO(F| J‘-iFr)' .. An argument identical to the one
given by ALK Roy in [41], shows that F is split in CO(FleiF).
Rest of the proof proceeds-in thé following steps,

Step 1 ¢ 1line P is a hereditary (w.r.t the ordering at the
beginning of Secticn 1) subsﬁaCQ; |
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Iet pe liner, () (the real linear span of F) and

a4 £ pe. Tet p= ?\1p1—?\2p2, pja}?, ?\3> 0.

By Theorem 1, there exists {Zij} such that
(?\1‘91 y "'}\-2 ng“q’ q_" P) = (0,512,213,214)"' (Z21,0,223,Z24)
K (Z31 ,232,0, 234) b (24_19242, 243,0)

and A

1 lz54 I + ”231 I *”Zm‘”; Ay = ”212“ * “Z’jg” * ”542”

lall = Naysll+ Nagsll +Hagslls fla-pll = Izqqll+ lzggll « Hzgglle

(]

Since facial cones are hereditary we get that z,q,2z4,2,4,

~Z12 —232 y ~Zpp BT in cone (F).

since flpfl = flali* ffopll ve hove

| 2q5 ¢ 294+ 223* Zo4 " 243" 23l4 I :

= Nzgz e Haqg i+ laos I+l 2pqil+ llzgz 1+ F 25yl o
So that AR
Hogs s gl = Hogs 1+ 1 2qg 113 [l 2z mpg 1= zgs I+ lzgglle
Bub zq3+ 29y = ~2z4ps goﬁé ,(F) == 243, z,i4a cone (F). ‘
S'imilarly D Zpg t Bpy = =Zoq implies =Zpz 4 ~Zpy € CONE (F)e
Now q'= =(zg3+ 23+ Zg3) = mpt Byg* Soyt Byt T4t g2 ¢

Therefore qe 1:@'-..11631R F_ .

Now using the fact that 1inemF is a hereditary subspace
and proceeAding exactly as in"’che above argument one sees that

line P is hereditary.
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Step 2 ¢ line F is_.w"‘L-_-closed. |

Iet Vpa:l_ineIRFl, || pif =1, p= APy = AoD, where 1’1{ >0
and Py © Fo Since F is a face and A is an E(4)-—spac§e it
follows from Corollary 8 of [30]] that we can write
Nzil+ Hufl
iz« ilvl]

such that u,veCone (F) and T=flu-v] = fulflv].

= z+u;lk.l

-
-
3
v
i

n

Moo = 2* Vi Ay

Therefore Qimm F—).] = CO(FU -F)_ and hence by the Kreiﬁ;S:nulian
theorem, linep, ¥ is w*;-c_lased, A 3 '
Since F is spl:_i.'lj, in CO(FU ~-iF) it is easy to see thai
Lirer P(}s liner P = {0} « ¥ clain that
int{ |l p+iq]] 3 Prac HoepF 2 1
| Foll =1=1all
Then it is not difficult to deduce (see [[24] Section 15) that
line F = line,F + i mem' P is w*-closed. |
Tet p,qelimerF, pll=1=(lq | e let r=opriq.
Write 1”” Pq=P2 3 T=[ogll+ 120, . oy |
a=a;-a 3 1= lla; il all ,
Py s Yy cene(FL (This follows from what we have don;a in the

first part of Step 2).

e il“gain“by Theorem 1, we can write
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(r’ _p‘],ng "i<q_1 - qz)) = (0’312 ’ 213 ] ZJI"’-) + (221 ,0’223,224)

+ (234,252,0,23,) * (241-242;'543,0)

and |l x|l

= Lz 11+ Baggdl « [zl
" P-IH = | Z42 o+ |l Z3p o+l Z42 {
, = (%)
I ool = W ags I« lmps |+ 1 745
1= q1-q2|| e ” Zm_” + | 524” « |l 234” .

Since cone (F) and i linep, P are hereditary we get
213, 293y 243 § ~2429 -232, ~z45 ¢ cone (F) and zq,, 2o,
zgy ¢ 1 linepF N
ljBut p2"‘p1 - *214 + (25;24- 223) + (242"’ 243) and
Therefore z14 =0 = z12+ Z1'z . 7 | -
Also || 212 ||+ ” %13 I+ ” 232 ” | 205 o+l Z42 |+ ] Zps I
= | P1” ol = |l Py~ Pg =1 232* Zoz * Byt 543”

=> Zqp = 213 = 0. So that the equatlons in (*) will become

D asp Il + Wzgll 3 oall = 1 25l + 1l 250 -

I Py Il

Since zZ,y = ~zpz- 2y, and zgz e -come (F), zpy e 1 linepF

we have || Zoq > IZE‘!(%H = [22’3(&0) * 224(a0)|

bv.

lzps@ )] = |l 25 1l »
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Similerly we get || zzq ll > l1 535 | .

et
s
@
3
[}
H
H

i 521]] + 23111 v | Z41!1

v

> Mg Il + 1l zsp Il « [ zgn « 243

i

”p1 “ + ”p2” =1
Therefore line P is w —closed.

Since line F is a w'-closed, hereditary subspace and A
is E(4) it is not difficult to sce, using Iemma 1 of [30_], that

line P ig an L-ideal.

Hence A is a Iindénstrauss space .
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SECTION &
G - spaces

Tor & complex Banach space X, let 7 dencote iie
;

wi.closure of E.

A linear subspace A (_ C(Y¥) where ¥ is a compact

Hausdorff space is called & complex G-space if
1 }
A =,%fs c{Y) = f(xa) = hataf(ya) ¥ GE:EJ
|
where © is an index set and A e [0,1], X,,J,8 Y, ToeT ¥ 0.

Complex Guspaces were imtroduced by G.H. Olsen in [36_]
and are the complex andlogues of the real G-spaces introduced by
Grothendieck [19]. We now state a characterization of G-gspaces
due to Olsen [36 ] which we shall henceforth refer to as the

Olsen's characterization.

)

A complex Banach space X is igscmetric to a Gugpace iff

X is an Ll-predusl and 7 (C [0,17].E.

We first give a characterization of complex G-spaces using
structurally upper semi-continuous (nesec) functions on E.

Recall that -=> denotes convergence in structure topology.

Theorem 5.1. A complex Banach space X is @ G-space iff for
all xe¢X, the function {x| defined on E by Ix](£) = [£{&x)]

iS WeS.c in the structure topology.
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Proof ¢« Suprose X is a G-space

i

et O#xsX,c>0 ard D=ifez : |£(x)] >},

“ o+

We claim that D 1is a dilated set.
Let TeD, by Olsen's characterization f/||f || ¢B and

since fﬁ 12 1@ 2 e, £/0jf]l e Dw  Since
L

E(Gp) = E(H = T.£/||f}] and D is T-i fant
(1) (f/“f”) I/H” and is T-invariant we get

that D is a dilated set.
Therefore by Corollary 1.4, Df|E = gfa B:leG)] 2 o) is
& structurally closed set.
Conversely suppose that |x| is structurally u.s.c for all x.

Let f e%-F and f_ # 0. Iet jf, L be anet in E an

¥ . 1
f, 5= f. Fix p, e E(N,) where N is the smallest w'~closed

I-ideal comtaining f_. Ve claim that 1line {f()?] = line {pO} ;

Fix xeX, x # 0 and let c > O be such that }po(:z:)l <c¢.,
By hypothesis {feE . Jf(x)] < cj is a structurally open set
containing b, . Since by Lemma 3.8 of ]-_'2:]', B L Py ‘there_ié
a P_ such that a ) 6, implies |f,(x)| < ¢, Therefore
lfo(x)[ L e. Hemce [f (x)] ¢ [po(if)l and this is true for all
xeX, so that Xer p, (C Ker £  (Rer - stands for the Kernel).
Hence line {'fo} = line i po?r .

