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INTRCDUCTION AND SUMMARY

The study of admissible, minimax, and Bayes procedures has
been of primary importance ever since the pioneering work of Wald
(50). Since early seventles, new directions have been openkng up,
and not merely new hechniques, completely new inberpretaticons and

interrvelations have come to bhe kiown.

To prove admissibility of estimates the most commonly used
technique is fto show that 1t is extended Bayes and approximate its
risk by the riadk of the correspending Bayes estimates. This
technlque is due to Blyth (51). A sort of converse resulk, which
casentially shows that this techrique must work for all admissible
eghimates 18 due to Farrell and Stein who dorive a necessapy and
sufficient condition for admissibility.

Karlin (58) was among the foremost statigtlcians to have
evolved a general technique of proving admissibility in one dimen-
sion. In the one parameter expanential family with a density
plx,w) = ¥ p(waz(x), w < w < W, Karlin showed that a lincar

estirate of the form sor , A2 0, 4is admissible for E_(X), if
N W
FeMwdw s = = J 27 Mwdaw, for < a,b < W
E. bv.

Karlin's conjecture that the comverse of this yesult is also true

is open till this day. In this fhesis, we shall use Karlin's fech-

nique quite extensively in Chapters 2 and 3, for deriving sufficient
conditiens of aémissihility of prabably non-linear estinmates in the
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{11)

one paraneier regular oxponential and non-regular fanilicc. 4
mnified proof of tho adniesibility of vume standard gencralized
Baycs cgtimabes of &he nean in the oxXponcntial family has recently
been glven by PFrown and Hwang (B1) in the lines of Blyth (51) .

Fron lake sixties, interest in admigsibility work shifted
froo perticular problems to very general problenss Some loading
stones in this dlrection were Brown (66),Brown (71) and a scrics cf
grticles due ko Berger (76). Brown (66) showed khat the boat
invariant estimatc of a locabion parameter is, under very goneral
conditions, adnissibvle in dimension 1 and inadmisaidle for dineh.
slons 5 and more. OSubseguently, in the context of simultanecus
cotim tion of independent normal means, Brown (71) discovered a
novel relation betwean admiseibility and the rocurrence of a related
diffusion process, Brown (71) also practically characierdsoed all tho
admisgsible e¢sliimtes of the multivariate normal mean in the goneraliw
zed Bayes class, Some imporbant work in the spirit of Brown (71)
was subsequently done by Srinivazan (81} and in the conkexh of
control rroblems by Srinivasza (82), While Jrown (66) dweld, in
bread gensrality, on the praoblem of estipating a full location
vector, Berger (76a,76D) considered the question of admissiblility
or obherwise of genecralized Bayes eutimﬂtora of cuordinaktes of a

location vector.

The most popular and elegank tuol now in use of proving
insdmissibility or improving upon ivadmissible estimabors is bhe
rnethod of solving differontiazl incqualities. The btool should be
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(iii)

rrimarily atéributed to Stein who achieved a major breakihrough by
proving what is por~larly known as ™ Stoin's identity ¥ . It was
later generalized by Hudson (77}, Berger (80), Hwang (ov). Some
very dnpc bant works in nuliiparamcter inadn. seibility and differon-
tial inequalitics weve alse done by Brown (79), Brown (81), and
Ghosh and FPapsian (80). The tuel of differential inequalitiocs will
be used in this shesis in Chapters 4 and 5, in the contoxt of nulti-

Horancbor gstinatione.

Although the thrust in deelclen-Shecrebic worka is naw on
nultiparaneter problems, sven now there are inpeortant and interest- -
ing problens in the ane paremeter familics as well. We shall
consider in this thesis different aspects of Bayes, mininax, and
adnigsible estination in single paraneter as well as nultipapancter
Problens.

In Chapter 1, we have shown that if S (; RY is a bounded
convex set comtalning ¢, 4 s =P s X is an gbservatlon fran an
arbitrary nultiparancter density p(x {E)‘ (aue), ool
8 ¢ By r—{baﬂba 3 Eg s Bhon for B> 0 aall, the Bayes esghtimate
with respect_.to the least favouwrable prior on the boundary of Sb

guite gencral
ia minimax Toryu(e) under typically quadratic losses provided scme
regularity conditions, which are true in the nultiparapetor exponen-
fial family, hold (Theorem 1.2,1). This generalises the wark of
Casella and Strawderman {81),.

In Chapter 2, following Kaplin's technique, we have derived
sufficient conditions for adnissibility of polynonial estimators
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(i)

5, = a_ X e aqX + a (Thevren 2.3.1) ; inperitant paranctric
functions for which mo linear adnissiblce egtimates are known arc
congldered in the exanples andl a class of admissible estinatea have
been proposed, The result of Chosh and Meeden (77) comes ocut as a

speclal cago.

In Chupter 3, we consider the prublem of finding admissible
estinates of general non-negative and nonotone functions hiw) of
the bagic parancber w In & ane-paranchier non-rogular Tanily with
densdty p@x,w) = r(®)a(w}, w< w<w, wd<x{ws. The necan and all
quantiles of the digtribution fall in thils class if y = 0. It haa
been shown (Thearen 3.2.,1 ) thak in gencral L}E h{X}) iz ainissiblc
fer hiw) jrovided h satisfics & FKaplin-type conditicn

a . ) -Ed.-g ﬁ -E.—E
TR h (W) al)dw = = =T ' (w) hiw) g{w)dw.
W L

More generaily, we have derived sufficient conditions for adnissi.
bhiity of generalizc. Bayes cgkinatea of hiw) with rcspect ¢ more
goneral pricrs n(w) = | ()| £hG)) falu), where £ 2 [0, =)=
Lo s =) (Theorom 3.5.1 )« Theoren 3.2.1 ia a sp@cial cage of

Theoren Zessl when f’!:u,) = u—g_e;

, € » 0D Alsg, It has beon showm
(Theorem 3.4,1 ) that log q(X) -1, the Pitnan estimate of log alw),
is adnissible if q(¥) = 0. 4s an application, we have shown that
X+1 is an adnissible estinator of w in the truncalted eﬁpmmial

digtribution with density o~ (&) , X 2 w (0 otherwisac).
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In Chapter 4, we have switched baclk to nmulfiparancher Troeblenms
Hwang (81) - tyre bowi's wn adnisaible eciinators of the scale Jara-
neters in independent sinrle cxpencntial populabicns have been
obtained, It is shown (Theoren 4,.2,4 ) that any cabtinate
5{x) = (61 (E’E},...,ﬁ?ix}) of the weckoar of scale-paranckaré is inadri.

salble, provided for some 0<e< 2{p-1), and sune M> 0,

Vo3 B 3 B L _ | ¥
121 x77 8;,(x) & ii‘f x5 %,i(x) far evory X e (QM],

X . ‘ [

where 60 , (x) = ok [‘! . oxd 2( 1 x'.‘?}g ] = Bergor's cobinate (80).
e,i 7L % AR B

A pimilar necessary conditicn for adnissibllity of estinatcrs of

independent garna shape paramcters is also given. Finally, we have

considered the problenm of estinating indeperdlent ganna scale-paras

p e
neters under the invariant less Li{e,a) = T a.8,- E log a;8, -1,
iz 1 g i

in contrast fo the wulghted quadratic lusses of Berger (80), and have
gshown that the 'standard® esbinate is inadmissible for D 2 3. OSone
chservaticis are then nmade relubing this resullk to Brown (BQ};

Brown (66}, Brown and Fux (74), and Berger (80).

In Chapter 5, we confinue with differentlal inequalitics and
nultiparancter adnissibility problens in terms of an approxinating
rigk within & class of cotinates which srdise naturally in the
context of secand order efficiency. Formally, the concept of second
order adnissibility (Ghosh and Sinha (81)) is exbended o general
nultiparaneter faniliecs. It is shown that estirates unbiased upto
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otn™!)  are secomd order admissible in dimensien 2, if the conpenents
are both second order adnissible in dinension 1 (Theoren 5.2,1), and
always inadnissible if p > 3 (Thecren 5,3.1)s. Exenples are given
to show that in geﬁeral, the nethod of generaking admissible
| egtimmtes by constrocting Bayes solutions nay fail even in one
dinension, buf Bayes solutions do indeed exist if the class of eshi-
nates is sultably reauﬂed (Propoaition 5.4.1).

in Chapter 6, we consider ithe problen of ecatinaling [T
under the loss {(a- [@ |}2 LE|‘E on the basis of 85~ wpik,ﬂ}.
Using Brown (66), it is shown that |Sj.(k-p+ DL/ k+ 2)! , the
best folly cquivariant estimate of |%|, is admiasible in the class
of estinates depending on |[S| only (Theoren 6.3.2).
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CHAPTER 1

BAYES MINIMAX EMIMATION IN MULTIPARAMETER FAMILIES
WHEN THE PARAMETER SPACE IS RESTRICTED TO A BOUWDED
CONVaX SET

Tel Introduction

Iet X~ W(8,1), ==¢ 6 ¢ =, It is well known that X is
generalized Bayes Tor € with respect to the uniform prior under
squared error loss, and ls an admissible minimax estimabor.
However, if it is kvnown that the mean & lies in a compact
interval [ a,b], then X becomes inadmissible and also ceases
to remain minimax; Ghosh (64) proved the existence of a unique
ninimax egtimate uﬁfx} for € ard provided a sequence of esti-
mates %un{x)} in the space of estimators with wniformly bounded
risk whose ma;timim rigk converges to the minimax wvalue of the
problem, His argument, however, did not spell out the exact form
of the minimax egkiite u (x). Casclla and Strawderman (81)
recently came out with a pelatively simple form of uafx} and the
least favourable prior when b-a 1is gufficiently mmall. There is
no loss in assuming bhe interval [ a,b ] to be symmetric around O,
say, [ -a,a]. It was observed by Casella and Strawderman (81) that
if a ¢ 1,05 approximately, then the Bayes estimate &.{x) of 6
against the prior pubting probubility & each at » & 19 minimex
for 6. However, a3 a increases, the two-polnt prior ceascs to be
least favourable. Recently, Bickel (81) exhibited estimabes which
are agynphotically minimax upto 0(3'2) and obtained approXinmations
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to the leoust favourable prior density upto the same ordere.

Tt is clear ivom the pictures of risk functions of 6, (x)
in Cagella and Strawdernan (81), and can be shown mathematically
that if a is a bit amaller (3 € 0.643 approximately), then the
rigk function of 6&,(x) is convex in the imterval [ -a,a], and
hence attains its maxinum at  x a.6,(x) is thus mininax for &,
In this chapter, it has been shown in Section 1.2 that variations
of this convexity argment, motivated by the normal exanmple, carrics
over to very gereral muliiparancter families, and the Bayes cotimate
against the leagt Tavouwrable prior on the boundary of the parancher
gpace conbinuwes to be ninimax. Sone remarks are then nade illus-
trating varicus aspects of the hypotheses and application of this
result. In Bection 1,3, some explicit exanples are given in ane
paranetey get-ups, where the regians of convexity arc actunally
worked out. Througheut, we work with squared error loas ; generali-

zation in this dircction is indicated (Remark 4).

1.2 Main Result

et 5 (C WP (p 3y 1) be any compact convex seb containing
0 inits interiare Iet a e RP. Ve let

By, = {h§1+%;§155},h10
28,

Note S, is comvex. We take 05, %o be campack. Iet X

Boundary of S

1l

wb-

be an observation from a multiparanmeter (family of) probe. measure
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dPg wkich has a densify p(x4e) with respect to same o-Tinite
measure . Iet dn,(8) Dbe the leswifavourable prior distribu-
tion if & 1ldes in the compact set 95, . Iet Ga*ﬁfjx} be the
Bayes estinate wiih reapect to the pricr d‘mb(@)'. in che follow-
ing aralysis it is implicitly assumed that the marginal distribu
tion of X deninaics dP& for’ﬂvery’ o, ﬁa’h(x) is ninimax on

98y« Let #(8) = cﬁ1fe),...,up(g>)' be such that, with

D(e) = (G- u.(8))), tr DT ()DL >0V,

g

oy
Purther asaswme that g?'? ﬁéj (8) exists and is continvous for

fa

i
1<%, i<,
Theoyen 1,2.1. There exists b > O such that far €5, 6, LX)

¥

is mininax for ue), provided R(e,5, .}, the risk function of
L
aa,‘b(}:}' is twice differentiable in 8; (1£i¢p) and the p-fold

| P g2
sun  of these second-order derivatives I -97 H(Q,ﬁa b') is
i=1 3@1' ?

jointly comtinucus in € ard b at the points (8,0).
Proof ¢ Define for b > 0,

g{e,a,b) =R (Q*aa,b}

f(6,a,b)

1%
N

a
z %T £(8,a,b) NCRE

93

. , P .2

Clearly, g(8,8,0) = & [ 4,(8)-u, (a)]",
i=1

By direct computatlon, 1lin £(e,a,0) exists and is given by
8> a
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1in £(8,a,0) = 2ty D' (a)D(a2 0. vea(2.2)
6—> 3

Therefore, by the jeint continuity of f(e,a,h) in &,b at the
points (6,0}, there exists b ,r > 0 such that,

£(8,2,b) 2 0 ¥ 0= 8(a,r), DL .

LsAf DD

Conseguently, g(e,2,b) is sub-harmenic in 6 if b < b ,and

Cheosing b, enall, we get f(8,a,b) 2 0 ¥8 ¢ 8

henee, by the Maxinmun Principle, attains its naximmn on 3Sb.

Since 6, ,(X)} 1is nininax for veriations of & in ‘asb , Bl
|

moof 1s completea.

Renarks an Theoren 1.2.1

T If #;(8) is a strictly monctone funetion of 6. alune
for 1£i¢ p, then the conditicn tr DE(B) > ¢ is saiisfied fur
every 8. In pariticular, the mean in 4 one-paraneter MIR family
i8 handled.

2. By the Mean-value Theorem of mudtivariate caleculus, Ih can
be shown that 5a’hEx) —> 4(a) as b —> 0, for almost all x.
This fact can be used to show quite easily thuat the condition of
jeint continuiby of f£(6,a,b) in & and b holds in the multi-
parametar exponential family.

3¢ TFor a gymmetpic distribution, Tike the Multinormal, the
leaatfavourable prior is uniform on the boundary of the parameber
space. There is no loes in asswming & toc be € und 3 a gymmetric

corveX seot.
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4. Theorer 1.2.1 con be generalized to losses of the fan

1 LIPS
Wiz (8 -8, :i) whore W is symmetric, convex, and W (C) > 0.

ja1 1

5. I the speccial cne-pardamebter fanilies, the argment of
sub-harmonicity reduces %o plain cunvexity. It may be nentioned
shak although the phenomenon of Casella apd Strawderman (81) holds
under very general canditions, thedr proof will nobé capry over bo
such general sibuaticns.