Since line gf’cjr = line jpo*g. for all p_eE(N;) we get
that line § fO§ = ¥ and consequently line g fo’§ is an I-ideal so
that £ /It ]| ¢E . '

-
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Therefore 2 (_ [ 0,1].E.

1r 8" =%rexy | £] =1}, then since s' isa G
in the w*-topology we get that &= ZﬂS* is w -Borel. also if
¢ is a maximal probability measure on X: then #(2Z) =1 and
L(s¥y = 1 (see [27]) so that A(E) = 1. Hemce X, is standard
in the sensc described in Thecrem Z.7.

Now let D (U E be a w' -compact T-invariant set. Let
2.} be a met in D with T, S5 £, By replacing {f,§ by &
subnet if necessary we may assume that £ -"-’f—) g, g D. Using
the structural upper semi-continuity of |x| as before we can
see that T = hegs Since 1= | £l = |jgll, {»] =1 and so
feD because D is T-invariamt. Therefore D is a structurally
closed set., It now follows from Theorem 2.2 and the remarks
preceding Proposition 2,5 thet X 1is an L1-predua1. The conclu-

sion follows from Olsen's characterization.

Corollary 5.2. If X is a ccmplex Banach space and the struc-

ture topclogy on E 1is such that for any Pq, Poe Ey, Py, P
linearly independent can be separated by disjoint structurally

open sets, the_n X is a (-space.

Proof 1 Tet xeX, x £#0 am c¢> 0. let D:%feEi[f(tz_c}.
IE {fa} isanet in D "and £, --S—>-f , £¢E, we may assume that
£y -‘-‘-’i—>g for some ge Z. Since (£ (x)| —> |gx)|, we get that
g # O. Now by Lemma 3.8 of [2_] and the separation propexty |
assumed in the hypothesis it follows that £ = A.g/ |lgll,re T
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since |g(x)] » e, TeD, Therefore D is a structurally closed
set. "So [x] is structurally u.s.c for all x and hence X
is a (G-space.

Remark o For & real G-space X, that [x| 1is structurally u.s.c
for @all X on E was obscrved by N. Roy [447]. Corollary 5.2
was proved for real Banach spaces by U. Uttersrud [47] by a

different argument.

Corollary 5.3. A4 compact ccnvex set X is a Bauer simplex iff

ja] : E(X) —~> TR is u.s.c in the facial topology for all

aaA.R(K). B . _ ‘ i

Proposition 5.4. ITet X be a complex Banach space.Consider the

fo'llowing statements.
1) X is ar(}_space
2) for all xeX, U= {fsE e I(x) # O} 'is open in the
~structure topology
3) ¥ fe E, line {f} is an L-ideal and the in‘ﬁersebtion
of any family of M-ideals in X .is an M-ideal in X,
4) for any D C E, l—fﬂé_D is an I-ideal.
Then we have 1 ==> 2 <=> 3 <==> 4.
Proof ¢ 1 =-:-> 2 In view of Corollai'gf 1.‘4; it is enough to
show that V, =£fe Z ¢ £{x) = O} is dilafed. Use Clsen's

characterization.
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2 => 3 Iet fed. I T.zf} is not a siructurally closed set

Pl

i
GT

then there is a ge B in the siructural closure of T.zf} and

not in Tﬁ?%. Iet xeX, gl{x) # 0. Since U, is & structural
neighbourhood of g, U&f}?.éf} £ ¢. Therefore f(x) #0 and
hence f = Ag, Ae Pe This contradiction shows that T.if}'is

. . « ‘a7 . .
closed in the struocture topology i.c. line {fy is on L-ideal.

If {M.{ is any family of M-ideals in X ZIet M = [y

and U = f] U§ . Then by hypothesis therc is a w -closed L-ideal
XeM '

N sych that E(,) = U, Since U (C M°, N (C ¥°., For any ¢
let feB(M),) then fe® and f(x) =0 ¥XeM -so that
feU., Therefore M, (C N for a1l « and hemce M° = U

?

consequently M is an L-ideal.
Rest of the propozition is easy to see.

Corollary 5.5, Tet & = 7% ¢ C(Y) I2(x,) = At t(y,) ¥ aez ],

where A

as gy X, , ¥, are as in the definiiion of G-space. For

any D (C v, My = gfa<A Jdf@m) = C{} is an M-ideal in A,

*
Proof ¢ Tet ¢ Y —> A1 be the evaluation mape. HNow using

Theorem 24 of [36], we can see that for all ye ¥,
*
e(y) ¢ [O,{].E(A1). Since 4 is a (-space, line %e(y)}ris an

L-ideal for all y. Hence My = MX is an M-ideal .
' XeD

Remark . Proposition 5.4, when X 1is a real Banach space was
observed by N. Roy [44] and U. Uttersrud [47]. Using a

characterizaticn of M-ideals in terms of intersection properties
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of balls due to Iima, Uttersrud prbvés Coroliary §e5 Tor real
scalars., That for a real G-space, imtersection of any femily
of M-ideals is an M-ideal was alsc proved by P.D. Taylor [46_].
Both the proofs use the corder structure on the real line aﬁd

therefore do not work for the complex casce.

P, Perdrizet and J, Bunce gave examples tc show that for
a general Banach space intersection of an arbitrary family of
M-ideals can fail to be an M~ideal. Those exawmples were given
in responge toc & question asked by Effros [1@],.whether"or not
the intersection of an arbitrary family of ideals (M-ideals in

our sense) is an ideal in AIR(K) for a compact simplex X

It is well known that when K 1is & Bauer simplex, the
intersection of any family of M-ideals in Ap () is an M-ideal.
In E20j A, Gleit partially answers the guestion of Effros by
showing that if for a metrizable Choquet simplex X, intersection
of a countable family of M-ideals is an M-ideal in AEE(K) then
K is a Baver simplex. As & conscquence of our next result, we
obtain a simple proof of this theorem; our result (Proposition5.9)

~

is a substantial generalization of Gleit's result to A(K) spaces.

In [47] Uttersrud formulates the generai form of Effros’
question by asking whether the property, intersection of M-ideals
is an M-ideal and line ip} is an T-ideal for all pe:E(X?),
characterize G-spaces (i.e. whether 3 ==> 1 or not in Proposi-

tion 5.4). Using arguments some what similar to the ones used by
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Gleit in the simplex case, N. Roy [43_], showed that 3 ==> 1
for scparable real Banach 3pacoes which are Lj-préduals. Qur
next thecrem also endbles us to give & cimple proof of thils

result in & some what general set up withoul using L1—predual

theory.

Theoren 5.6. Let X  be a complex Banach space such thai

1) A= ZfaiE t line {f} is an L—ideal}- is sequentially
w*—dénse in Z |
©2) Intersection of any countable familj of M-ideals in X
is an M-ideal. =
Then for any fe Z, line §£¢ is an L-ideal.
Proof ¢ Lm;fsE_A.cmmmeasmwmmeggj(:A such that
'fn's are\linearly independent and £ Hji->:E‘ (this can be done
since A is T-invariant, £ # 0, for only finitely many n's,
fns Te gfi

those n's).

[e=]

= and redefining the sequence by discarding
1= ‘ ‘

Pt W = line gfn}“ 1 (closure in the norm topology).
n= ’ ‘

Since f 's are independert and line gfn§: is an I-ideal ¥ n;,

N::éjz ad 9 3 |u;j<cfj?anﬂ | 2 a, £l = & Ja;f.

5 T R = ‘ d=y &' i=1 *
- = s =y o - S .

Let P = c zfng-n=1 . Since E(F) = gfn} . [).EL} (by Milman's

theoren) it is casy to see that line B = N e line £ . Since N
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is noxm closed, line ¥ 1s norm closed and hence is w -closed

(ve5e9 [9])e &lso line ¥ = (i Ker fn}c. Therefore by
n

hypotheses line ¥ is a w'-closed L-idesl, Since f is an

. s .3 N T oo ) ] ' N
extreme point independet of %_fn]j’ (ag F£H£A) we have T¢N
. ___1 .

o0 (e =
= { = a
ond | af e 3 gty = lalv 3 fag. ,_

’There:f:‘ore line Zf} is an I-ideal in line F amd hence
in X*. i '
Now let e Z-E, £ # 0.

Case 1.‘ Assume that X: is a standard compact convex set. I
£/ ]| # E, choose a maximal probability measure # with
Y&) = £/ {|£]] « Choose Py, Py & Supp & ﬂE ,. Pq. 8nd p,

| independent. Get a sequence {fn} C E, {fnzj Z::‘l ﬂT. 2p1,p2} =@,
: ; ’

f,'s arc all indepcndent and £ Y1,

Ag before let N =4 ¢ a.f. I 8 |o,| < oo}
B gm SE I R
and F = ¢ ifn} 2

n=1

T If FE(FY"= 2fn}°° then since - £ ¢ N (use Choquet theorem)
. < n=1 i

N =1line P so that line P is a W*—CIOSQd I-ideal. On approxi-
mating X by simple measures having resultant £/ ||f] , it is
easy to see that Supp # (C line F (scc Lemma 1.1), Hence p;c ¥,

contradicting the choice of the sequence {f n} |
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It ifnzl o |J $£F, then linc ¥ = i + line $£¢

and we may assume that ¢ H. Use hypotheses as before tc
conciude that linc T is & w -closed L-ideal und honee Py Po
are in line I = §® line {f} by the arguent we cutlined above.
Therefore P e line gp.& cnd since ol is an cxtremc point

independent of Efr&wd , this direct sum is &n 1! _airect sum.
Hence p,e N or p, = Apy, AeT. This again contradicts the
choice of the sequence ifn} and points Pyy Ppe

Therefore £/ |Jffl eE and hence line {f% is an L-ideal.
Cuge 2. X is arbitrary.

As before chocse a sequence of independent vectors gfn}CE
*
with £ ¥—>f. Tet P =c2f {7 . Now N=1lineF? isa
n n =1 ;

w¥~closed I-ideal and is a separable Bunach space and hence N1

is a standard compact convex set.

Since E(I,) (CE  axd has atmost countably many indepen-~
dent vectors using hypotheses and Propesition 5.4, we sec that
the scparable Banach space X/o(y) satisfies the same hypolhesecs
as the X in case (1). Therefore T/ ||f] e BE(N,) (C . Hence
line if} is an L-idecal. |

Corcllary 5.7. If X 4is a complex Iﬂ-—produal space with the

property that E is sequemtially w'-dense in Z and the inter-
section of any countable family of M-ideals is an M-ideal then

X is a G—spéce.
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Procf ¢ By Iima‘s characterization of T -preduals, line {p}

is an L-ideal for all pe Be Hence 1ine fp} i8 an L-idoal

[l

¥ pe by abcve theorven i.e. 7 (T [0,1 ] +.E. Honee the conclu-

ion follows from Qlsen's characterizadtion.

[&]

Corollury 5.8, If X 1g a conplex Banach spacoe such that

1) E has at most countably meny lifncarly independent

vectors and line {f} is an L-ideul ¥ feE.
2) Intersection of any countable family of M-ideals is
an M-ideal.
Then X 1is a G-space.
Proof I We only need to show that X is an L'-predual and in
view of 1ima's characterization it suffices to show that if,
*
feX , |I£]] =1 and P(f) = 0 or £ for all I-projections

P then fecE.

Fix such an f . By Chogquet's theorem we can write

o
= t — 3 e 5 )
f = 121 MEs, A e ¢, £ e B oand fi's are MCarlgr 1ndepondent.‘
Now either ?x.] =3 or £ = P\1f1. Por if 7&1 # 0 then
& oo
"= A f, = &K AT and 1 = [A + B |A_ls But the condition

on f shows that fe Jine §f1} or f is in the ideal ccomplemen-
tary to line gf1}. Since Ay # 0, £ can not be in the complemen-
tary ideal., So f = Af4e Proceeding by induction one shows that

there isani 3 £ = Af, and [Aj] =1 so that f:E,
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E_rbopos'ition 5.9. Let K be a compact compact convex set such

that 1) A = {X e B(X) gx} i=s o split face} i3 scquentially

dense in E{X).

2) Intersection of eny family of M-ideals is an M-ideal

l.ﬂ A (if') L]
Then X ig a Bauer simpleX.

Proof ¢ Use Theorem 5.6 and the correspondence between split
faces of K amd w'-closed L-ideals of Ap (K)' to deduce that
E(K) is closed (noting that 1« A x)).

—

e o5 O} BN FzguK: ao(x)=o};
Mp =fac AR () Tat) =0 ¥xeEM{.

Since for all xe EX3, SL'X} is split (follows from
Theorem 5.6) and P is a face, by hypotheses, Mp is-an M-ldeu.l.
Hence My Q-Eae Ap ) : a(@®) = Q} for some closed split face G
of Ko a,eMp=>a(6)=0=>¢0 (_ F.

If xeE(F), x¢ G then since line G is w -closed and
e(x) fl line e(g) (e 1 X —> Ap ®)* is the evaluation nap) there
is a aelAp (K) suwh that a(@) = 0 and a(x) # 0. This con-
tradiction show that G = F.

Hence any peak face of X is a split face. From ]:14]'

it follows that ¥ is a simplex. Hence K 1is @ Bauer simplex.

Remark : When K is a metrizable compact convex set, it is easy

to see that ane need :only consider countable _ifn;ersq,ctions in (2)
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and hence our result cxtonds that of Gleit [20_] for A4(X)-spaces.

We new give an example of & compact convex set K which s

net metrizable but EX) is sequentially dense in B(X) .

Excmple ¢ ILet X be . the compact cenvex set considercd in
Example 2.2. Iet ¢:Y —> X be the evuluation maps. From [15]
we have that e is a homeomorphism and

BE@®) = {e(r,), e(t,) | , B = e(Y).

o e [091]

Fix ae [0,1] and let {an} be & sequence in [0,1], « =>a,
If {sag U U {Yﬁ P 0¢ Je~B] < e} is a neighbourhood of s,
then since there exists &n n_ such that np no‘ =) [_cr.-.:_ anl < e,

we get that r, is in that neighbourhood for all " n 2N . Hence
ay _

r, —> s, (similary t, —> <. ) so that elz,

n i n : n

Therefore E(X) 1is scquentially dense in E{(X) . However X is

) — els,) .

not metrizable (X -is not-even *standard').