6. In tho folluwing section, we actvally work cuk the rogicns
of convexity in sone gpecific distributicns. The nininax esbipates
arc equalizer rules un the support of the leastfavourable mriors
concentrated on the bowary of the paraneter space. The Bayes
rigsk of the estingées are the same as thelr maxiom risks and they

are thus ninimax,
1.3 Examplea

In this section, we actually work out the reglons of cone
vexity for some important distributicns. In distribukions, like
the Normal or the Rinomisal, wiere some kind of symmetry ls present,
the least.favourable priocr puts cqual probability on the boundary
of the paancter spacc. In ocher distribubions, finding oub *the
relevant least-favourable riors and subsegquently the mmé of
convexity may becone extrencly difficulf withoub the aid of a

compuber. We gharé with the inportant Normal casc.

Example 1. Let X~ N(8,1), where © & [.n,n]. The Bayes cstinate
%fi‘i)i agadnst the prior assigning nass :};_; each at + 1 is given by
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I

mx
;:' N = o - . = . R - : -
5,00 = m merm* = m arhmx (ae.ee Iebesgue) .. (3.1)

Therefore, 6 (x) =m° -65(x) amd B1(x) = ~ 26 (x)8 ().

]

- 2 _ 2

Now, R(6,6) = - [ {5_(x) = o g (x-0)"/2 gy e (5.02)

m Llm
J2R =

Differentiating under the integral and using Stvein's idenbtity, one

has,

d S vy 1 ) - (x-8)7 /2
@R(-Q,ﬁm) ”,«@T f E{mam(x)-ﬁm(x){x+ ﬁm{x)} ]e dx.
[
w-i{5-3)
Differentiating once again under the integral in (3.7) and then
integrating by parts,

22 oo WD
ac .. _dar - {x-0) /2
—»R{§,8 ) == 2] g'(x) e dx
dg o B & ’

vhere  g(x) = x- 6 (x)- 8 (x) %'x ¥ am(x)} ceolBat)

1% iz eagy to see th.a glx) = -g{x) for every X.

2 o2 2 o3 2., =

_ il 1 by = (XQYC/2 ’ - {x+g)</2 ]
Hence, — R(8,8 )} = — 12 g (x)e dx +2[ g (x) ax
? A ‘m jﬁ Qg * U.g € i

0‘1(3!5)
Therefore, it will follow that R(8,8 ) is convex in € if
g(x) >0 for X3 0.

Ty 4 L = 2 LU » ¥ .
How, from (3.4), and the fact ﬁm(:&:) =m - 5:11(]{)' am(x)gw;?&m(x)sm(x),

we have,
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-7 -

g {(x) =1- ﬁ;&(};) - ﬁé{(x}{x + 5511(3{)} - 51;(:{) {1 + 51_:1(:{)}

It

- 36500 P 62(x) 2+ 1)826:) + 207x8, ()
2
2 BgC0 # 1-2m°.m?
> - 3m%62(x) + 2062 (x) - 2n ks, (1) « 2%+ 1)8](x)

+ Emgxﬁﬁ(x) +1- 21112-1«-14

(since 0£6 Gdgm if x 2 0)
> (E.F;RE) GEZ{X} t+ 1w ?_.1":12*]?14

> 0 irf 1-m%-n*y 0.

It follows that 1-2n°-n" 3> 0 if m (MVZ-1 = 0.643 (approxi-

nately), dmdmote that ng) -2 alwwgholds.

Hence, for 1125'_ ve-1, R(e,ﬁm} is convex in @ ¢ [-m,n], &nd

therefore, ﬁmf:"t) = mbanhmx  is ninimax for 8.

9 : ]
If X ~ N(8,07), where ¢ ig known, then the interval of convexity
is approximately 1.7%¢ wide. Although our calculations allow only

m € 0.643, the zone of convexity is most prabably wider.

Example 2, let X~ Bin(1,8), 4ssume © e [a,l-a] for same

0 ¢ e < jg. Conaider the two-point pricr pubtting probability %
each at ¢ and 1-a. We estinate the mean © . The Bayes eshimale
6,(x} of © for this pricr is given by

6,(0) = 2a(1.a)

[}l

1

5,(1) = a®s (1-2)% = 15, (0) cae(3.6)
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2 2
By definition, R(e,8,) =[ e-6,(c)] (1-6)+ [e-5,(1)] ¢

L (5 PT)
Straightforward calculation shows,
5 7(8,5,) = B [i@_aatx% {z_wmfo}%], vee(348)

8,(1) - 8,0}
6, (0)

where V8, (1) =

4dding +x and differentisting once more in (3.8), one has,

2

fgg R(8,8,) = 26,(0) [ 2-¥8 (O] > 0

§,(1)-8,(0)

it v5 (0) = ¢ 2
ﬁﬁ{D)
ire 46,(0) > 1
iff Ba{l-a) > 9
i 1 1
iff %> 2 > me ——
2 275 /2
Therefore, if @e [ o, 1-0] for :-'é-- _LE < el 1@, then the Bayes
2y

estimate 6,(X) given by (D.6) is pinimax for €. Roughly spesak-
ing, 8,(X) 1o minipax for & if © wvaries in any sub-interval of
[G-.M?, 0.853_| symetric about %. This example showsthat the
comrexity apgunent allows a falrly large subset of the natural papa.
neter apace [ 0,1].

Example 3. Tet Xe R [ eﬁ%nﬁ*%ﬂ and supposs @ ¢ [-a,a].

e conglder the case when a< 7} , and we estimate the nean 8.
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Ihe Bayes estinute 6,{x) against the prior with nass % gach ot

+a 1s given by

ﬁa(x} a if -a+3§<x<a+%
4
2]

0 it a«%gxg—a«h

1

1

- & if —am%{:}{{a—% lii(BIg)

R(6,6,) is comvex in 6 if O<aly amd 5,(X) has equal risk

at & a. Hemce, 6_(X) in (3.9) is ninimax for & if 6c [-a,a]]
where O < a ¢ 13 .

Curiously, for % < af %, the naxipun risk is no longer atiained
at + &, but at 0O. This indicates that if a so large that the
rigk function of 6 (X} cases o be comvex on [-a,s], Gthen the

two-point prior no longer Serves aur porpoSe.

fxample 4. In the previgus cxamples, some kind of symetry in the
underlying distributions was available and the wniforn prior on
the boundary worked. In this exanple, we actually find cat the
leastfavourable prior. Let Yo R(0,8) where 6 ¢ [a,b . We
egtinate 8.

The Bayes estinate 6 b (x) of o against a priocr that puts
R B |

masg n and 1- 7mat a and b respectively, is given by

5 x) = b if 0<x¢a
aghy b+ a(l~m

b if a<c<x <%t nit(311ﬂ)
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Gur fipst ztep is to find out the walue of . n that forces the risk

of 6, (X} at a cnd b to be equal.

!b‘l

By direct calculation, it turrs out that n eatisfies the relation

T _ §_ ‘
o .‘.‘/1; . ees{3a11)

Therefore, the estirmte in (3.10) reduces to

x)syab if o0<¢<xga

Oa,b
= b if a<¢x<b | vee{2.12)

Once again, etraightforward calculations give

2 .2
R(8,5, ) = 67— 2b8+ b7+ 2ab- 2a yAE « 2R=EB L. (3.93)
¥
02
d 2ab gD ver(3.414)

and therefore, [ggz R(B,ﬁa,h) s 2+ .

» ,
Ik follows from (3.14) that %gﬁ R{G,ﬁagb) >0 if a’x ab - b2_>~_ 0,

or equivalently, a »

Therefore, for a given b, the region of convexity is approximately

[ 0.62b,b_|, and for a given a, it is approximately, [a, 1.62a_].
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CHAFEER 2

ADMISSIELI. Y OF PCLYNOMIAL BSLiMATORS IN

2.1 Introduction

In Chapter 1, we considered the problem of finding minimax
estinates for certain parametyric functions when the 'natural’
paramehber space is restricted. In particular, results in Chapter 1
could be used to obtain ninimax estimates of E@(K) when % is
arn observation from & member of the cne-parameter exponential
family and @& warlies in a small compact sub-interwval of the
natural parameter space. In this chapter, we consider the problenm
of finding admisaible estimates of parametric funchions more
general than the nwan, in a one-parameter exponential fanily, when

6 varies in bhe entire natural parameter Space.

Let the distribution of X admit a density function plx,w) =

B (wye"™ dth respect to Some o.Tinibke measuore #  on bthe real line.
w represcuwte a typical point in the natwal psraneler space

£ =%_W T e"™ an(x) ﬁ*m} « It is well xnowm that () is an
interval (w,), vhich may be finite or infinite. #lso #(w) =

B () = - B'(w)/B(w) in the interior of ()} and E,&) is an
increasing functicn of w. In fact, &' (w) = Vap (X} > 0.

Karlin (58) considered the problem of finding linear admisaible

egstimates of the form f%T (for A 2 0) for the mean of X, under
X

squared-error loss. I% was shown by Karlin (58} that e isg
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admissible for olw)y if

o

E’-l (widw = = = B“}L(w)ﬂw eealTal)

2. 0= 2
15 =

for w<a,b v,

Many interesting admissibility pcsulbs for the ™ contraction™
linear estimates Tollowed from Karlin (58). Karlin conjcetured

that his conditions (1.1} arc also neccasary for the adpissibility
of i%T « Although this guestion has bheen answered to soame extent
gubsequently [ Joshi (69 ), Morton and Raghavachari ( 66), Johnstone
( 81)], in its full generality the question raised by Karlin still
revains open. Since then, many people have obbained generalizatlons
of Karlin's pesult in several dirsctions. By using the Rac - Cramer
inequality, Ping (64) obtained safficient comditions for admissibi-
lity of =X+ b Tor estimating the mean. 2Zidek (70) addressed the
rroblem of finding sufficient conditions for the admissibility of X
when the parametric function is any arbitrary piece-wlse conbinuous
function Y {w). Ghosh and Meeden (77} later used Karlin's arguent,
to find admissible estinates of the form aX+ b for estimatlng the

same parametric functions as Zidek's.

An essential step in Karlin's arpgument is the derivakion of a prior
1{w) ‘through a differential equation. The works following Karlin
(58) concentrate on finding enly linear admisaible estimates of

various parametric functions. Somebines it goes against inbtuition

to vso linear estimates Tor parameiric functions which are highly
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non-linear . Mot unexpectedly, there are interesting parametric
functions in importoss digtributions foo which no linear eshimatc
satisfies the known sufficient conditions of adnissibility, and
perhaps for which no linear admissible estinates exist. In this
chapbeor, we have conaidered the problen of finding polynonial
adnissible estinates using XKarlin's argument. Howewver, 1t beccomes
eXtremely difficult ko derive the form of the pricr if the para-
nebric functions to be estinated arc as general ag Zidek's, In

what follows, we have practically restricted attention bo parametric
functions of the farm ¥ (W) = GHEWIXE)+.,,+G1EW(K). However, in
nany important nembers of the one-~paranmeter eXponential fanily, this
class includes interesting parametric functions, including Var (X),
Example 4 in Section 2.4 conaiders a different type of paranetric

function.

In Section 2,2, we derive the fornm of the prior. Nexk, in
Seetion 2,3, explicit sufficient conditions are obtalned for the
adnissibility of cstimates of the form 6 (X) = a +aXe..uva X7,
The technique nsed is Kerlin*s. The main resuolt is stabed for
n=2, although exactly similar sufficient conditions can be written
down, by uging the same technigque, for any mli.e., n=3,4,4.. ete),

Finally, in 3ection 2.3, the result is applied to concrete examples.

2e2  Deprivation of the prior

Let

W) = o B ) eea (2
h(W) = EWCK} = B(W) n!(-lT}
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Using this notution,

B, (%) = h () + b ()

ard  E_ () = 07G0) + 3hODR G0 + B G cee(202)

Tet  Y(w) = ¢ h' () + oh(u) + coh™(w) ces(243)

be the paranetric function to be cstinated and
o 2

85Xy =a, + aX + a)X een(224
its estimate.
Hote that J(w) 1s slightly more general than Y,(w) Iimiroduced
in Section 2.1
Iet 4G be a prior on () which is absolutely conbinucus with
respect to the Lebesgue measure on { )} and let n{w) dencte the
Radon-llikodyn derivotive.

If &5(X} were to be gencraliged Bayes with reapect to 4G, for
estimating ¥(w), tlun one has,

Xw ;
axy = ALGWeT” BOw) wlwidw (Becs @) <eal(2.5)

&V a(w) mlu)dw

where the integrals are over () = {w,W.
Let ﬂofw} =P (W), for we {J.
§(x) J ™V p‘O(w)dw = [ y(w)e™¥ P_Q(w}dw

=) (agxe +aX+ad] e*W po(’w)dw?j' YGw) ™¥ iﬁg(w}dw (aega dif)
'-i(g-ﬁ}
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Now, Tor w o< b g w, integrating by parts,

b ! b
[ e pé_(w)dw = [ exb noih) P Qg(a}j- -x &Y pafw)dw
a a
til{Ei?)
b H *=h ]
Sinilerly, Exw‘pg(w}ﬁw = [ g* pﬂ(b)-exa p;(a}]
xb _xa, 1
- X [ & pﬁ(b)-—e po(a}]
) b = o
+ x5 Je™¥ pofw)dw- vss{2e8)
5

Hence, if the quantities [ex“ pafﬁ) - d pﬂ(}g)] and
[exw p;(ﬁ) _ ¥ p;(E)] are zero, then, Trom (2.6) one gets,

_ KW mp o Xw ¢ - ‘ 4% _
a, [e pﬂ{w)-fiw - a, Ie pm(w)dw +a lg pg(w)dw

= [ YO)e™Y ﬂgl‘:w)&w (aec. d4)
-un(zbg}

Using now the uniqueness property of the Iaplace transforn, one has,
azp;{w) - &, r}é{w) = {}'fw)-ag)r}a{w) for we {w,w
«es (2410)
It i clezr fram (P.10) that a solution to it for an srbitrary
Y(w) is very difficul® %o obtain if a, # 0, 1l.c., estimales are
non-lineayr. In view of the specific form of Y{w) under cansidera-
tion, we suggest the "irilal sclution” given by

ﬂj“*‘dgifh(W)ﬁw

p (w) = e vea(2411)
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where h{w) can be taken as any differentiable function, not
necesaarily the mear, [ hlwldw is to be interpreted as a primitive,

and d,,d, are two constants to be sultably chosen latar.
(ne therefore has,

(3¢ 4h00) o (W)

H

ﬂ;(w)

H

and ey = [ @y apo) Te ap (] o () (e (2412)

Hence, Trom (2,710) and (2.,712), one geta
a(ﬂ2+2ﬂd *ﬁE'E)*rafi ' _a,(a, +d Y+ =¢ "E+Gh+c h.
ptdy+ 20qdph s Ao A —ayldyrdh)ra = cimsehre,

»2e(2213)

wvhore the variable 'w' has been suppressed.
Clearly,
2 . - ‘ | 2 o
afds-Cp = 0y 22,044, adp=cq = 0, 8 df-a48y+8, = 0,
azdgm Gﬂ ) ‘D" l-i(i?l14)

are sufficient for pD(w) given by (2.11) to be a solution to (2.10).
Henceforth, we shall refer to the systenm of equatlons (2.14) as the

‘consistoncy conditions'.