Corollary 5.10. Tet X be a real Banmach space setisfying (1) of

Theoren 5.6 and such that X4 has an extreme point and the inter-
section of amy family of M-ideals is an _M--ideai then X 1is
isometric to Cp (¥) for some compact Hausdorff space Y.

Proof § If X is an extreme point of X, then since line {f}
is an L-ideal for all fe %, it follows from Theoren 3.1 of [ 31|

that  [f(x )| =1 ¥ feZ. Hence if we put Y.-—-gf eZ i £(x )= 1}
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with the w ~topology, fhen using standard arguncents 1ln convexity
theory and Proposition 5.9, cone sece that the raturcl map
§ X —> Cp(¥) is an onto iscmetry.

Remurk ©  Simple proofs of Nine Roy's [ 4%, vesult have also

been given by Uttersrud (uvnpublished), and ulso in & joint paper
of A. Lima, C,H. Olsen and U. Uttersrud [33]. Uttersrud
obtained a proof of Corocllary 5.8, using Theorem 3.3 our proof is

rnore direct.

1t (%) denotes the conditicn that E is w*ﬁsequentiélly
dense in 7 then results of this section show'that under the
condition (#), Uttersrud's vproblem has a positive answer when
X = Ap () (equivalently when X, has an cxtreme point) or
E has atmost countably many indepent points or X is an

L1—predua1. The general problen scenms to be still oben.

It will be clear from our results in the next section that
for a G-space X, the w ~closure of an L-ideal is an L-ideal. We
do not know whether the condition, w~closure of an L-ideal is
an I-ideal and line {f}is an L-ideal for all feE is equivalent
to condition (3) of Proposition 5.4 (This is the case when X is

such that Xi- is a standard compact convex set)a
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A compact Héusdorf;t‘ space Y is called a T_-space if
there'exist.s_ amap 0 ¢ TXY ~->7Y such that
i) o :i:s continuous
ii) ofa ,_- oB, ¥)) = a(ep, 'y).;' a,p e'T, yeY
iii) (1 s¥) = ¥
Lot Y ‘be & T, space and
o {fsC(Y) P 2(o(a,y)) = et (y) ¥ ye, ae T} e
then. A is called a © ,~Spacea |

Complex G ~spaces were introduced and studied by GoHo
Olsen in [36] a.nd are the complex analogues of real C_-spaces
studied by Jerison. We quote a characterization of Cc-spaces
due to Olsen which we shall be using throughout . '

-4 complex Banmach space X is (isometric to) a C_-space
iff X is an L'-preduwal and E|] {0} is w*-closed.
Theorem 641, For a complex Bé,nach space X, the following are
equivalent & B

1) X is a C -space

2) i) A= {feE + line {f} is an L.ideal-} is w*—de.nse in 2
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for any L-ideal ¥ (C X, N is an I-ideal and

W, = @),

ii?

3) Any relatively w -closed T-invariznt subset of E  is

structurally closed.

4} For all xeX, |x! ¢ E -=> MR is lower semi-continuous

(Lesacs) in the structure topology.

Proof ¢ 1 == 2 Since for all feE, line {f}- is an L-ideal,

(1) is clear. .

et N (C X be any I-ideal and put D = L] suep &,
pe N[
where Mp is the unique maximeal probability measure representing
p. Clearly W, (C c(™d), Fix peN, || p|] = 1. On approximating
o with simple measures having resultant p, since N is an
I-ideal we get that Supp By - N1‘(see Lemma 1.1). Therefore

(I€1) - C(T-D)o

Since X is a C,~space, 7.0 is a dilated set and hence
line c{TD) is a w ~closed I-ideal. But W = line c(7D) and we
also know that (W), = c(m).

Therefore N is an I-ideal and (WM, = (§,).
. #
2=>3 Iet £eF and §f, fbe anmet in 4 with 7, Lor,
Put D, = %fﬁ}’ ' and N, = line D (closure in the norm
P2 a '
topology)s Since 1ine‘ffﬁ}v is an L-ideal for all B, we get that

N, is an L-ideal., So by hypotheses ﬁa is an L-ideal and

M), = (W), .
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Clearly c(1,) (C (’Ez@aiq). Tet pe¥ ,|lpll =1, Geta

sequence {pﬁ} (_ line D, and P, —>P in morm, ||o | £ 1.
k :

\ - 3 11 — ] n — :

Now b, line Da == P, & line Efrxj} son = o c.('l‘Da).

—

oy o F = 4 =

Mow let ¥ = [| W, then N is an I-ideal. Clearly.
o
line {f} (:__: No: If geN, gl =1 then ge (ﬁa).'l for all. a
implies ge [] c(T ) ==> g= line ff} « Therefore line f:(:f}(z N
A > ¢
and hence line §f¢is an I-ideal ¥ £ 5.

For aliy D (C E, relatively w -closed and T-imvariant,
let N = 1ine D (norm closure). Using the hypotheses and pro-
ceeding as before, easy to see that N is a w'-closed L-ideal
and (.ﬁ)'l = ¢(D)e Therefore (ITI)T ﬁE-—- c(D) ﬁE = T_ﬁnE = D,

Herce D is a gtructurslly closed set.

3 =>4  Easy to sce.

4=>1 Tet 0#fcZ, £/E. Let f£ {ve a net in B wdth-
* 3

f,®>f, Fix pe Np ﬂE (recall that N,

w'—closed I-ideal containing f) amd c¢ > 0. For xeX, if"

stands for the smallest

[p&x)} > ¢ then {gsE e c} is a structurally open set
cohté.ining o Since i =55 we get that [£(x)] 2 c.

Therefore p(x)| ¢ ,f(x)[ | for all xe X, so th’é.t line Ep}-—- nnegf}.
Hence line {f} = Nf and so line {f} is an L-ideal.

i
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Now as in the proof of Theorcm 5.1, we can see that X is
& G-space. Use that theorem once agsin to conclude thet |x| is
structurally u.s.c Tfor all x, Therefore |x| is structurally

continuous.

*
If feZ and T #0, £ ¥ >f,gfaf (C E  then

£,=> £/ )I2] o Since |x

is structurally continuous we have
€G] = [£&x) [/ lIT]] for &1l x. Hence |[f]|= 1. Therefore
feE. So E|JJ0f is w'-closed.

Hence X 4is a C,—space.

Corollary 6,2. If X is a G-space then for any I-ideal N, N is

an I-ideal. (F); = (N)) for all L-ideals N iff X isa

C -space.

Proof ! For any I-idesl N, let D = || (Supp i NE), where u
peN[]s’ |
is maximal with )Tup) = p» Use Proposition 5.4, to conclude that

N is an I~idecal,

p

Corollry 643. ILet K be a compact corvex set. The following

are equivalent
1} X is a Bauer simplex
2y i) A = {Xe E(X) ¢ {xf is a split i‘ace} is dense in m
ii) for any split face F, T is a split face

3} For all ae A (K}, la| $E®X) —> R is lower semi-con-

tinuous in the facial topologye.
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Proof 7 We use the correcspondence between split faces of K and
I ! 416
IL-ideals of AIR K) o
a + = - - * - * -
If N is an I-ideal in A (), then ¥ = line ¥ where

-'IE‘:

L

s a split face of XK and N’i = CO(FU - F) (we arec suppressing

the embedding map). If F is a split face then line F = N and

(line f)1 = CO,(_E-‘U -7 == (ﬁ)'i = (N‘;).,

Remark i Corollary 6.3, improves & result of 4-Iima [347]. (3)
of Corollary 6.5 and Coroliary‘5.3; together improve a result of
EBffros [107]. d

A C&-space X is called a Czuspace if Ei is w*mclosedm

If X is a Banach space and 0#¢7Z, then E 1is compact in
the structure topologye. For if {faé-is a net in E, then a’ sub-
net of {fa} converges to a non-zero clement, £, of Z and hence
this sub-net will converge in the structure topology to any pefoTE.

Converse halds when X 1is a C_-space,

Corollary 6.4 If X 1is a C_-space and E dis compact in the

structure topology then 0¢Z and hence X is a Cz-space.

‘ *
Proof : If éfa} is a net in E anmd £, %> 0, use compactness
to got @ sub-met (still demoted by §£,§ ) so that £,5g, geE.
Since |x| is structurally comtinuwous for all x, |f (x)|->|g(x)|=0

for all x. A conmtradiction. Hence E is w -closeda

Remarks : Thebrem 6.1, improves Théoréme 13 of [17_|. Fakhoury

proves the equivalence, for real Banach spaces, of (1),(3) and of
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the statement ! |x| is structuwrally continuous for 81l x, under

?

. . 1 4 LA .
the hypothesis X is an Ti -pradual, The T-ideal characterization
of C_-spaces is new. The concluding argument in the procf of

Theorem 6,1 is in Fakhoury D?j_.

In view of Corollary 6.2, it may seem that in a generdl
G-space, elements in the w¥-closure of an L-ideal cin be approxi-
mated in w'-topology by norm bounded nets from the L-ideal (a
simple application of Bair-category theorem shows that this is
same as the existance of a A > 1 such that @, C AW for
an L-ideal ). We hdw give an exaﬁple of a sepafable G—space A
and an L-ideal N such that for no X 2 1, (i\?)1 is coﬁtained in

Ae(Wy). This also furnishes an exumple of a subspace of charac-

teristic zero in the sense of Diximier L8]s

. i | | 1 1
Exanple ¢ Tet A =9feCp[0,1] 2 f(p =5 f(-0 Fny3

_; and £(0) = 0=£(1) = £ ()
k N
A is a separable G-space. It is not difficult to see that

i . ;1 '
E(Ay) = _-r_ie(x) cxe (0,1, x ¥ 5, B2 2}.

535" g% iy

Choose sequences %xi‘l} in (0, %) ) gx';'l} 3
. i 1=

. _. n=71
i 1

= {2 — *
and x* —> + ¥ i> 3., Pat D = e(xl)} . D (CE (&)
n = i.—L.J3g " J =1 s

and D = D] gl}:’—'S U «EO}. Iet N = line D_(nom topology)

then N is an L-ideal and (W) = c(x D).
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- o0 .*
Iet F = = (]_)'U _gcﬁ --5'_-)} 123/ Since e(1- Jl:) Y 0 and

e(—%—) = -;—. e(] - %-) ¥ 1> 3, we get that F is a dilated scot.
Thercfore lina c(®) is & w -closed L-ideal and

(Line c(M), = (M), = (@ .

Suppose there exists an integer m, > 1 such that

(P Cm_c(xD). Thén{eﬁ -9 Cm_ c(+D). Fix i3,
=58 1hips, =rE = =
got fea, 0CF¢1 suwehthat £(1 - =1,2() =1, £ peaks

1 . 1
at "'i" in [O,'?)o

Now there cxists a probability measure & on ﬁ,U -5 such

;e -h " | 11
that Eo = g = j' _far & 7. Therefore o L7 ¥ix5.
B D-2 _ e
A conmtrddiction. Hence for no A va il ' (ﬂﬁ).l is con-

tained in A*(—Ndl)'.'

Theorem 6.6 If X 1is a complex Banach space such that any

T-invariant set D (C B is structurally closed them X is
isometric to c ([7). (where c (') is the space of complex
valued functions vanishing at infinity on a discrete space L

equipped with the supremum norm).

Proof { Use Theorem 6.1, to conclude that X 1is a C_-spaces

Iet P be a maximal face of Xy . Then E = T.[°  where
P = FE (sce [36_1).
Define § ¢ X ~> c ([M) by F&I(E) = £(x) ¥xeX, £e[1a T is

well-defined (see Proposition 4.8 of [127]) and an isometry.
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To sce that § is omto let fec (') and define

; e 3 . - ' ol ) : i
£ B[] 0j=—> ¢ by £'(p) = t.£(q) if peE, p=t.q, ge P, teT
=0 if p=0G.

It is not hard to scc that £ is well defined and is a w'-con-
tinuous, T-homogeneous, function on E ]J {0} + Extend f by
L
* .
Tietz's theorem to a w -continuous function g on }{1 and let

h"_-homgo

By Theorem 9 of [36], there exists veX such that hi(p)=

p(v) ¥ an;r and h  agrees with £' on EU {O} « Hence it
follows that §(v)=f, .

Therefore § is onto .

Corollary 6.7, Let X be a compiex Banach space such that

*
line §£{ is an I-ideal for all feE and any L-ideal in X is

w*—closed, then X 1is isometric to co.(T').

Proof ¢ ILet D (CE be a T-invariant set. Put N = Iinc D

' (ﬂclosure in norm topology)e. Then by an argument used in the
proof of 2 ==> 3 of Theorem 6.1 we get that N, = CO(D) (nomm
closure)s By hypotheses N is w —closed énd hence N, = c(D).
itk fa'E(N1) "gnd £ ¢D then if we write P 1ine_{f} @—.M;
where M is the L-ideal complémentary to line %zf}, since D is
T-invariant, D (_M and hence N (C M. A céni:rédiction.
Therefore - E(N1) =-‘D. Hence D is a structurallyrclgse_d sete

Conclusion follows from Theorem 646,
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Remark ¢ That all L-ideals in co(]") = 11(}"), are w ~closed
£ollows from the structure of I-idesls in L1([?) (see [47).
Hence the conditions in the hypethoeses of Theorenm 6.6 and

Corollary 6.7 sctuully churacterize c ([7J.
We usc Theorem 6.6 to improve 2 result of Lima from [32 ).

Corollary 6.8. Iet X be o real Banich space such that

1) ¥£:E, l_tine {f} is an T-ideal

2) X(X,X) (space of compzct operators on X) is an M-ideal

in L(X,X) (space of Bounded operators)
then X is isometric to oo(r').

Proof ¢ For any xe S and for e > O, let N*{feE'

Proceeding as in Iemma 1 of [327] one shows that N is a flm.te}
set. Since we are assuming that' 7. ff} is structu:rully closed
for all fe E, it follows from Theorem 5.1 that X is a G-space.
Now it is easy to sece that any T-imvariant subset of E is

structurally closed and hence X is isometric to c_([7).
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SECTZON 7

Real sections in comvlex LT-predn_als

The purposc of this secetion is to provide, new, and
sinple proofs of many of the results from [487. e also give
an example to show that Proposition 3.5 of [467] is false. We
Tirst show that if A4 (C C(X) is a closed self-ajoint subspace
with (Re 4)" iéometric to L (u , R) then A" is isometric to
Ll (u y §). Thereby providing a new argument which will prove
Proposition 3.4 and Lemma 5.7 of [487] in a single strokes TFor
this purpose we necd the definition of barycentric map intro-
duced by Bednar and Iacey in [37]. Our definition is from [427].