243 Finding aﬂmissiblﬂ egbtimates :_the m;:ain resuld

Theoren 2.3.1 Tet X have a density given by plx,w) = ¥ B(w),
wvith respect to some o-finite nmeasure # on the real-line. ILet
{3 m{ w i ™Y au(x) ¢ m} denate the natwral parameter space.
Conamider any differentiabie function h(w) on () . Let
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Yw) = egh‘?(w) + cqhy (W) + eDh’(w}, where ©_,0q,¢C, are any
fixed constanka., Io:

dqw+ 45 Thiw) dw
o, (w) = e .

where dy,d, # 0 are some constanta., ILet =n(w) = 3= () IR
e _ 2 . .

we (). Let 6F) =aX"+aX+a , where & , 2,2, are real

nmbers. Suppose & , &q, 85, dy, d, subject to the consistency

corditions (2.14) are such that

W R N -
1) | 7' (w7 (wdw s = Tor w< b w
b

Q
and  (11) T (@) £ G0aw == for w< o < W, vee(Gel)
M

where f{w) is as in (3.10). Then &6(X} 1s an admissible estimator

of XY{w), under squared - error loss.

Proof © BSuppose 5(X) is not admissible. Then there sxists

angther estimator & (X) such that
Ew(a"' (X) - )*(w))2 £ E (8(X)- YT ¥ owoe ), see(3e2)

with strict inequality for at least one 'w' . (3.2) can be
rewritten as
P8 () - y0a))® &Y ptaan(x) ¢ TGy &V Gy astx)
¥we (2
<=> [(8" (x)=6(x))° &™VP (wdau (x)

€ 2I(BE) -6  (X))(6() - YW ¥ wasx) Fwe (), «.(3.3
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Hence, for (a,b) (C (u, W),
b 2 |
afiL f[a' (x) - a(x):[ &Y p (w)d.ﬁfx(x)} () dw

b
<2 ”L 105(x) = 8" (D) (5(x) - y(w)) & ﬂ(w)amm} x (w)aw
21

b
= 2 I[ﬁ(x) - &' {x)]{a{_ [5 (x} = }’fw)] i oy (w)dw} delx)
i.’(3'4)
on interchanging the order of imtegration.

The inner integral on the RHS of (3.4) is

b .
I8¢ - Y €Y o (w)dw
a

n

b b _
(az.xg + A ac) a.F_ Cd pp(w)ﬂwﬁi ]:ﬂgflg(w) + cqh(w) + cuh“ (wi] X
S pg(w)dw eas{3e5)

b b b

_ Xw e Xw ot Ca Xw :

= a, a_r e pa(w)ﬁw»—- i I @ pD(w)dw* a, {a nmiw}dw
, & a

~a, [ "7 o! (b) - ™2 pr(a)] + azx [ &P o () - &*® o (a)]

v a, !: exb pg(b)-— <2 pgia)]

b
- I Leh®w) « oghw) « ¢ ' ()] o G)aw vee(346)
a

(using (2,7) and (2.8))
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b " . _
e [af+ 22,d,nG0) - a5h° () + ah" 0] &Y o_(w)aw
b

b
- &y a..r' Eﬂ1 + th(wJ:[ &V Fg‘(w}dw+ a_ aj_exw ﬂﬂ(w)dw

b )
I Ecghziw) * f:1h(w) + cﬁh‘r (w)] v pﬂfw)dw
. ]

e® ey (b) [:azx+ 8y -8, TNaEdgh(h}:! _

4+

% o (a) [ax+a,-ad, -adna)] (327

(using (2,12))

= I E(a a2 _a1d1+a } o+ (2& dyd,-a,d,- 0y Yhiw} + {(a ﬂ -C )h (w}
+ {afdy-c )n" (0] e o ()dw
« 5P p_(b) Eui}:-ﬁv a4 ujh(h)j _ o8 0, (a) Coqzro,e “511(3)], ce(348)
(vhere @, =&a,,0d, - a4 «35d,, 435 aqis) .

C A4 + Gy ¥ “3h(b3 7 dd poib}— E"*-;x* s+ 45h(a) ] L8 po(a)*
""(3 ‘9}
using the consistency conditions (2,14).
Setting T(w) = I [ 6(x)~6"()]%™ plwantx),

one has, from (3.4),

b '~
JTOORlw)dw ¢ K [ J TBITLE) « v TLlby 2lb) + /mla)T(a) .u@{a}n(a}]
a .

by Cauchy-Schwartz's inequality,
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where K is a constamh, and

. . - 2

£(0) = B (aX v epv an(w))e, ces(3.10)
The proof now follows in the lines of Xarlin {58).

Remarks on Theorem 3#2;1

1. The proof of Theorem 2.,3.1 depends heavily on the "matching
procedure' and the consistency confitions obtained thereof in (2.14).
To show that the technique of proof works for any general m, we
ebserve that the same matching pracedure as in (2,14) can be carricd
ot for every m 2> 1. For an arbitrary m 2> 1, the fundamental
differential equation amalogous to (2.10) would involve in the IHS
{3)

fuctions fp for Jj = 1,2,ues,m+ 4 careful anmalysis shows
that aéj}fpu can be expressed as the jth moment of a certaln
digtribution whose first j cumulanta ape dy +doky, , dgkg,...,djkj
respectively, where k;'s arc cumulants of X. BSince () is

& lirear combinabtior of the rew moments, the matching procedure can
be carried out using the well-known relations between maments and
cunulants, and theoretically, the consistency conditions analogous
to (2.14) can be written down, although algebraically it becomes
difficult with increasing m, For ms=3, }B(W)-c h' (w)*-c h () +
¢ 5h 2wy e h3(w}i-c4h(w)h (w}+ cgh’ "(w), and 65 (X) = agﬁjﬁ-a?i

al+a o+ bhe consistency conditions are

8.3&3 * 3'5 =0

. 42 2 _
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L2 _

. aad? +agfdy - ady +a, =0
- 353d1ﬂ2 + agdz - cD = 0
383&5%-94 = 0
azd, + og = 0 G
-ﬁn application is provided in Section Z.4.

2. In applications, if h(w) = E_(X), then h,h', and K aoften
are linearly rclated, and the consisterncy comditions (2,14) can be
rewritten so that effectively the numbar of independent cquations
reduces and a larger class of admissible estimates can bo cbbaineda

2« If hiw) is taken as w in Theorem 2.3.1, Y(w) becomes a
polynemial in w for a general m. However, in all the standard
ong-parameter exponential seh - ups, ineluding the important normal
case, 7m(w) in this situabion becomes proper and cur theorcm yiglds

only propor Bayes admissible sstimibors.

4. Tor a8 complehely arbitrury piecc-wise conbinuous Y(w),
Theorem 24341 does not provide any polynomial admissible cstimates,
The result of Ghosh and Meeden (77), however, follows from
Theorem 2.3.1 on taking a, =0, cymec =0, 04 =1, Differentia-
bility of h{w} is not neccessary now as the coefficiont of h'(w)
is taken as 0. Also, as f(w) turns out to be a constamt, (3.1)
reduces exactly to the condition of Chosh and Meeden (77).
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5+ Theorem 2.3.1 can also be used to generate & class of
parametric functions for which a given polynomial in X is admise
sible. Bach such Y(w) 1s cbkained by choosing the c;'s ina
wiy that they satisfy the censistency conditions (2,74) and the
divergence requirements (3.1).
2«4 Exumples In this section, we use Theorem 2.3.71 bo find
polynomial admissible estimcies of varions parametric functions in

gome importont one-parameter exponcntizl set - ups.
Exagple 1 It X mv Poisson (e¥), - = ¢ w < =,

(a) Consider Y(w) =1, e™¥ . by e”, vuhere by , by are real
| numbers.
Therefore, ¥Y(w) = cghsz) + cqhlw) + -I::Dh'(w), with h{w) = &¥,

ﬂ2=b2, and cﬁ*’c-i:b.l.
Therefore, the consistency conditlons (2,14) reduce to

ﬂzdg - by = U
22,418, - 84d, + agd, - by = 0

2
agd_l. - a1d1 + 2':10 = 0 . -ai{4c1)

dpw+de” dyw+ (1+d )e"

In this case, %(wJ = g ==> nlw) = e g ==l Wl o,

Algo, T(w} defined in (3.10) is the mean of & quadpabic in X, and

therefore,

£(w) = ae°¥+ be¥+ ¢ for some constants a,b,C .
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A= (1 agle“"

Now, 1616 = & = - — e Ll WD .o
ag "+ be +cC

Q=

—> 0w gy w=> e, ..{4.2)

it 61 - G, and 14'§2< 0.

It is infcresting to note that f{w) does not play any role
in the divergence of f:ftmdf“1{w)dw‘ The same phenomenon ceewrs so
long ag f{(w) is the mcan of any polynomial in X.

Now, algo note that if 4, = 0, =nlw) —>1 ag w —> -+, implying
n i8 improper. 4Also (4.2)guarantees the divergence conditions of

Theorem 2.3.1 are satisfied,

Since dy = 0, (4.1} reduces to

ao = 0 ..-(415}
N b2 b1 _ P2 B (444)
==> A, & s3lso By B Qn = 57— = =5 - 5 a sraliire
2 E‘g ; y Bq 2 " &, Eg d,

2.2 B -

Hence, &6(X) = E.E X% s (=5 - am)}i is an adpissible estimator
a 2
e 2

2w

of Ylw} = b, e™ + biew for every @, < -1.

In particular, when by, = 1, by = 0, J(w) = eV o Ew{}i(}iu'l}} .
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it follows bGhot a(“.r‘.ig +X) is admissible for ezw Tor every G<ad 1.
It is Imown from Ghe.a and Meeden (77) that the linear cgbimdtc X

is adnissible for o°¥.

(b) We row give an example in the Polsson distribution when
m =3, and uge the consistency conditions (3.11) in Remdrk 1 ta
obtain nen-lincoy admissiblc estimttes of -e}“r = EW{I‘ZH—T) {K—E)}.

W

iz before, writing h(w) = e', and identifying Y(w) as

)‘5 (w} = cgh' {w) « c?h(‘w} + thE(w) + c3h3 (w) + c4h(w)h" (w) + c5hﬂ(w},

vhere ¢4+ ey = 0, C4 +c5+ca=0, cﬁz‘l,
(3.11) reduces to
aﬁ =
5361?_, zi~]
3&5d§ - E&.Edg =
a4y + 57, - 8., = 0. sns(445)

Ag befu-re, if d, =0 and 1*{14, < 0, w{w} is improper and the
conditions of Theoren 2.3.7 are satisfied, since f£{w) remains the
mean of a palynomial in X. While writing (4.5) wsing (G.11), 4
has been got equal Lo 0.

Now, from (4.3),

; - - = a 1 [ 5], £ ) =
a.g-ﬁa,i,a,]uéai,a}u—-¥<1(a.a dy < -1, a =0
2 --:(4-6)
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o e, .
Hence, &6(7) = a(X? + 3X° + ZK) is an adnissible estimatar of
B, EL:{ (}(—1)(3{—-2)} for every 0 € a < 1,

Example 2
Let X~ Bin (n, =), ~w= < w =,
tTve"

W

Lot hiw) = waK} = ?ﬂ = weabldaT)
Ll
2
Then h‘ (W} = ?arw()(] = h{‘ﬂ*) - b"‘}%‘hﬂ' t-i("q‘is)

et Y(w) = ?ar'w(l’i) = h' (w).

From (4.B) 1t follows that Y{w) can be written in the fornm

2' d BOF
Yo =B Go) , mh(w) | Ok () , Tor 0<6<1. een(1.9)
n+ & n+43 n+>5

oW n{1 + dg}

in this CJSQ‘ TE(W) -2 L * (1 + Gw) tt-{‘!l--i{j)

T (w), being the mear of a quadratic in X%, is given by

W W
£(w) = al-fm)® 4 p E— 4 o, cee{211)
T+ew 1+ew

for some constants a,b,c

Hence, froum (4,70) and (4.11)

Gyt (w) = = o (deg’) — ey % 48 W =) moc

—b 08y W e

iii(4ﬂ12}
if we let dq =0, T+d, < 0.
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Also, from (4.10) it is clear that =W —> 1 as w—> = =80
that © ias improper. (4.12) on the othur hand shows the conditions
of Theorem Z.7.1 hold.

Using (4.9), the consistoncy conditicns boil down to

L qe _ 1 _ B S - S 5
agdg ] m, agdg - ‘“-_n+-'5. » 31(12 - n'*'& ¥ ?40 G‘ I"(4‘13}

Hence, from (4,13}, d,=- L1 (as o0¢6¢ 1}, as is required

5
in (4.12).

(4413} now gives

= _ nd 0 1A
B =~ B %1 T b vee(4e14)
; 52 . nd
Therefore, G(K) = = = & 4 -ﬁ-;—g}s:
_ & 2
= mﬁﬂ‘&)

i3 an admissibic estimator of ﬁr“arw(}i) fopr every 0< 8 ¢ 1,

It may be mentioned in this regard that no lincar cstinate satis-
fies the oufficicnt conditions of Ghosh und Meeden (77) if mrwm)
is to be estimted.

Exanpl
Tet X have the Negotive Binonisl distribution given by

PW(KEX} = ’(r+§—1)prqx , X20,1,2,40s,r> 1 komwn, C<p<T.

To express it in the shandapd one-paramcter exponcndial sch up,
we equivalontly write X~ NB(2Y), - =<w<0.
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W
L'at' h(‘” - EW(X} = r G_- ---(‘1!15)
1-¢w
, W oo
then B'(w) = Var, (X) = LS8 = n(y) » 2200 BNERTS

We egtimate Ylw) = Tfarwﬂf} = h'(w}.

Hence, using (4.16),

YG) = cph” (W) + oqh(w) + o b’ G
c’] by ) ¥
= (o, - ?}h (w) + (g + cﬁ}h (w) sea{Aa17}
€1
where Co~-F =0, ¢pre, =1,
dyw -r(1+4d,)
HGI‘G, TE(W} = O 1 . (1 e E}w} 2 -.--(4.18)

As in the previous examples, f{w) 1ia the mean of a quadratic in

K, say,
W W o
f(W} - &»rc S bs I8 + O _"‘E .“""‘"“Ee -+ & i-i("iljg}
1-¢¥ (1-¢") 2 (1-2")
From {4.18) and (4.19),
wr(1+ﬂ2) e—d.l.w
el < U= c -
W w 2w
re 2 re
ol + b E—-——7 + S+ a
e’ (1ee") (1-¢") "
—% % BB W mon gy
A -l
T W) ) dua —> = 4g wﬂ-m} 0, ese(4420)

b
W
if dy =0, and r(1+d;)+3< 0.


http://www.cvisiontech.com

- 28 -

From (4.17), the consigiency conditions determining the coeffi-
clents a,, 84,8, ore

u1ﬁ2
T

.2
&12(12 + = {:}‘ azag—aaldz - 1, {10 = 'D ."{;41.‘21)

From (4.21), anc has,

“q
1

Lig - 'I‘ﬂ-?_

XL
dy

« 1) =

e
= - LTQrdE

o= GT = = ?fgﬁg A
ooe{ds22)

. .(.I']..Ej)

From (4.22) and {4.23) we have,

5(X) = aEKE -~ 24X is adnissible for vaerK) for overy

0 < asX TE:T%%F:?T’ 0 <2y ¥ ;ETi

Exanple 4

In all the preceding exapples hiw) was taken as EWCK) and
d, as 0, olthough in the proof of the theorem, h(w) can be taken
ag any difforentiable function:d In this exunple, these conditions

fre ronmoyed .

W
Let Xm Bin(n, =), ~=<wl=,
l+e
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Let Y(u = ¢“(i.c., we are now estimating the odds g_ of heads
agoinst tails).
Lot h(w) = e¥/%, Y{w) can then bc written as
YG) = %)+ eqhln) ¢ e on’ (W),
vhere o, =1, ¢qre /2 =0 | seal4e24)
w/e
] (1+QW‘)H ) ngg & .
H(?.TC, ml{w) = — «ea{fa25)

wa&
if we Lot dy = - 5.
Note that w(w) —> = as w—> - =, 5o that 7(w) dis an impro-
Per prior.
Alasg, by definition,

T {w)

Ew(aéiaaagdz EW;E}E (if we choose 2,8, 80 Ehath

. : Sw/2
L 1.eM? T (hey? T 14 o7 <
2
a5 e
= a W 2 [(Il'i" dz) C + (I’l * 2@.?) 2 o+ dE 3"4'
+
- 2nd, ¥/ _ 2, &7¥/2 ]
a5 e” w/ Sw/2 P2
hﬂﬂDm@JME+m+%k-Med ﬂ
(1+e") 2 2 o

t-‘u{‘ﬁugﬁ)
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Hence, from (4.25) and (4.26},

5 _Ednewfg
et - e c ‘
51.2 e (1+ew)n [(nslrﬁg}« 2nd Ebwfé* I(1’.1. +2d )G

_ 2nd w2 dE’EEw']

L=

w/e

—" A w-———-i}im ,,,-(.1‘].,27}
if dE< O s
{(4,27) ensures that the divergence conditions of Theoren 2.3.1 arc
satiafiecd,
From {4424}, the consistency cohditions reduce ta

2

agdé 1

¥
- 3262 + agdzfﬁ + ungJE = 0,
‘12;{1 -~ agfil +* ao = 0 ---(4;25)

(since aq + a,/2 wia taken as 0 in {A.26))

In (4.28}) the last two consistency conmditions are autonabically

satigfied if am & O

Hemoe, 6(X) = a(Z® 1 X) is adnissidle for Y() = ¥, for
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CHAFTER 3

ADMISSIRITIITY OF GENERALIZED BAYES &MD PITMAN ESIIMATES
1 THE NQN.REGULAR FAMILY

3.1 Introduction

In Chapier 2, it was ghown how K2rlin's technique can Lo
exploited to obtoin adriscsible cgbincbes of many paranchric func-
tions in the one-poramcter regular exponentiol family. In this
chaphter we sholl consider in detail the gquegtion of finding adnis-
sible estimetcos for a fairly general class of paranetric functions
in the so called “"non-regulor™ type of densitics. Ieckt X have o
density (with rospuect to Iebesgue measure) of the form p(x,w) =
rx)glw), where w< x ¢ w, and w ¢ (w, W), which may be an
infindite interval. It is clear that the support of pix,w) depends
on w, and in fact P &K < w) =1, for all w e (g, W. It is well
known that q(w) is o nonotone decreasing functicn of w and

a(w) ==. Also, q(x) has a derivative, and z(x) = - q' (X)/q &),

If X,,..0p%, are iid with o uniform digtribution on [0,w],

then K(n) y the maxinmm of Xi,.. ":{n .

I1tas sanpling digtrioution is of the form gtated in the preccding

ig sufficient for w, and

paragrarh. Prinarily with the cobjective of estimating ‘w' on the
basis of a linecr cgtimate YJX (n) » Korlin {58} considered the

froblen of finding a %emevoladmissible eskinmabe of g {(w) for
e > 0, ond showed thok go+1 q'ﬁ‘{}i}, the best estincbor of g {w)

o+

of the form ¥.g~ (X}, is odnmissible for q ©(w), for overy o > O.
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Karlin, however, 4id not oddress the problen of Tinding an adnissible
gegtinate for more goeucral mrapetric fancticns, like the noan., 1t is
quite eagy to see that the nean is & nonotone funciion of the paprue-
neter ‘'w', just like Korlin's pardnetric functions are. In fact,
guantiles and all noneniés of & nonereguwlar density cre nonctone func-
ticns of w. Question arises if it i not possible fo find adnissi-
ble estinates for all these paranetric fuwwritions. It hiia been shown
in this chapter that Xarlin's technique of finding admissible estli-
nates is guite genercl, and for nonctone increasing (decreasing)
funetions of w, which are alsc non-negative, Karlin's argment gives
us gufficient conditions for adnissibiiity of geoneralized Bayesg
cogtimatea,

It wis poinbed ouwb in Chopier 2 that deriving the form of 4
erucial pricr io on cosential step of Korlin's analysis. Towards
this end, if hi(w) is any non-negative increasing funciion of w,
we have considered (possibly improper) priors of the forn
() = h' (W (h(u)) /alw), where £ is 2 non-negasive function
defined on the range of h. Since h is monobone, it is alnost
everywhore differentiable. For the sake of sinplicity, we have
assuned that h'(w) oxists everywhere. The prior under considera-
tion hag been assumed absolutely continuous, with the denalty
deseribed above. Throughout we work cn squared-error loss.

In the following scctions, 6,{x) will stand for the generde
lized Bayes estinabe of h(w) with pespect to the priar *,(w}.

It is casy te see that 5f(x} takes the forn
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hiw) h (i)
6. = uf (2)au / [ f(da cea(1a1)
hix) h{x)

Fron (1.1Y it is elear that coptain integrability condidicns would
heve to be impesed on T for 68,(x) being well defined. Pubt for
this, T is guite gomeral. Sufficient conditicens on I are
derived for ©6,(X) %o be adnissible.

if, in purticulzr, f(u) = o g > 0, is considered, then

(1.1) reduces to B,0x) = h(x)}. For cbvicus reasons, we hive

i%

called these " substituticon estimates ™. To get an insight into
the more general problem when f  is any non-negabtive function ,
in Sectign 3.2 we have derived sufficient conditions for the adai-
gaibility of "™ substitution cstimates ™ for a non-negative increas-
ing fumction. In purticular, the result of Karlin (58) follows
from this. Theoren %.2.1 18 a special casce of Theoren 3.2.1 in the

next section.

In Section 3.5, we have dealt with the problem of finding
sufficient conditions on £ for 8, to be udmisaible, when h2 0
and incressing. Sufficient conditiuns on f can be cbbained in

the same spirit when h > 0 and decreasing.

Finally, in Section 3.4, we have considered the problen of
estinating loug g{w). This is also a ¢ifferentiable nonotone
function of w, but not neccssarily non-negotive., 1F has been
proved that log q(X) -1, the Pitman estinate of log alw), is an

adrissible .estinote. An application has been made to the catination
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of the rmean of o fruncated exponentizl,

342 Adnigeibility of substitution gstinates

Theorem 5.2,1 Lot X have a density of the forn

plx,w)

rixlalw) , w<x v,
= 0 cbhervise , reel2a1)
vhere w e (W, W.

Iet h(w) ©be any non-negebive increasing function of w, everywhere

differentiable. BSuppose h{Ww) = 1in hiw) ==.
W W

If there exigta an & > 0 such that

a
iy 7 h“(w)he_gfw)q_{w]&W'

W ]
v o 5

i) B GRTT D) qeddw = @ vre{242)
b

for we<a,b< w,
then 6(x) = lz-*"’- h(x) iz an adnissible estinmate of hiw).

Iroef . The proof closcly resenbles that of Karlin (58),

If 8() is not adniseible, there exists ancther estinmator
5 (X) such that

B, L6 ®-n61°¢ 5, [ o6 -nel” ¥we @,

{ gtrict inequality for ot least onc  w)
'-.(2'3)
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(2.3} can be rewritten as

g [‘_‘s*(x)_h(w}jgr(x}q{w}axi5 Catx) - hw) % » () lwax

W M ¥we (W, W
W 5 W

(=5 S [6' x)- 6607 rx)qwidxg 2 i [Bx) -8 )] [ 6&) - h()]X
W W

—

r{x)g{w)dx ¥ we (y, W)

see(2ed)

Therefore, 4f ®{w) is any prior on {(w, W), and w<a<b<%, then
{2.4) inplies

bw
[ 06" - 61 r a6 Gaxau

W

h 3
<2 § [ 5 (-0867 D66 -n6n] realdntnaxdy
vee(245)

|£"""_! 34

Interchanging the orvor of integration, we have,

RHS of (2.5}

b b
= 2 f [6x)-8" (x)] r(x){ i C8G) - nGw)] q(w)ﬁ(w)dw} dax

a
£ b ‘ N

+ [ Do -6" 0] r(x){S (76 (x) ~ n(w) ] g nGddud ax
W o O

- ‘ ii"(‘?'&)

becduse if w < x £ 4, then & = max(x,a) ¢ w b, and if a<{x{Db,

then ¥ = nax(x,a) { w £ b.
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In (2.6), write

b b )
i [6G) - 6" ()] r(x}{ ﬁ [5(x) = h(w)] q(w)ﬂ(w)dw} ax

h .
| st - 8" 0T 200 § [660-n6w] q(w)ﬂﬁw)ﬁwg ax
X

e

U
e — s

2

. b _
- g Cox) - 6" ()] r(xj{ { Cot)-nGwy] q(w)ﬁ(w)ﬁw} X eea(2.T)
X '

s

Therefore, conbining (2.5), (2.6), and (2.7}, one has,

b ow
5 L8 ()~ S(K)jzrﬁx)q(w)ﬁfw}ﬂdw
4 W

js] b
£2 l: L C6G) -6 (x)] r(x){ § [5(x)-nhw)] q(w)n{w]dw} ax
i X
a a
- 1§ Co(x)- 6" (x)] r(x){f [6&)-n{w)] q(.w)fz{w)dw} dx:l ees(2.8)
L X ;

Hote that till (2.8), 5(x), 6 (x), h(w), n(w) have been canpletely
arbitrary, and the hypothesis of this theoren has nob been used.

Now consider the Tirst tern on the RHS of (2.8). The inner integral

in this term is

b
{ [o0-neT abin(an = 40 () cee(2.9)

How use the forn of the prior #(w) = h' (WL {h(w))/q(w) introduced

in Section 3.1. Since f(uw is taken as f(u) = u""‘?'a, u» 0, &> 0,
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one has,
t .-2“6
T{(W} = h (w;‘?wi (El ¥ W e {E' 1_"7) ---(-E¢10)
b o, b ~e
How g (x) = D A ) I (O LI _.j‘ h' G (wddw
3 .

L

{; hix) Eh‘"j“{‘(x) -h "1“(1:):] I:h'E(b} -h" % (x)]
- *1_
ﬂnzlgl,_ h(x) “____iﬁi

ﬂh‘thl [1“%%}] | v en(2,11)

Since h 1is non-megative and increasing, fran (2.11) it follows
that

!

(x) ¢ (D) vee(2412)

Sinilarly the immer Integral in the second tern of the RIS of
(2.8) has the bourd

0< b, ) € b (a) vre(2,13)

- £

Hernce, from (2.8},
b

o' (x) - 56007 » () q () (w)dxaw

m fr

R

a -
| 86 = 6" ) r(x) BS(b)ax + § [60x) - 6* (x) |rcx)n“*-‘ca)ax]
1
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1,

> 12 , b o
.u E [: S lﬁﬁcJ_'a'(XJl-r(x)dx}in j r(x)ﬂx};ﬁ h‘ﬂtb}
MH N \
; 2 . 1“;
+ ¢ 3 !5(3'3{)—-5'{35)1 I‘(X)dx‘% { g r(}:)ﬁx 2 Ho E:( J] 2D
3NH ¥ j
defining ) = § 18(x) - 8" 31" r(x)glw)ax, for we (w,w),
W

(2.14) gives

b .
{ T n(w)aw ¢ K [ m/ ot (0YhE=2 (p)a(b)
a y

N m/ﬁ (a)h*~°(a)a(a) ]

0-1(2'15)

b 142 _
( in (2.14), note "that{ { rGodaxi = —-al-- , and fhen nultiply and
o _ #/qTD)

divide by #n(b) and use (2.10) ).