Iet Y be a compact Hausdorff space.

4 map 13‘-: T —> M(Y) = c(D)” is said to be a barycentric
mapping ir 1) [I B Il < I veY

2y ¥ fs.Cl(Y), the function fg defined on Y by
fB(y) = ]E[-fdﬁ (y) 1is Borel measurable and integravle with respect

to each e M(Y),

3) For u4,u'eM(Y) if H(E) = 47 (£) ¥ £eC(T)
such that f = fg then M(fBE)‘ = (fB) ¥ feC(Y) .

Bednar and Iacey [37] have used the barycentric map to
give a characterization of real Iindenstrauss spaces. We now
satate the complex analogue of the Bednar and Tacey result obtained

by AK. Roy in [42].
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Theorem ¢ 4 compleX Banach space X is an L1—pr-edual iff there

is & compact Hausdorff spice T -nd o barycembric map

B .2 Y—> M(Y) such that ¥ is isometric %o
Ay = {f SIGOREFENE

Lomma 7.1. Iet A Cc (Y.] and B (C ¢(¥,) be two closed, self-
adjoint subspices. If J & Re A —> Re B is an onto, real,
isometry then ¢ cun be extended to a complex isometry § from
A onto B. | |

Proof § Define J : A—> B by 0 (£) = FRef)+ i (Inf) for
feh. GClearly EE is a linear, 'one--one, ombo map extending @ .
Fix fe A. There exists ye Y, such that

g )il = @ (:t‘)(y)] = t.f (f)(y) m (tf)(y) for some teT.
But this implies, llf@_ ()| =0 (Re(tf))(y) HRetf |l < NI L]~

Therefore |} Ev ()< I £]] ¥Ffea and the symmetry of the argu-

¢
rert now shows that § is an isometry.

Theorem 7.2. Tet A (C C(Y) be & closed, self-adjoint subspice.
A is an L1 -predual iff Re A is an L1-predua.1. Moréover if
(Re 4)'= i (“,R) for some non-negative measure’ © 'bhen

_x.
Tl X (¢,$) (equality stands for iscmetry).
Proof ¢ Suppose Red is an L1'—predua1.

By Bednar and ILacey theore (for rezl scalars) there is a

A t - ]
compact Hausdorff space Y such that ReA 1is isometric to
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4, = ffeCp (¥) 1€ =1, vhere 1Y —> G (T)" is the
(real-measure valued) barycentric map,

Now consider p 4s 4 birycentric map from Yt into M(Y').
Since p volues are only real measures it follows that fpz CE)Q
for 611 TeC(T ) (F denotes complex conjugatc of f£). If we
let B = {f‘a c(y) § 7 = £, fthen B is @ self-ajoimt subspuce
such that ReB= A, . Also by the complex form of Benar-Iacey
theorem, B is & complex L1~preaual. Since Red is isometric to

ReB and A, B are self-adjoint subspaces, by Lemnz 7.1, we get

that 4 1is isometric to B and hence A is an LT—predual.
While proving that Aé is an L1—predual Bednar and Iaéey,
* ¥ t
observe that M:{?\s C]R (Y ) :ffdhaffpdh ¥ felyp (v )} is
*
isometric to Ap via the restriction map, 4 similar argument

works in the complex case also giving us that the restriction

map is an iscmetry from
v L *
M .—.{}\EC(Y) : [fax = Jf,dr for all fsC(Y)} onto B .
et T s , IR) —> M Dbe any isometry.
Detine § :L'(u,$) —> M by T (£) = FRe?) +iJlIng)
]
Clearly @ is & continuous, linear, one-one, onto map extending
T. To show that § dis an isometry, it is enough to show that it

is an isometry on simple functions.

For any two disjoint measurable sets Cy,C,

B 41 = I 1o 2 Tg Il = 11T ) 2B ) 1= 1T ) 1+ TG )l
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Sc the reul measures §(I, ) and §(I, ) are mutually singuler
‘ 1 2
&nd hence

I a@ (101) +B§ (102) i "‘ l“l I E (Ic_]) ” + B ”-.(]2- (102)”
for any conplex scalars a.and P
Hence HIQ(aIle 5102> I} = 1[@(.{01% 55(.102)11
= 1|a101+ Bloz-fl,l for a, ﬁ‘sqf .

A similar argument shows that T is.an iso;zlétry" on.
simple functions ard hemce § is an isometry.

Suppose A is an.L1—predgal. Let {B(ai ., rl)z(j—1 be four
closed balls in A such that di's are real-valued -and
ol 2; - || Lry+ r:’ for all i, ..Z'L For any ye Y,

Iai(y)-a“-,(y)lgri«ﬂr. ¥i,j = ] Ba;(y),zy) # #. So that
9 J i=1

4 4
| ii1 z;2: (V)] 121 relzgl ¥Fye Y
s A ,
vhere. z; ¢ and I z,'m 0.
: i=1
. Ry .4 4
Therefore || % zja;ll¢ =T Iz I
i=1 — i=1

Hence the balls {B(al,r )} 121 have weak lntersec'ba.on .

property (see Theorem 2.1 [287] or [257])., Since 4 is an
4

.] . : - !
L —preduﬂl there is & be iD.l'B(ai’ri)’ be A (see [29]).
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Now |[[Reb=-a, | = HRe(-a [l p-a;]l ¢ v, ¥i.

4
So Rebe [] B(a;,r;}. Hence by Iindenstrauss'characteriza~
i=1 ’

of

tion/L1_preduals [357] we get that Re4s is an L1~predua1.

Remaxlk ¢ The crguacnts in the last pert of the above proaf are

due to A, Iima. The above theoren also gives & different proof

of Ierma 5.1 [487]. The above crgunents can 2lso be used to

give o characterigzation of complex simﬁiex spaces (Section 4 [36_])

in terms of barycentric maps taking values in non-negative measures.

The &bove theoren conpletely fails in ‘he absence of the
assunption self-adjointness on A, It was wrongly stated in [ 48]
(Prosition 3.5) that if = close& subspace 4 (C C(Y) isa
Lindenstrauss space then ReA is a Iindenstrauss spéce. We give

an exanple.

Exanple ¢+ Let Y = ;1,2,3}'and

A= {fs C(¥) 120 = ir(2) = L f(3)}.
If £, ¢ ¥Y—> ¢ is defined by, £,01) =1, £ (2) = -1 and
£ (3) = 1-i then it is eusy to sce that A = line {fo} .

Therefore A is a Lindenstrauss space.

Clain Re A :gfe Crp (V) TE() Y () = f(3)}.

If fed then since Re £(2) = Im £(1) and
Re £(1) = %'{Ref(ﬁ»- s f(3)}, In £(1) = HIn £03) « ReT(3)},
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we get that Re £(1) +«+ Re £(2) = Re £(3). Tor EEICH{(Y), if g
ig defined by g' (1) = g(2), g'(2) = —g(1) amd g'(3)=2g(2) = g(3)
then it is e&sy to see thot h=g+g' ¢ A. Honce the claim.

The functions f,,f, defimed on Y by o
arc in Re A and span Re A. Basy to see that Re A is isometric
to IR° with the nomm || &x,y) || = maxi]XI, by, | - yl} . Hence
it follows from Example 2,5 that Re A 4is not &n Ll-predual.