Proceeding now ag in Karlin (58), the proof is conplete,

A major consequence of Theoren 3.2.1 is the resuli of Karlin

1.
(58). Taking h(w) =

4" (w), and ¢ ={a+l/a, one has

i ¥ v f
{ 0" o e wawe - ”’i‘« L v = as ql) ==,

similarly, § h' (OB 2()a(w)dw =« if q(@) =
b

Hence, &8(x) = —% h{x) = %% g""(X) is an adnissible estinator

of q'a (w).
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2o I zhe conbext of Thooren 3.2.1, we recall & sinilar resuls
due to Sinhu, Ghosh, and Banerjec (7B) that if X is a diserete
variable with a D.a.f. $(x,8) = a(@r(x)> 0 for == 4,d+1,...,8 ,
where & (I =g‘ﬁi,d+1,...l( for sone - = ¢ d < = then g{X) is
adrisaible for :g(ﬁ), whero g is any neasurable - funchian.

3. The " cub-off ™ point w is itself an interesting puranctric
function. Theorerl2.1 shows that if &wa_zq(w)ﬂw is o~ on both

the tails, then LE.& e XL ip an adnlissible estinator of wa

4. In a gereral non-regular density, the mean of X i glven 39

W
ni{w) = Ew(}‘{:l = w—qlw) S EIJGT dx ,
o

it w is taken as 0. Because of this conplicated form, It is
difficult to obtain a general admisaible estinale of the
nean fron Theoren 3«2.1.

W
However, denoting g Ei%T ax by I(w), it follows that if

either lininf g (w)I{w) and 1in inf o (w)I(w) are positive, and
W W W—> W

q{w) = 0, or if ILinsup qE(w}I (w) and linsup quw)l (w) arc finite,
W W W W

Fe Y —
‘ W

and S qlw)dw = = ={} q{w)dw, then %'Tmi)ia in general adnissible
W

for E_(X). FWote that for the R(0,w) distributlon, beth these
conditions are satisfied. Also, the candition that qg(wll (w) tends
to & non-gerc finite linit can be rewritten as w-niw) = Ofm) as

w"’""> E,?\F-
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5. Fur the special case hiw) = q77(w), if one takes an
observation X froo the distribution of m&x(,,. +,X ) where
yyeeen, X, forn a randn;??‘f-]ég the opiginal density p(x,w) =
r{xda(w){(x{ w), ‘then a new nudtiple of h{X) continues to be
adnissible for hiw), i.e., if-je > 0 is such thab
Eh’ (WhE"2(w)q(n)aw = = at the two tails, one can find ancthor

aa;u-E n
{wig (w)dw = = at the fwo taily,

eq >0 s;uc%; that 'h'(w}h
+e
and herce -Ell WX} is adnissible Tor h{w)e

Exanple
We now glve an application of Theooren 2.2.7 in the eshbination
of quantiles in & specific distribution. In the inpportant rectangu-

lar and truncabted exponential distributions, the guaniiles arc

glther nuitiples or ghifts of wa
1
log(t+w)

Let X be ag in Thecron F.2.1 with qw) = y D€ ween,

We estinate clLe paranetric funckions h(w) = (1+)P) 0<p¢ 1,
which, buot for a constant, arc the quantiles of the distridbulion of
£. HNote uhat,

a
1 dw

a
§ h' {w}hﬂ"g(w)q(w}ﬂw = {congtant) g (10210 +w)¥3(5"2) 1@:3(1%*::}

a
{constant) g (.‘l+w)p(g”1 )-1 m Aw
0

1

a
> (constant) £ %dw
o

[ Y E

1
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9

d
loghll+u v

: I _2
Also, c b WO g (w)dw

[

(constant) j‘ (14 PLE-T )1
b

IZO" £

1

Hence, Eiﬁ (1+X)¥  is an adnissible estinmator of (1+w)¥

it ple-1) 2 1, i.c., sgﬂli]l

545 Adnissibility of generalized Bayes cstinates.

We now proceed to obtain gufficient conditions for adnissi-
bility of generalized Bayeg estinates with respect Ho gencral priocrs
me(w) introduced in Section 3.1. Although {2.B) holds in general,
incqualities corresponding to (2.12) and {(2.13) require nore diffi-

cult argments Lemna 3.3.2 serves this puwrposcs Theoron 3.2.1

o

]
—_—

follows fron the follewing theoren by taking £{uw) = o ™7, = > ¢,
w2y 0.

Theoren 3.3.1. ILet X be as in Theoren 3.2.1. ITet h{uw) be any

non-negative inercasing function of w, everywhere differeniéiable.

Let f > 0 be defined on [ o,*) such that
h(i) h{W)

f{uldu and j u f{wdu arec finite for cvery a > 0.
3 A

Then the following is a sufficient condition for the adnissibility
of the gencralized Bayes cstinate ﬁf(x) for estinating hiw) 3

5
h' (ERGIIGG) 40 L . E R GEhGIa) 5, | (2.16)
(@) ,. h (W)

€1 !:J;E'fu.)ﬁr,l)rE ¥ o1 u:f'(u)tiu}z
h(w} h{ir)
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for w<d< o, < w.

We statc below & well known fact in the foym of a lomea to bo aub-

sequently used in the proof of Theoren 3.35.1.
5

LEE.‘TJ]_Z_}E 3 03 &21 Le‘ﬁ f 2! U 'ﬂ.ﬁ_}fil]{;ﬁ] 01t E D’m) 'be ERch fihil"ﬂ i ;f{u}du .

5 wt

S af (n)du  ape finite for every 0<6<=, Tet 0O<a<e he fixad.

0

;)

Let §(c) = g uf (w)du / T{wdu. Then ¢(c) increases with o
C C
for c < a,

Froof of Theorcn 3.3.1. 43 pointed out befure, (2.8) holds without

any change, 6§ denoting 55« Define

b
b = § L8060 - ntw] qnlwiav een(27)
L
h{w) - h(w) h(b) h(b)
Then, 4, (x) =(§ uf(u)du/ S t(a)du)y. ; T(wdu ~ I uf (w)da
h{x) hix) hix} h(x)

(using (1.1) and the form &f n{w) = mo{w))

h(i) R (i) B h (@)
= [ attwan-c ¢ atWaa /¢ rlwan). { £Wdn  ...(2.8)

h(b) h(x) " hi{x) (b

By Lemma 3.3.2, the facts that h(b) ) hi{x), and h,f are NON~YIE g

tive, I¥ foullows that
h{w)

0L ¢ | ur(wan .. 4£2,19)
h(b)


http://www.cvisiontech.com

- 43 «

Sirilarly, one has,

08 b ¢ §  ur(wau cee (24203

Hence, from (2.8},

5

by
L& G)-6G)] rx)alw) nlw)dxdw

£ g

h{w) a
< z[g 86 -6 G () ([ ur(wawax « | |8G) -8 () rx) X
M h(b) W
h(w)
( j uf(u}du}&{]
h(a)

ii-r(:;-}ﬁ?q}
Using Cauchy-Schwartz's inequality exactly as in (2,14), and
W
defining T(w) once again as { |5(x)-§°(x)§2 r{xia(w)dx , fur
W

we (w,w, the preu? is complete in the lines of Kaplin (58) and

Theorer 5.2.1.

Remaplkt ¢ Broadly in the sane spirit, the case when h is non
negative and decrsusing can also be handled. However, we do nob go

iﬂt@ it.

3.4 Adnissibility of the Pitnman estimate.

In this section, we consider the guestion of esbinating
loga(w) under squared—ervor loss. It is easy to sce thot  Logq(w)
is a location papancter for the distribution of loggq(X). Thore
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oxigts o best cetinste of loga{w) of the form logg{X) + C, and
it is given by &) = loga(¥) ~ 1. Once again, following Karlin's
#echrique, we have shown that 6(X) is an admissible estin.bor of

logg(w). &n application is subsequently nade.
Thegren 3.4.1. loga(¥)-1 is an adnissible estinator of logalw),
under squared-crror loss, provided q{W) = 0.

Proof  4s in (2.8), if 6(X) = logq(X)-1 is not adnissible, then
thepe oeXists ancgther estinator such that

b ow

2
( { Coto-s ] rxatwnnaxdw
a

W
<2[

a a | ~
- I [6(x)=6" ()] rG) {i T logalx) -1 - Lloga(w)_] q(w}ﬂ(w}dw}dx]
M x

-go(401>

b »
[66)-58"&x)] 1:-"(3{)/{L 5 T loga(x) - 1= Loga(w] qlw) E(w)dwkdx
X

|£L”ﬁwf

]
Taking nfw) = - W , we now proceed to sinplify the RHS of (4.1).

b
Note that g Llognu{x} -1 - logg{w)| a(w)n(w)dw
x

b
- | [1ogat) -1 1ogaGw)] o' (aw
X

b |
C toga(x) -1] [ alx)-q(®] + [ loga(w) « @' (wldw
X

1
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I}
b a6 - ae)]

X

= [ loga(®) -1 [a)-q®)] + qlw)legqlw)

= q(b) [logalb) - logalx)] ven(2.2)

E
L)

Sinilorly, g [logu(x) - 1« logg (w)] glw) tlw)dw
X

a(a) [loga(a) - Legg(x)] ces(243)

W
| 2
By letting T(w) = S [sx)-8" ()] rx)e(wax, and applying

—

Schwartz's inequality at (4.1), we now have,

b
3 T{w)n{wldw ¢ 2 [JI‘W m |log g*(-j-l r()ax) 2
& E

r- 2 1
. SEYE) . %t% (; [lagg{%lgr(x}ﬂx) fg]
M

1.

2
I‘{X)dx} 2 ] li'ﬁ(:;lq‘)

How, if x £ b, then 0 £ g{b) £ alx) => q(‘b§ 1.
X

(5-%-—}) € is unifornly

bournded by some constand M%(e), FiX ouch an e > O and call this

Hence, for cvery 0 ¢ & < 1, ilmg
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bound ME. A ginilar bound applies far |log E ; |E ( i )E .
qQLx
HEnce, Trom (4.4),
. b . 17
S Tlw) nlw)dw ¢ 2 [‘j OEON ﬂ___iil q0<X) dx}, c
1./ qt (b} W qr..,mi':(}t}
a
+ ST 11::7{ } 9, ax}fz
(a) g 4"

- a‘II ] T -g‘gﬂl + gL a 3 - . L -
= [‘fmtbhib} | ot (0) NAIE I.E% ] (445)

(since q(w) =« ).

a
Since f_°q('“" m_mwg '(” dw for w< a, b< &, the
W

rroof now follows in the lines of XKarlin (58).

Example
Iet X 'have che truncated cxporontial distribution with

- {x-w)

density p{x,w) = ¢ y ¥ 2 we Then logg(w) = w. Therefore,

by the preceding theoren X+1 iz an adrissible estinstor of w.
Remerks. 1. The adnissibility of the Pitnan estinate logq(X) - 1
in Theoren 3.4.1 under squared crror logSs probably also follows fron
Brown (66),

2.  Typically all the theorens in this chapter gou khrough with
sone obvious nodifications for the density &x,w) = r(x)qlw),
W>X>w, w<w<¥W. In fact, the exanple in Section 3.4 &a from

one such distribution.
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CHAFTER 4

ADMLSSTRLIITY AND INADMISSIRITITY 1IN THE
MULFLPAR AMETER EXPONENTIAL FPAMILY WITH
APPTICATIONS IN THE GAMMA DI STRIBUTLON

" 4.1 Introduction

In Chapters 2 and 3, we dealt with admiscsibility probleps
in one-parzmeter (eXponential and non-regular) families. In thls
chapter, we consider some aspects of admissibility in the multi-

parameter exponential family.

It follows Trom the result of Karlin (58) that if

XawB(eg,1), ~2¢ 8 <>, then X is admissible for & under

.
sguared - error loss. However, the nmatural estimate X ceases to
be 'ﬂﬁmisaihle for & under s of sguared - error losses if

X N (6,I) and p> 3. This was shown by Stein (55) and
formally by James and Stein {(60). Since then the 'Stein- cifect’
hés been found to be present in many non-normal podulations,
notably the Poisson and the Gamma distributions. A major brealk-
through an mulfiparameter admissibility was achieved by Stein when
he proved what is now popularly known as 'Stein’s identity's. 1t
wag then generalized by Hudson (78), Berger (80), and recenkly by
Hwang (81). The Stein-type identities reduce the differemce in
risk R(8, 6;)-R(8,6 ) of two estimates to the form E, [A ()],
where A (x) is a differential expression imvolving 65, 6,, and

their partial depivabives. If 51 could be so chosen Lhab
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Afx) < 0 for 21l x, it will then follow that 5, is inadmisoi-
ble. BSolving differendial inequalities thus play a vervy imporbant
role in mulbiparameter admissibility problems. Some very inportant
works on solving relevant differential inequalities were done by
Berger (BuU), Chosh and Papsian (BC), Brown (81). In this chapher
we use some of these tools to obtain inadmissibility rcesuliés in the
nultiparamcter exponential family.

Brown (71) showed that the admissibility of an estimate of
the multinormal mean can often be setbled by 'comparing' it with

the James - Stein estimate

5,0) = (1 - —5—>x, eea(141)

with ¢ = p-2,
Formally, Brown (71) showed that

(a) #n estimate &() of & is inadmissible i for some c< p-2,

and M>» 0,
o . . |
joq 202002 F B () Tor k] 2 M e (1.2)

(b) If 5(x) is a generalized Bayes cstimate of © with bounded
risk, then 6(x) is admissible if for ¢ = p-2, and some M> 0,

M, ree(123)

Ay

p P
21 xiﬁi(x} < 121 x:6,5(x} for Jix |

Note that (1.2) amd (1.3) viriually imply thet the James - Stein
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estinate with ¢ = p~2 stands a3 a dividing line bebween sdmissible
and inadmissible es.imstes of the multinopmal mean., Hwang (81}
extended Brown's result (a) for finding necessary conditions of
adnissibility |

/of estimates of the vector of natural parameters in the general

continuous exponential family.

In Section 4.2, we conaider the problem of obtaining Hwang -
type bounds on admissible estimates of the vector of reciprocuals

(@;1 ¥ 651,a-¢,g-1;1} of the mtlmal maters Q‘1 ,a-q,G’p in the

conmtinuous exponential family; as an application, it has becn proved
that if :{1‘QQQ’KP
variables with scale paramcters 91'.._,QP’ then any estimate

are indeperdent simple exponential randan

6(x) = (ﬁTCx),...,ﬁpix)) of the mean vector (Q;1,...,Q;1} is
inadmissible if for some O0<ec< 2(p-1) and same M > O,

b .3 P .3 B . b
Ioxy 6, (x) & T ox37 8, 1), for every x e (O,M]
1=1 i=1 s
where 5B {(x) = xi 1 -4 /2 ( E X'HE}E. ig the in d
; C,i = - +c}ci i;1 Ry | 8 Lnc ova

estimate of 911 suggested by Berger (BO).