We now recall the definition of yeaimSQCtién of a complex

Tindenstrauss space from [ 48 J.
Iet X be a complex L1-predua1;spaee. 'Aucldééd real linear
subspace G (C X is said to be a real section of X if -
i) ¢ + iG is dense in X
il 6 is a feal‘L1—predua1 Space.
%..
iii) There is a set of noxm one functionals M (C X ~ such that
every nember of M, takes only real values on G and

lell = sup Im(g)l ¥ ge G+ 1G.
me M

Theoren 7,3._ Let X be a complex L1-predﬁal with a real section
G+ Then there exisfs a compact Hauédprff gpace Y aﬁd a self-
adjoini'L1-predua1 A (C c(Y) and a complex linear isometry of X

anto A, whose restriction to & is a real isometry onto Red .,
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Proof I Let Y =M. Define J o ¢ + iG—> C(Y) by
[i] (g.] +igs){(y) = y(g;+ig,) ¥ ye ¥, gy ¢ G+ Since sach ye Y,
takes only real velucs en G, it is clecr thet § is well defined

and for the same reascn we have

8 (gy+ig)) (y) = y(gy) -iy(gs) = 1 (g4 - 182) (y) .

Clearly § is a lincar map and it is not difficult to
deduce from condition (iii) in the definition of a real scetion
that § is an iscmetry. Also the above remark shows that
¢ (6+ie) is a self-adjoint subspace of O(Y) with

Ref (¢+1i®) =T (@) .
/

Since @ is an isonetry and ¢ is a Banach space, lwe'ge’c‘
that Re§ (G+iG) is wniformly closed. The self-adjointnecss of
0 (¢+i®) now inplies that Perie) is uniformly clesed and

hence G+ 1G is a closed subspace of X .
Hence we have an isometry with all the required properties,

Benark ¢ This is Iemma 4.7 in [487]. Note that the proof makes
no use of the hypotheses that X and ¢ are I -predusls. Unlike
the arguments in the procf of Terma 4.7 in [487], our proof is
conpletely free of L1 -bredudl theory. Several of the propositions
in [487], can now be easily deduced (viz Lemmas 4.1, 4;4, 4e5) e
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SECTION 8

]

Isomctries of simplex spaces

Iet I be a compact convex sete 4 set D (C E(K) is said
to be facially closed if there exists a closed split face F of X
such that E(F) = D, The sets D forn the closed sets of a
topology on E(X) called fhe facial topologye Following the
notations of [1_], we denote by 2(4(K)) the set of all elements
be A(K) such that for every ae A(K) there exists a oe A(K)
satisfying c(x) = alx)b(@) ¥ x e B(K).

Since for aﬁy be Z(A(K)), real and‘imaginary parts of D
are in ACTN (K)), using Corcllary 1II.7.4 and Theoren IT+7.10
of [1], we can easily see that for be A(K), b is in Z(A(X))
if and only if ©bB/E(K) is continucus in the facial topologye

We now deseribe a class of isonmetrics for A(K) and show
f that when K 1is a sinplex it gives a complete description of

isometries of A(¥Y).

et Q ¢+ X —>K be an onto affine homeconorphism and let

aje Z(A(K)) Dbe such that lat =1 on E().

Define [ A(X) — AK) by f(a) =c for aeA(X),

where c¢ is ﬁhe unigue element of A(K) such that
c(x) = a(Q(x)) ao(x) ¥ xeEBX) .

Since |a_| =1 on E(K) and since & e Z(A(K)) (which

is easy to see fron the remarks made above) it is easy to seo that
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9 is an onto isometry with P (1) = a_.

Theoren B.d. Tet §: 4AK) —> A(K) Dbe any onto isonetry such

thet § (1) e 2(4(X))e Then there exists an affine honconorphisn
Q of X soch that
0 (@)(x) = aaN P (&) ¥ xe B(K), seal(X).
Proof ¢ If e tXK —> A(K)f; denotes the evalustion nap then it is
well known that ¢ is an affine homeoniorphisn of K onto
*
{fs A(K)1 ¢t (1) = 1} , equipped with the w —topology and
¥ R
E(A(XK)) = T e(@(X)). '
. s
Since § is an isonetry it is easy to see that
Te®®N) (C T e(BE). So thet if xecE(K) then there exists
uflique x'eEX) and teT (since A(K) sepzrates points of X

and 1e A(K)) such that
Tt = te')

Evaluating at 1, we get, § (1)(x) = t . Therefore |§ (1)|=1 on EX).
Since § (1) e 2(a(K)) => E_(?) e 2(a(¥)), if we define

S I AK) —> A(X) by the fornula |
(Sa)(x) =3 (a) (x) § (1) &) ¥ xeB(K), agMK)

then since [§(1)] = 1 on E(K), by the remarks preccding the
theoren it follows that § is an onto isometry. Moreover
M) = T &) FME) =1 FxeB(X) so that S(1) = 1.

Therefore 8 maps e(X) onto e(K). Since s* is a W ~homeo-

norphism,we get that Q = e"iI 0 S-*o e is an affine homeomori)hism
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of K onto X, Also for =x:EX), aei(®)

$ () = § (1) (8a)(x) =T (1)(x) ala(x)) .

We now show that if K iz a Choquet simplex then the
isonetries of the fornm considered above, completely describe the
isonmetrics of A®)., First we quotec a definiticn and a result

due to Effros from [11_].

Definition : Say & closed set D (T K is a dilated set if for

any naxinal probability nmeasure # with Y(4) ¢ D, Suppi4 (C D.

Resmiit « If X 1is a compact Choguet s:mplex then for any dilated
set D (K, F =COM) is a split face .

Proposition B.2. Tet X be a compact Choquet simplex and let

a,c A(K) be such that [a | =1 on E(X). Then a, e 2(AK)).

Proof ¢ It follows from our earlier remarks that we only need to

show that a /.E(I{) — ¢ is facially continuous.

Iet B (C T be a closed set and let B = {x s BT & a,O(x)aB}.
We clain that B is a dllated sets Tet # be a maximal probabi-
lity neasure with x_ = Y()« BL5

aodﬂ’,s j Iaoldﬂ‘;'l.

A= ]ao(xo)[ = I
E(X)

J
E(X)

— 1
Thersfore 2 = ao(xo) on Supp #, so that Supp # (L B as

‘ — — %
Supp 4 (_ E(X). Hence B is a dilated set.
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Fron the result of Effros, guoted above, we get that

P = CO(B ) is a split face. Tharefore
{Xea(m e (x) e B} = F1B@) .

Hence a, is facially C(I)n“tinuous'and_consequen‘tly
a, e LAY .
Remark : For a sinplex K, ae 4(K), is an extreme point iff
jal =1 on E(X) iff aecz(a®)); and is an extrene polmt of
7 (AK)) - "

Corocllary 8.3, If K is a compact Choquet simplex,them for any

isometry @ of A(X) there exists an affine honeomorphisnt @ of
K such that : ' A
§(a)x) =a(x)) FO(HE) ¥ xeBX).

»

Proof ¢ We have observed in the proof of Theorem 8.7 that .
]3]+ 1. on E(R) there ore by Proposiion 8.2, § (1) Z(A(K))

and the conclusion follows from Theorenm 8.1,

Corollary 8.4. If K; and K, are compact convex sets and X,

| is & simplex then for any onto isometry @ & ARy —> AK,)
there exists an affine honeomorphisn Q from XK, onto K, (and
hence K, isa sinplex) such that |

&) =al)F () ¥ xe E{,), as A‘(K‘I) :

Proof : Can be easily seen using arguments similar to the ones

used in Theoren B.1.
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Remark. ¢« When K4 and’ K, are simple};es and the scalar field
is real, 4. Iagar [27] proved the above corcllary in a different
forme If onc identifies & conmpact Hausdorff space X as the.
extrene boundary of the set of probability neasures on X with
the w ~topology, it is not difficult to sec that the above
_corollary is an ;,exﬁénsion of the clussical Banach-Stone theoren

for CX).