Hwang's technique, ecssentially an integration by parts, will not
carry over %o the problem of estimating the mean vector in the
general continuous exponential family. It is implicit, however,

in Hwang's work, that his bounds arc truc in the special Hudson (78)
sub-Tanily. In Section 4.3, these bounda are uscd ko gilve necesgary

conditions of admissibility of cstinctes of the vecbor of gamma shape
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parameters when the scale parameters dye known.

Finally, in Seectlon 4.4, we address the problem of simul-
tancous eghtimation of garmma secale pardmebers. In conbrast with the
weighted quadratic losses considered by Berger (80) and Ghosh and

Parsian (B0), we have considered ancther invariant loss fumction
P D
L{g,a) = T a;8; ~ & loga;8; - p, and have shown thai the
i=1 b ist 1
" natural” cotipate for this loegs is incdmissible for » 2 3.
We then make sone remarks relsting this inadmissibility result to

Berger (B80), Brown (BOb), and Brown (66).

4,2 Estination of reciprocals of the matural paprameters

Hwang (81) genwralized Berger®s (B0) unbiased estinmate of
By [ h(X)] for step functions. In this section, we will nced
similay unbicsed estimotes of By C B"1h(K}j for step functions,
in continuous exponembial fTunily. We start with neobalions and
PI‘G]iI&iIﬂri@B.
Let 11,..i,KF be p dindependent random variables, Ki having
-8y Ty (x5)
density (Lcbesgue) fq (xy ) =@

84

a<x, < b. For a<{¥<{Db, and functions g wsuch that lin glx1s0,
x—>b

p(6y) b; (x50, 1¢3igpy

we define

b

jg(x}i_“" I {X) ] gdx = g(M} nl#(g;'{}
o . (M,b) ]

More gemerally, if h(x), glx) are two differentiablc functions
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of x, bShen, we define
: . ‘ 3
hix)+ glx) 1 {x) =h' (x) ~ g x) I (x)_+glx) == 1 (x}
= I: € M, ] M, 5 = 7,0
—1*(212}
In (2.1) amd (2.2), (M,b] is to be interpreted as {M,») if
b =e. Frem (2.2) it follows that

d 1 d
b (x } L I ( ) [N (2 lj )
& e, & ]

From (2.1), therefore,

E ) 3 1
ei}:gimi M,b] "]
b
= Jpx){=—1 (x) {x} dx
. 869 & (4, & 8
= g(M) f . (M) --;-(Ei'f;)

Analogously, E_ [gf )m

i [a,M] {Xi)]

Ll E(M} f@ (M} ill(‘EﬁE)
1

It is undersiood that in (2.4) (and similarly in (2,5)), g satisfies

a liniting condibicn 1lin glx)f (ﬁ-t} = Q.
X=>b

In the nultivariate sitvation, A will be taken aa a product
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%1 La, Mi_] ag is the sifuation. The rule
1=

P
M y
i-i;r'l ( i b] or
for finding partial derivatives of step-functions In the =hove

aense will be

3 D Cra - N
"a%.:. T80 [dej g (x50 | U
d :

where dix" gj(:-:j} ig already defined in (2.1), (2.2), (2.3).
J

Now we quote below a slightly modified versiaen of & result of

Hwang (B1), to be used in the subsequent analysis.

Theorenm 4.2.1. (Hwang (81)) Iet X = (Xy,...,X ) have an
aprbitrary nultivariate distribution depending on a paraneter

0 = (81, 85,000,800 Tet }:_(G) = (¥ ('Q.‘.,WP(Q)) be any para-
netric function and let f§1{3{) and  8,(X) Dbe two estinators such

that R{8,6,(X)) < R(8,5,(X)) ¥ & (with strict inequality for some &},

P _
where R(Q,g(}i}) =k T fﬁiiﬁ); }’i(Q))E for any estimabor 6(i),
i=A

Let  g0) = 8,(X) ~ 3,(X) .
Tet 8(X) be any estimator of ¥(8) such that
AEX8(X) £ a(X) 6,(X) for all x.
Ther &(X) is imadmisaible.
Ppoof I We show 6§ (X) = §(X) + 4(X) is better than S().
For, R(8,8° (X)) - R(8,5(X))

p _ 2
=B (5,) + &,F) - Y. (@) - B
i=] * 1 1 i

[ Ry

BUASERAC)
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H i
=5 “‘f‘{)+2 rood, Y5, (K) - Y. (&)
i=1 i=g 2007 t
L 2200 . m X ) { theais)
< Ei.:ﬁ agCGo « 'Eii*f d; K (6,, ()= ¥, (&) by hypothesis

]

R(8,8,(0)) - R (8,8, (X)),
This conpletes the mroof.

Theorem 442.1 egsentially assepts that Hwang's basic lerma is
applicable for any parametric function so long as the loss is
squared error. With these prelininsries, we state below two

lermas, which are later used in Theoren 4.2.4.

lemma 4.2.2 TLet X have a density f(x[8) = e“er{x} p(&) 6 {x) ,

8> 0 (8 ¢ 0), with respect to Lebesgue measure on [a,b]. Ieb
g(x) be an absclubely continuous function such that

11.1;1_:' gl(x) A C 0 for every © > 0 (&< 0). Chen
X*

{x=—>a)

B, Et@{{g:;ig(}{)ﬁ ] - 1, [ E&%&i&l IAC{J] , ven(2.7)

vhere A= [a , M| o M,b].

This lemma is followed by its usuval multivariste analog below.

. «-Q T, (x }
Lerma 4e.2.3  Let I{i have a density f(xlléi) i p(ei)

ti(xi), 8 > 0 (Gi < 0), with respect to Iebesgue - measure on

[a,b]. Let g(X) = (& (}J,“.,g (X))} be an absolubely canbinuous

&
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| | ~8;r; (%)
funetion such that 1lin gi(x ) e
xluﬁhly -

s..sti — 8)

= {:r for every

8 > 0 (H { 0). Then

[J ’&" 8% 1 (K}E ]= Eg[ 8 &) Gy Iﬁ(}{ﬂ , +{248)

g {K_} ti(l )

. 0 P
where A is a p-dimensional rectangle [aM| or Q,b] .

Lenma 4.2.2 ig straightforward integratlon by parts and Lemma 4.245
is proved by the usual technique of taking condifional expectations

glven I{j = Xy »J #1 (Hudson (78), Stein (81))
Remarks

Supposac now hj_(x) is a given function of x, for 1=1,2,...,Ps
If g;(x) is defined as the indefinite integral of hy (x) ; (x;)

with respect to x;, then (2.8} can be rewriltton as

E, [ &5 hi(X)Iﬁ{}i)] = EB[ 5’%;‘; Uy) IA(K)]
1%

g, (X) ',}
@[ g, &) ‘Elzec_1 ta ]

(2.9) will frequently be useful in expressing the difference in
riak of two estimators as a differential operator plus a negative

guantity.

We now go into actually obtaining Hwang type bounds on

admissible eatimators of {93'1,,...,6;} under aquared error loss
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in the gencral continuous cxponentisl famdily.

Iet 2"(X) amd AX) be two estimators of (6771,...,677) dofined

by
" X,
N0 = ey (1 gie 1,00, 161 ¢p - (210)
i o
*i | ,
A () = ajﬁr[‘* SACEROT IR REFS cea(2411)

where u.{,..fﬂp are any congtants, and ﬂ,ﬁ* are fTonetiong
satisfying certain conditions indicated later in this section,

and A is a p-dimensional rectangle. The calculations closely
reacnble that of Hwang (81), The idea is to exprees R(G,h*) ~R{&,n)
ags E(A ﬁ*(x) - A p{x)) plus a negative quantity, where & (») is a
differential operator, and choose sﬁ,ﬁ* suitably such that

A x) AR .

Define &(X) by

X,
67 (x) "“&?:Lﬁr , 1£igvp e (2.12)

Now,’ R(8,%") - R(8,8°)


http://www.cvisiontech.com

_ 56 -

o 2 2
El: s G2 I,60 ¢ 2 5 3 #; (x) 1,00
1=t (ag12 E A 15t (a2 LA

X

P4
-2 E @ ﬂi(x) Iﬂ(}:)]

i=1 S i-}- |
2

E‘:E ! g (x)l(x}+2§ Ti g; (x) I,(x)
1=l (a+F d 321 (ae1? L

g;{x_)rifxi) )

p
I,(x)+2 31 ai gi(x} -ml’. REITLN (xl}]

P
- 2 n
=1 ‘ti (xi} i=

i
The last equality in (2.13) is & consequence of (2,9}, where ,g;(x)
‘i3 to be taken as an infefinite integral {with reapect to xi) of

"""T ﬁifx) 6y (xy e At this stage it is worth noting that g (x)

(2,15)
(anfi similarly #, (x), for/to be valid) should be such that

lin g%(x) e_giri(xi) = 0

X, —>b .

_.l

-{:Li--} a)

-8 (%,
}b ,gi(x e i1 = 0 5 iii(201¢)

x ———

( i"'"') El)

for every ©; ; g;(®) is formally defined below.

Sinilarly,
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R(8,A) -~ R(g,8)

2
x5 p X
sE[ ¢ 4 () I,(x) + 2 3 —% (x) I,(x)
[ 1=1 (a. +1) ﬁi i=1 (a 1*1]2 ﬁi

gy (XIry (%501, (x) P g A
—i i —+ 2 T @ (x)ae= I, (x) fh. (x,)
3 by Gxy) P S E A /3‘ E :!

lii{2|15)
where g;(x) is an indefinite integral (with respect to x;) of

- 2
i

iR R ]

i y . ) N .
Evey By () By (xg)e (2413) and (2.15) now enable us to write
R(8,N ) - R(8,N)

::{ R (8, ?s.*) - R(.Q’SO}} - {R(S,K} - R{G,ag}%

- £ p _
= E| (AF (x) AN x)+ 2 T B (x,8) v e - (2,16)
- P Xg ¢ *
here A g (x) = ¥ e K P(x)r 2 B i )
where g (x) 3o m #y © (x) is “iﬂ)g Py
*oor! (x,)
_ 2% Elffﬁfiﬁf;; s (27
, & 2
_ 1Y . B
Aglx) = B ) # (x)*z n 3 . ;ai(x)
1=

1 G@gen® LT i (e )

(x)r}_ (x;)
ty (x

and B; x,8) = & T(gi(x} - g (x)) gi‘ I (x)// (x;) ov e (2,19}

P
- 2%

...(2'18}_
i=1


http://www.cvisiontech.com

- 58 -

Therefore, 1T therc cxists a pectangle A4 soch that ﬁf&* {x) < Ag{x)
for every X e A, and E (B,;(x,8)) £ 0 ¥86, then

#(e,A) < R(8,\) ¥ 6, and Hwang's lemna (Theorem 4.2.1) is
applicable.

Hence, any estimator &) = (6, (X),.",GP(X)) of (67 ,...,,@“1)
will be inadrnissible if

L * .
O IACEEAD)

LI ] (2"2[})

35,0 ke (gl gy G0 <

4 s X} - LK 4
=1 © 0 mptld 1 = i=1
fTor almost all x in A,

We can now state the following theoren.

Theoprem 442.4 Lot A(E) and A(X) be two estimators as defined
L3

in (2,10) and (2.11), satisfying the conditions (2.14). Tet A\ @{x),

AP (x), B;(x,8) be as in (2.17), (2.18) and (&’i?ires@eetiwly.

1f therc exigta an 4 such that
AE ) < Ngx) for (almost all) x = A
and Ea{Bi(x,Q)) < 0 for overy €,
then any cstimate 6(x) of (67',..4,8 '1), satisfying (2.20) for

(almogt all) x ¢ 4, is inadnisalble.

Remark . Theorem 4.244 could also be atated by }?tar‘taing with an

arbitrary cstimate 5°(L) vyather than 5“(}() I - Bah since
o1t

the motivation behind Theoren 4.2.4 is in estinating scale -
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parameters in independent gamma distributions, in which case R;%T
ig the stamdurd egtinoate of SE

X .
chosen Sg(X) ag E;%T , for some constambs dy, Gppeee,® -

Ixample

9, > o,

i - 1"2' .li'p.

! , we have convenisubly

et X X e independent with fg

q3°" "y p (xi} =

i
X

X, X
{‘ﬁ' g EA ey —fjt

Lat

gy (x) =

By definition, g;(x) is the indefinite integral of

e xEE
' with reapect to x. .
&) . D i
4C 2 2T
i=1 4
Hence, gifx} ® — e -é , 1324 7p.
B{ B x; )
j=1
) 2 ﬂxz3 cx§3
Indeed, g x) = = = —= ,
T _ B -
0z s xH% 4k xH?
j=1 J =1

Now, using (2.19),

% —— , 1514 P, 0¢e<2(p-1,
n

9

-1

The natupal estimabe of 5921,...,951} is

X

-5, K.
o i3

;> 6, 1=12,.0.,p. Inthis case Eﬁéxi) =67
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B x° cgkfe P %2 o x>t
Epx) = 3 ¢ — +Ez:1é L
i=1 4(3 XEE} 4 i=1 2( ¥ XTE)Q
j=1 j=1 9
e
-2 = g
i=1 g E XTE
3=1
)} _
_ z xiE -
| - | 2 i=1 .
_Tg[_dpcﬂ + &eD + O 5 2:1]
(= xI7)
j=1 7
¢ g x;ﬁ
= (c” + 4e - 4pe)DT -1, o2 =l - '
16 L P 24 P _2
{2 xT7) I
i=1 % i=1 *
.'I(E.m}
P 2
where D = L xi .

It is easy to see it {c2+ de - 4pe)ﬂ"1 i1s ninimized at c = 2{p-1).

. s B -
Also, as ( E KEG} (2 x7 2y ¢ ( E x7% cor every X, it follows

i=1 i=1 i=1 i
that
P & .
5 E xiﬁ ‘ B KEE
(= x; )4 Z }EZE { z ng)q' T ng
i=1 i=1 i=1 i=1
..-(2-.22}

for every 0 < ¢ < 2(p-1).

. ¥ . _
Therefore, if @i(x) ia taken as Gifx} with ¢ = 2(»=1), then
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(2.22) givos & (F (x)) <A(p(x)) for every X .
Also, with this choice of @ (x),

g &) - g (x) = E.EE%L“_E . 00 (2423)
g = x72
i=t
) (2.25)
If now, A = (0, then by using (2.5), (2.6)/and the fact tpat

- o 1.2

¢ < 2(p-1), Eg [ 8y igi(x) - gi(x%ﬂx_ Iﬂ(x)]g 0 ¥8>0.
- i

Therefore, we have ,

Corollary Ict 11,...,3{.? be independent simple exponentials, with

By (1) = 6]' . Then any estimste 5(X) = (5, (X),...,8,(x)) of
i _ '

(GET,H.,G;I) is inadmisaible, provided for some 0<c< 2(p-1), aoe

M > 0,

72 5. (x) ¢ g x=° &5 (x) for every xe (O l‘ﬂ:{} (2.24)
RS R I SR 1 ¥ U eehEe

X,
where Gg,i(x) = -Ej: [1 + cx;?- /2(

2
z

x'_"zi 2] = Berger's estimate (80).
i=1 *

Remark I The corollary above seema to glive evidence that Berger's
ggtimate with ¢ = 2{p-1) stands aas the dividing line beiween adnissi-
ble and inadmissible estimates of the maan-vec*mr%’?nﬂependant simple
exponentlal distributions. In particular, this corollary alsce shows
Berger's cbservation that the standaprd estimate X/2 is inadmlisaible

if p> 2. For the goneral gamma case, however, the calonlations corres-
ponding to (2.21) and (2,72) get complicated and it is not clear if a
ainilar result holds there too. Hwang (B1) obtained 2 similar beound

for admissiblc cstimates of natural parameters in independent gamma
distributions. -


http://www.cvisiontech.com

- 62 -

4.5 Bounds on admissible estimates in Hudson's family ! in example

Hwang (81) obtained bounds on admissible estirmatos of the
vechor of matural parameters in the continucus exponential family.
S8ince the mean in Hudson's family is essentially the natuwral para-
neter of & continuwous exponential, it is implicit in Hwang (81) that
such bounds hold in the special Hudgson family. Specialigzing to the
Hudson family seems %o be necessary for the crucdal inbegration by
parts to go through. We will use in this section the bounds of
Hwang to give another example in the gamma distribubion.

The Hudson (78} fanily iz characterized by the density function

w@la ya-4e) 5 . - Jxa*teoax

f@{:}{) = g a” (X) [+ }_\f{ﬁ{ﬁ tn{’}'-.tj

vhere alx) > 0 for every X, the integrals are interpreted aa pri-
mitivea, and #(8) denotes B (X).

Defining B(x) = [a~ (x)ax, it is seen that B has a density of

the form

. b - g{1)
f;(h} = g g k(b) # Int(?i‘?)

We now guote below the essential steps for the sake of conplcteness,

with the notationa of the previous sccbion.

Lenma 4.3.17  Let g{X) be an absclutely continuous function sush

that  lingpg(x) £.(x) = linagg) (x) =0 ¥ e; and
X—>w ' >y

EgL g @a)|] < - ¥ 6. Dhen,

Be [ ®-me) 1,00 ] = 8, [ F{e0r,0) a0 ],
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where 4 = My, M), w € My < Mp & W

éﬂﬁma “T'-j -_E (f’f[ultl‘t?“ﬂria‘h& Enalﬂg of Lerma A4.5.1 ) Lea ﬁ,,! yre -,J{P

be independent with X, having density f@i'{xi). Let ¢, = Egi(Xi)..

i

et g = (g1,,‘.,g§) be any absclutely continucus function such thai
1dn a{x;) g, x)f, Cx ) =0 ¥e Ti=1,ues,p

xi--?:r W i’ G i ’ ’

(xg => w)

am E ["ﬂ}; gi(h)[a( )](m ¥ 8. Then,

T, [{Xiwﬁﬁi}gif}i)lﬂfx}] -, [(a%x—i{gi(mﬂa:)} a(}ii)] ,

Terma 4,3.1 and 4,5.2 are essentially proved in Hwang (81), and are

-
straightforwverd integration by parts. ILet now A°(X) and A (X)
defined by |

M) =X, o+ g COL, 0 cen(343)

* o _ F g s )

By *
be two estinstors of #, where it 15 understood/and g; are such that

they satisfy the conditions of Lemma 4.3.2. Then, proceeding as in
Hwang (B1),

R(6, A") -~ R(B, A°)

- B, [i(-&g*f}{)-&gﬁ(x)} 1,07« 28] 515.( ELg ) - gl(x} %’fﬂ&z}

‘l!(ﬁ.s)
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P g2 D 3 £ (x:
Whe & ,& ':I(K} = n . {X) o+ E 5 a(X )f (X) 0‘%(5 Iﬁu}
i & 1mq 1 i=1 g
% 2 owa B 3 * o
and A I (}:) = & . (}[} « 2 I a(:{ } £ {x} ..-(3.7)
“ imq OF i AT Bx 2
f‘l

Therefore, if there exists a st A of positive Lebesgue neasure

such that A g*(}:) ¢ Ag°) s.e. on 4 ese{3.0)

and  EjL B(x)]} <o ¥e era(3.10)
then R(6, A) < R(e,2°), and Thecrem 4.2,1 is applicable.

Thegrem 443.3 Tet g°() aml g (X) be two estinafors of &
satisfying the hypotheses of Lemma 4,3.2. If there ia a set
A= Mg, MIFP for w <My <M, W, such that (3.9) and (3.10)
hold , then any estirmmtor &) of # is inadnissible if
D
5
i=1

0300 [0 - 8260 ¢ AT [0 - é,i(:{}:l :
Sl arl A -.n(3.11)

Renark A% and h*(}i) could be defined by starfing with any
estimate 6%(X) ryather than X, Once agein, since we are interested
in the application of Theoren {.3.3 to estination of the gamma shape-

raraneter, we have conveniently started with X,

EXample et X, M., eea i be independent, X having p.d.f.
Sidnple 4140 rp i

- Mo .
%, ' >0, By 2D
f (x.) =g T x1 s 18£18Dp, %4 ) My .
Hi i i |:i:
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Hote that f,(x) 48 a menber of the Hudson fanily, with a(x)=x.

. P .
Take gZ(x) = - clog.g /’131 (logr;)®, notivated by Hudson (76).
2
Then hgu{:{) = 5 o > _ - Zen 2* ...p 4o 5
2 (Llogx;) Z (logk;) £ (logx,}
i=1 FL jeq 04 i=1 -
c‘? 2e{v.?) P 2 _
= —eiaas s where S8 = B {1ogpti) arel3a12)
S i=1

How, . 2¢(p~2) is mininiged at ¢ = p-2. Therefare, if we let gi*(x}
ag gi(x"} with o©=7p-2, then from (3.12) it follows that ,ﬁ,g*ix) <A g{}(x)
for 821 % . Also,

)2

__ ' B
By [::ai(x)j = Eg [(c-. (p-2)) X, logXy ;a;r% 1111{3-!:}%5:i (1ong

li‘(3'13}
If c< p-2, then from (3.13) it is clear that EﬁfBiﬂX}) £ 0 ¥e
17 A = (0,M]° with M<1, or if & = O1,»)® with M> 1. Thus
(3.9) and (3.10) both hold, and we have the follewing carollapry.
Corpllapy. Let K‘l’”"Kp be independently distributed, X, having
P-dqf-

X, Hy- !
flu;i{xi} = o xi /IZﬁij ¥ 15:_15. P' xi} ‘i:"' ll':'f".,!,-in,fu‘p

positive and unknown. Let 6} be any estimator of 6“1,--.,#41})-
Suppose there exiata 0 ¢ ¢ < p=2 such that

P 5, ()loge, > b cloghy . 3.10
2 (logk,)
j=r 3

far 821 xe¢ (0,MF for aome M<1, or for all Xe (M,=)¥ for some
M> 1. Then &{) 4is inadnissible,
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4,4 Egltirubion of the gamma scale pareneter

Let X, ,l{g,u..,.}{p be independent, with ¥, having density

_g -
_ 8% j. ol e .

fei(xi} = Qi / lx X4 > g, 18ifp, where a; >0

are known, and &;'s (> 0) are considered unknown. Derger (BO)

congidered weighted guadratic losses h (5 9 - 1)2 for

joq 4
n=0,21,~1, and showed that the standard estinate of
-1 1 -1 %4 X .
{91 » 85 yeeey8) ), nemely, (E?T’r""”i%f) is inadmisgible for

72> 2 eXcept when n=0, in vhich case it is inadnisaible for p2 3.
Ghosh and Papsian {80) alsc discussed this problem for the sane
welghted quadratic lesses. In this section, we consider a typically

P P
different loss £ 6558 - 2 lﬂgﬁiﬁi- p 3 the wvector of unbiased
=l i=1
}{1 :
estinates (=~,..., E‘E) is a natural estimate of the mean-vector for
g o

this loss. We show Jhat thig egstimate 15 inadniszaible for p2 3 and

relate this incdniaoibility rcault to sope observations of Berger and
Brown.
The ususl technique of integration by parts (Berger's (80)

*
identity) and 4 theorem of Ghosh and Paralan (B0} are shated below
for fubture reference. Also, a technical lerma, to be used sub-

sequently, is also proved.

Leone 4.4.1  (Berger (80)) Tet hx) = (hy(x),..0,h, (x)) De &

L |
function such that 1im by (%) xii
>4

Xy
a,-1 -8.x%

and 1im hi(x} xii @ il 0
A T '

-8 X,
e T oo
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fTor every 8 > 0u Asdume 'hi{x) has all pptial depivatives of

first order. Then

| (a;-1)h, (X)
_ , _ i(1) 4 i i
B, C 85 hifxij =B I: hy ) + —""“E:"—"-“- ] p

where hy (ﬂ(}:) ..3— h_i{:i), 1¢igp.

It is implicitly assumed in the above identity that

I:Ehlf*!)(x) + (ai;;} hi(‘:{)f}{i }:l < w, for every &.

Lerma 4.4.2 (Ghosh and Parsian (80)) For given functions

v (), 92 > 0, wyCx), detine € (x;) = ] (x;) am

B
5 = Si ﬁ;j |E,j{xj) fﬁ where d',j and # are positive constants to
j= -

be chosen later. 1T

P _
Eow, ()ES (/X)) { KS for some K, d. and B ...(4.1)

(all positive) and for all xe RY,
then

~C ni(x.)

bs ﬁ-——m—l— LY 12
By (x) = —=t (442)

provides & solution o A (x) ¢ 0 Tor all B> 0 and 0<c¢ Kﬂ(pﬁ)

P ' p 2
whore A G0 = 4G 2 v xp) V6o AR AR

i=1

Renay] Such solutions to O (x) < 0 were first obtained by
Berger (80). The constant ¢ can be generalized to a non-decreasing
function T(8), with © ¢ T(S) < K1 (p-B).
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2
Lempa 4.4.3 For |x| <%, log (1+x) 3 x - 3 .
3}{2
Progf : Define f£{x) = log (1+x)-X + = .
Then f'(x) = XOx*2)
1+

20 Tar 0L XK %
£ 0 for _%{xiﬂ.
Consequently, f(x) » £(0) = 0, for |x] < %‘

Theopem 4.,4.4 Tet X,,...X be independent grmna variables with

B
lli _ -7
B(X,) = == , a, known. Cansider the loss L(§7',5)
i Eﬁi r i
P D X X

= % 6,8 ~ & log 5:8; =p.+ Then (-51 fuey ?E} is an inadmisgi-
i=l i=1 1 D
=1

ble eatimator of {'@1 ,--.,Q;} for p2 3.

Proof : ITet 5(X) be a competitor to the natural estimate

-2 X
60{}:} = L'&""’" grray E‘E} -
1 P

x

Weite 8, (x) = =+ by (x), 141i<p. We agsume hy(x) are such
i

that I#Cma- 4‘#4!1 hﬂldSi

Then, «(9) =R(8,8) - R(4,5)

1

P | X X
) E{ﬁi{}i)gi« 105(51{1}91) -&-i‘- Q; * log (?i-. 91)}

i=1

D a 6, (X}
= _31 E{@ihi(}i') - 1ag-;—-%i—-—}

i= -

p o b, (X) 7
= | ..3:.._,...“.... ™ .... ]
= ii1‘ E{@ihi{}(} - log{1 + 7, )} sseldad)
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__ a,h, {x} 1 |
If the competitor 6(X) is such that ITF < » uniformly

in x, for every 14igp, then by Lemna 4.4.3,

ayhy &) afng () |
(@ < z E§ oghy @) - 2AZ0, 3 47 :L
=1

—-

r 2,2
P ¢ s (a,-10h, (L) a;h, (X) 5 o) hi(X)
= 2 Byt My b 2877 ii° ., 4 2 4 }
i=1 {, i Xy Ki 2 Xi
(by Lemma 4e447)
X
= g EiL l(”{x) E...EE. %_i-...,.rf;i..(._}.} een(445)
i=1 { Xy xi

Now make the transformation

hy (x} = xi,ﬁﬁi(x) , 1¢3i<p.
Then hi(?)fx) = @ {x) + xiﬂ}i{ﬂ{x)
h, (x)
_ 3 1(1)

Hence, (4.5) gives,

a(e) < E[ : x ;a}m(x} + % E al ﬂi(x:l:l v es(2.6)

Note now the differential expression within bracea in (4.6) is of

the form (4.3), and (4.1} of Lemma 4.4.2 is satiafjed with

' _ R

Therefore, for 0 < ¢ <§ (p-2), B> 0O,
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-¢ logX
#y (x) = g - veel8aT)
T D {log x.) + b
=t 4 !

P . P
: - i(1) 2 2
is a solutiagn o iiq X @y () + % 121 o @1(1} < 0.

Cgaiflngxi)g

Also oboserve that !uiﬁi(x)jz = - <~?4: if b> 4e°.

—
E ﬁ%(lagk-}2+13-
j=1 J J

o Xj_- log Xy

HETH}E, if 5i(K} - ¥ 1iiipf “’"{d"B)

e

e e

P
by a?(lugx.}2+b
3=1 J 4

o
where 0<c<% (p=2), B> 40°, then, «(e) < O for all &.
This praoves the theoren.

Some ronsrks onl Theoroen deded

1« It is easy to check that the tail conditian reguired on
hi(x) for Letma 4.4.7 bo hold is satisfied by the sclutions evenlo-
8lly obtained in Thceoren 4aded .

2e It was shown by Berger (BO) %hat the cribtical dimenaion of
inadndssibility of the natwral egtinagte of the genna scale - para-
neters is frequently 2, rather than 3., DBerger conbtended shat the
critical dinension of inadnissibllity ie typically 2, and 3 dinen-
sion ia regqulred only in special situations. Brown (BOb) discussed
Berger's phenonenen and gone of its peripheral agpects in fthe con-

text of sinultanecus estiration of independent normal neans, and
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gave exarylcs bo asgsert that the critical dinension of inadnlssi-
bility depends on .. loss, rather than éhe underlying coordinate
distpibutions. Theoren 4.4.4 gives another exanple of & nabural
and invariant loss fer which the critical dinension of inadnissi-
bility could be 3 in the gamma distribution itself, although the
peripheral asgpeocts relating to the point of shrinkage are mwob illus—
trated by this exanple. Interestingly, Berger (80) also required 3
dicension for inadnissibility only for the invariant quadratic loss.
This is probably cxpected from Brown (66) and Brown and Fox (74).