Corollary B.5. Tet X be a complex Lindenstrauss space and let
eq,ep¢ X, , be two lincarly independent extreme poluts. If
*
— o -
K, = $£eXy ¢ £e;) = 1} then X,

and K, , are homeomorphic.

1 25

Proof ¢ Use the Hirsberg and Lazar theoren [21] to conclude

3
that X
ey

is a sinplex and A e1) and A(Ke
and then use Corolié-ry Bede

) are isometric
2. 43 '

‘Iet X ‘;‘)'e a conpact Choquet sinplex a;nd' let
: Aé(K) = {ae AK) ¢ a(po) = O}where- P, e B(K) is fixeds TLet P

be the face complementary to ipO'} .

If Q is an affine hqmeomorphismr of ;K, taking P, into
.bo' and if a  § E(F) —> T is continuous in the x'jelatixfe facial
toblology (E@®) = FﬂE (X)) then thé nap | [ AO(_K_)" ;-—4>‘ A (K)
defined by 0 (a) = ¢ where ¢ is the unique eier;ent of AO(K)
such that c(x) = a(Q(x)) a (x) ¥ xeE(F) is an onto isometry
(The existance of such a unique ¢ follows fron & result of 11

or Theoren 3.8 of Cae.
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Theorcr: B.6. Iscmetries of the above form completely describe
isometries of 4 _(X).

Proof ¢ ILet §: A, () —> & (K) be any isometry. The evaluation
nap e takes X affine honeonorphically onto

K'= {f . AO(K)i; PF@) >0 ¥ ae AO(K)+} (with w'~topology) so

that p,  gocs to zero and F dis mapped cnto F = Zf eK ¢ HE = 1}. |

ﬁ* induces & honeonorphisn Q o E(X) ~> E(X) and a con-
tinuous map ( 2 E®) - ?'p_(;% —> T such that

@) = T eQ@) ¥ xeL(P) .
Clain : T restrictedto ‘E(F) is continuous in the relative
facial topolggy. )

Once we edtablish the claim, we can define S1 4 (K)—>4 (K)

by S(a)&x) =T (x) §(a)(x) ¥ x<E(F), ac A (K) and as in the

proof of Theoren 8.1, can se +that the isomstry &, nops non-
negative functions to non-negative functions, so that & mnaps

f :
K onto it self and the conclusion can be deduced.

Iet B (C T be closed and let
1 — i E U £
B = %}NE(K) = ipo} st T xX)e B} U ZPO}' Then B. is a closed set.
2 .
Let # Dbe a maxinal neadsure with x_  ="Y(#¥)eB and X # D, e
Iet h,] and X, be maxinal measures onh J‘exo*(K);é “such that

e (Q(x )) e(x )
= —20 y YA 5 ——
- letatxy) | I eCx )|

Y(a)

= . - t ) T
Clearly Supp 7\1, Supp Ao (_ FG (since F is a complementary face).
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1

) *
It is easy to see that the ncasure. A = Aj00 C (x )0

e(xO)

FeG )i

Since AO(K) is an LT-predual,by Effros' characterigzation

represents

we get that A, :'K; « Clcarly Supp # (_ Supp(k%c;@)tj Epo} .
% T

If xecSupp Ayo0e then e {x) ¢ Supp A, and hence

T(ex))

It follows from the definition of ( that [T &x) = T (x.) e

1

T(Ko)_e(x'), e(x') & Supp My o

—_ |
Hence Supp # (_ B » Therefore ( is & facially continuous map.

This conpletes the proof.

Remark ¢ The above theoren extends Theorem 13, page 187 [26_|

for conplex simpleXx spaceSe

.\ff one identifies a locally conpact Hausdorff Spacé?‘Y ‘as .,
the extroenme boundaryrof the 7ice coﬂplemeniary to {S(wz} in the
set of probabilify neasures on the one ﬁbint compactification
Y|J §=} of Y, then it is not difficult to see that the above
theoren i1s an extcnsion of the classical Banach-Stone theoren

for C_(¥) (continuous functions vanishing at infinity).

Corollary B.7. ITet X be & complex Lindenstrauss space.

Suppose P and ¢ arc two naximal faces of X: such that

F, = Co(F|| {o} )y Py = CO(GLJ Jo$ ) are w*_closed. Then there

exists an affine homeomorphism (weret w -topology) from F, omto

F? napping F onto Ge.
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Proof I TUsing results from Section 4 of [36], it is ecasy to
sec that F, and Fs are simplexes and AO(F1) and AO(FQ)
are liscmetric. Now an argunent siomilar to the one given in

the proaf of the above theoren completes the proct.

We now use the“description-of isonetries, to describe

bi-contractive projections in A(K) when 'K 1is a Choquet sinplex,

Iet X be any compact convex set and Q@ an affine homeo-
morphism of K such that Q(Q(x)) = X ¥xeBX)e ILet

3 ¢ Z(AK)) be such that Ja | =1 an E(K) and 2 0Q = &

o -*

Peflne P 34 —> 40) by P(a) = 1 fase}
where ¢ e A(X) agrees with the product 2, +20Q on E(K). Easy
to see that P is a bi-combractive projection i.ce || PJ] ¢ 1 and

NI-PI <1 (T isthe idemtity map).

Proposition 8,8, If X is a sinplex then bProjections of the
above forn completely describe bi-contractive projections in A(X).

Eroof I Let P 5 AK) = AK) e any bi-contfactive projection
and put S = 2P-I, Use Theorem 4.5 of [317] to conclude that S
is an isonetry, By Corollary Ba3, we get an affine homeomorphism
Q of X such that

(52) (x) = S(1) () a(Qx)) ¥ xcEX).

Put a_ = S(1). For any ae A(K)

3(s(a)) = 2r(2p(a) - a) - 2P(a) + a

H

4P(a) - 2P(a) - 2P(a) + & = &,

*
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Hence for any x e B(K), 1 = S(a ) (x) = a_(x).a_(Q)).
Therefore a oQ=a, (since |a | =1 on E()).

bl

Also for x ¢ EQ®), a ¢ A(K)

]

alx) = s(Sa)) () = ao(x) S(a) (g{x))

1

= a () a (o) ale®()) .

Therefore Qg(x) =x ¥ xeE(K). UNow it is casy to see that P

£

has the form reguii‘ed in the prolposition.

We end by giving a sinple exanple of a non;simplicial
compact comvex set K and an isometry @ of A(K) which is

not of the fornm described in Theorecm B.1.

Let X be the mnit square in R? cembred at (0,0), so
E(EK) = {(X,y) c jxl =1 = !y!}. K has no proper split faces
and hernce z(A(K))‘__:-_,gu.“i Pa e ¢}. Any f ¢ A(K) is of the
form f(x,y) = ax+by+c where a,b,c ¢ ¢ . Define
i) (£)(xX,y) = cx+Dby+ as Now M2l = max [albic | and
18 &) || = nax |c+b+al, hence J is an isometry. It is obvious )
that § is onto. But J (.1) = X, non-constamt. Hence § is not

of the form in Theoren 8.1,
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