It follows fron Brown (66) that under the loss described in

Theorenr 4u4ed, the standard estinate is admissidble if p=1,
although at this noment we do not know if admiseibility for p=2
follows readily from Drown and Fox (74). We conjecture the sghandsrd

ggtimate ig admissible in two dimenasion.

3e Phe inproved estimate in Theoren 4.4.4 bears similarity bo
the Janes-Stein estinate of the nultinormal nean. This is expected
gince on making a log *ransform, the problen rcduccs éo the esbina-
tion of & location vecktor. One should also observe that owr inproved
estinate is practically the same &g Berger's (80) for the other

p -
irmvariant loss ) (ﬁiei-T)E.
i=1
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CHAPTER 5

SECOND (RDER ADMEISSLIEILLITY I MULDIPAR AMETER FAMITIES

541 Int-~ Qﬁllﬂ‘biﬁ;}

In Chapter 4, we dlscussed sone aspects of nultiparaneter
adnissibility under exact risks through differential inequalitics.
In this chapter, we discuss ancther aspect via an apprexinating

risk, and its interrelations with differential inequalitbics.

Let X4, X5,..0,X  be independent DBin(n ,n;) randau~variables,
i;1r29‘*‘:k!

-(g+Bap) -1 _
where ny =%} v g -1 . een{le1}

2 is the only wknown paramecter. In an agymplotic formulabion of
Berkson's problenm of esbimating 6 on the basis of X,'s, Chosh and
Sinha (B1) recently proved that the nle (%} is always inadndssible,
although in general neither of the nle {g) ard the Rac-Blacltwellized
version of Berkson': eshtinate EE) deminates the other. Kariyae,
Sinha, and Subramanyan (B1) recently showed that % ocamot doninate
% for large valuss of €, cven when ane replaces the approxinate

risks by eoxact risks.

In this chapter, we extend the concept of second-order
adnissibility to nultiparaneter fanilies satisfying the usval
Craner-Rao regularity comditichs. Ve restrict attention to estinutes
of the form
a, ) b E‘E(E}

h greey GP + = nﬂ} y

(31 +
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where n is the (current) sanple size, and Q4,...,d, have one
continuous partial = rivatives. Restriction tc this class can be

justified by iwvoking the second-order effic;t.emy of the mle,.

A
‘ A o fG) I8 c_(g)
Fernally, we declare an estinate (64 + ] greey O _R.ﬁ,...) to
be inadmigaible if fhore exiatfa ancther estinate
1

f d. (8) A (Q}

(8 + —Lom ..o, 8, * —I—} such that
A

p & 4, (&) o p A (:.(9) o 5

5 RO, + Hemem ~ @37 ¢ T B, + = — §.0° , upbo ofn" %)

i___‘l’ i X i - i =1 i I i ¥ '

L L {1 '2)
¥ e (with atrict inegwlity for sone 8.

By a usual Taylor expansion, il follows that (1.2} is equivalent to

p p I T ‘5
% E:f{a} . 2 ;* gi(Q)h (@+2 5 3 %(1)(9) I e)cs ¥ 8,
=1 i=1 §=1
ll'(‘} '05)
[ strict inequality for sore © 4is understood ) ’
where gi(E} = d.i(e} - ci(Q)
A
by (8 d& @ e ey (8) -1
n = -._};i::es of 8 + ——/= apbo aln™ '),
b {i 8) 1
where = biaa of the nle upto oln™ '),

AW = e,
i 265 &1

(atd@)) =17,

where 1(8) 1s the Pisher information matrix which we assume is pedes
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We npw specialize to the case of a p-fold product of indepen
dent one-parancter - ailies, and c¢;(8) =c;{(&), in which casc (1.3)
reduces to

b
¥

P
5
i=1 =

2 . . Pooi(), ., |
gi(a) + 2 gy (9)p, (8y) + 2 124 g E/1408) <0 Yo

i=1

-n!{1 iff")
We assume I;,(8,) dis continuous in &;, 1Li<ps Hencefortbh,
unbiaged estinstes will nean estinates unblased upto D(nfq) and

adnisslbility will nean sccond-grder adulssibility.

In Section 5.2, by a slight variation of Stein's technigue,
we show that any unbiasged esitimate is adnisaible in dinension 2, if
the conponents are separately adnissible in dimension 1. In
Section 5.3, sufficient conditions on the bias of an cghtinate apc
obbalned for it fto be inadnissible when p 2 3. It follows that
unbisged cstinates are always inadniasidble if © > 3¢ Finally, in
Sectlion 5.4, we give an exanple to illustrate the difficulity of
generating adnissible estinates by constructing Bayes scolubionsa,
gven in one-dinension. These difficulties suggest Tthat we
should restrict owsclves to a suitable subclass of estinators,
although the right Forn of restriction is not yet clear. In Section

S5ed, we suggest some restrictions.

5.2 Adnissibility of unbiased estinates in 2-dinension

ey

A

| - A 01{633 n cpl(egd
Thegren 5.2.1 Let éc = (8 + —=—— 1+ 6y *-=¢ -) be an

M
nocy(8,) |
unbiased estinate of &, such that 8; + e is adnissidle for
A
€, 1=1,2. Then 8, 1is adnissible for O.
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A , __
Iroef : GSimce o, is unbiased, it follows fron (1.4) that &; is

inndnissible if and .nly if there is a g such that

() <0 ¥oe R

R{g,g) = i
"'9{2'1}

2
S 20 - A1)
Logi(e)+ 2 g (&) /1
i=1 * i=1 4 i
%
Definming mny =n;0(8;) = [ I;ycydn, & =1,2, it follows that (2.1)

%

holds if and conly if
z 2

R{n,f) = = fffn} L2 o2y <0 ¥ns R, e al2.2)
i=1 i=t *+

vhere f£;(n) = g;{8), 1i=1,2

Note that {n,, n,} span the whole of IR? by Ghosh and Sinha {(81)
since the componcnis are adnissible in dipension 1, and tharefore

T

Also n;(e;) is a strictly incretsing function of 8, , with =y

(8;)
51450853

Therefore, gc will be inadnissible if and only if (2.2) holds for
sope £ (with one continuons partial derivelives). We now reburn
to our briginel notation R{8,g) 4in place of R{y,f).

As in Stein (55), we now show that (2.2) holds for zane g,
if amd amly if it holds fTor a spherically symmetric h, where hi(s)
will be called spherically symmetric if Th(L'8) = h(8) for all
orthogonal L, and all & in SERE.

The *if* part of the clain is lmnediate, In order 0 prove the
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‘orly if' part, we adopt & slight variation of Stein’s (55)
technique since our anslysis is in herms of an approximation to the
risk upto on™%). I £(9) is as in (2.2), define
hig) = | LgEL‘e} @t (L), wherse d¢ stands for the invariant
k
o
probability-neasurc on the orthogonal group 0O,. h is spherically

syrrcbric since # is invariant. res{23)

Define (B_g = ((i%-i'- )

B0~ e, 2X2
Vb o (e 0B eee(2.
8 - ((ﬁ%‘)}gxg L] '1(2 4)

Then R{(8,h) = |/n(8) |2 + Etr%-gie)

= | JIe(r'e) awm||®s 2t ! L%-g (L' )T as(n)
D. ]

o 2
¥ e B ( )
¥ 2 [tr 5 (L'6) @ (L
< drp He{L @) | “as(L) + ﬁff-r 5—5 (L'6)
= [ R(L &g a:(L)
Oo
£ 0 ¥ (¢ O for atleast gne &). «ss{245)

In (2.,3) above, thé second equality follows becausc diffcrentiation
can be cidrried inside “he integral by a straightforward application

of Doninated Convergence Theoren« This proves the clain.

The proof of Theorehf2.1 now follows in the lines of Stcin (55)
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Remark & Theoren 5.2.7 indeed also follows from a result of Feng
(75), who shows tha. the only solution to (2.2) is T =0.

53 Inalnissibility for P2 3.

In this section, we proceed to show that any unbiased cstimate
is inadmigsible for D 2 3« 43 pointed out in Section 5.1, in order
to establish inednissibility, we nced to explicitly solve the differen-

tial inequality (1.4) in g. Towards this end, we will usc Lemna Aed,?2
of Chapter 4.

h A
A o, (8,) A e (8.)
: ) *+ L 1 greey Ep "‘E"*"‘E"') e aunh that

inf [ b (a) I () =K > -, forall i
8 o

1'2,..-.,1’9

R

A
Then 6, is imadnissible for p2 3
5
-1 by (u) Iy . (u)du
G

Pproof + Let gi(e) = hi(é}} c

. ~
1 L= 1,4‘,--;,]?-

E}i _ _
- 'bi(u)lii (u)dun

. | J
Then, gif(”(g) ==b, (8;)1,;(8;)g (8) + hi(”(@) g ©
II'(Z)'E)
Therefore, (P.4) reduces to o
o1 - by (I (wdu

=2 [ p, (W, {u)du a, +
P =] 4 4 I (1)
E hi(@) ° . 2 P h" (6) &— - ¢ 0
i=1 i=1 Iii(gi)

¥ &8¢ Ii'.p an-(3i3)
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S
-29{ bi(u)lii(u)du

i (o} :
We now identify h;, as ¢;,e as

=21
-é bi(u)Iii(u)du/ |

(o] , : 5 A .
e Iii(ei) as vy and P as 2 in Iemma 4.4.2

It follows that (4.1) of Lemma (4.4.2) in Chapter 4 holds, if (3.1)
is satisfied, for omo can then take

—2m¥n(K1,K2,...,iKp), B =28, =1 FJ=1,2,e004D0

2X=¢ J
-C zi(ei)
Therefore, h;(8) = —
£ t2(8)+b
j=1 Jd 3

is a solution to (3.3) for O<c<K'1(p-2), and b)Y 0, by an appli-

cation of Iemmadd.2 in Chapter 4,

a
o; [ bi(S)Ij.i(Z)dz

where, £;(8;,) =J I;,(w e %o du, 1 = 1,2, 00,0+
8¢
Equivalently,
b, (I, (W
- b. (WI..(w)du
gi(e) = e X - D, s 1 = 1y29"”ps
T g5(8.)+b
j=1 Jd J
8
is a solution to (1.4) for p2 3, whenever inf | bi(u)Iii(u)du> .y
1<1<Pp. i e,

This proves the theorene.

Remarks 1. The transformation in (3,.2), notivated by Ping (64), was
naie to reduce (1.4) to the form suggested in Iemma 4.4.2 of Chapter 4.
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2. In the special case when we consider an unbiased estinate,
@!
I b, (2} I;,;{u)dn 2 0. Therefore, unbiased estimates are always

Q
inadmissible for p 2> 3.

3. It was shown in Ghosh and Simha (B1), that a nccessary and

sufficient conditien for adnissibility of an estimate with bias

b{a) is that

&
- I plu}I (n)du

] o

J I(B) e © - dg = w
g.

3]

9 _

s 79 ()X (wdu

0 _

and | I(8) &° de =,

- m £ @g < =, 1% is suggested by these conditions that for an
\ g
estinmate to be admisoible, [ b(w) I{uldn shounld M large negabive

%

as 8 —> » o . The condition (3,1} of Theoren 5.,7.1 seens to
suggest exactly the opposite of that. This is primarily because
Lemma 4,4.2 of Ohapler 4 is essentially a tool for prnfing inadnis-~
okbllity of the unbiased estimates.

5.4 Existence of Bayes estimates

a3

A
B
In dimension 1, taking Bhe risgk of an estinate & + cn@

c?(8) + 2c(8)b (8) +§§%é%l (aee Ghosh and 8inha (B1)), a natural
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gquestion to be asked is does there exist o function c(g) in

¢'(R) vhich minimizes the integrated Bayes risk

P 1
§§5%0) + 20terb_(0) + 2288 4 (o)
L 0 I(e) |
where dG is a sufficicnily smooth prior For simplicity, let us
take I1(8) = 1, It is casy to sce that then this ninimization

problen is equivalent to nininmizing f{bg(eh 2p’ '(@ﬂY q(e)de over

L3

¢! (R), where ar;ee = q(8), and b{e) = _(8)+rcl8); it is inpli-

citly assumed 5 j:[ bi(@) + E’b;(@}} g(e)ds exists. I a nininizing
b(e) exists in C'(R), then it must necessarily be equal to

g?-é-?-l gt all pointa & in whose neighbourhood q',fq is ~oobdloucus.

This 1s shown by cesfentially verifying that the Buler cquation for
this minimization problem is actually a necessary condition for the
mining . This is done in the following way., We assumc da(e) is
_ ' {g)
so smooth that q(8)
then for every (&) in cX R},

iz a.e. contingous. If D*(6) is a ninima,

Hﬁe} . 20%(8) s (e) » 25'(«9}} a(e¥de > 0. cen(401)
Hence, writing =(8) = ¢ n(@), for any n(&) G (M) such that
S {2‘1::* (&) e(®) + 2¢ {a)'} gfe)ae # 0, (4.1) can be violabed by choas-
ing e suoltably (as positive or negative).
Therefore, H b*(8) = (8) + & (e)?y gq{8)de = 0, cee (82}
for every =(8) =C ().

If now =(8) is any functien in C1(IR) with a compact support,
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then by integrating by parts, (4.2) gives

gg(@)%b*{e} - ﬂé—%-g%g q(8)de = 0 cva(4a3)
= h*(e} = a:l”ﬁ(gﬂ) Hal®e ..-(404)

{at 21l points & in whose nelghbourhood q‘(@)fq{@) is

continuous)

Since b¥(8) = G1(JR.}, it follows that (4.4) must actually be true
for every 6. Note thal we heve tacitly assuged that the intoegral

in (4.2) exigts for all e(68)eC_ (R}, which will be true if for

(o

RIC iz continugus.

gxanple

If afe) has a conpact support, say, E(},'lj, but does nob bave a
continuaus terninal contact at the ond-pointa 0,1, then it was

shownt by Ghosh, Sinha, and $oshi (81) (Sec their example &, Section6)
that the @bove infimum could be -w». If ¢q{€) has a conpact gupport,
say, [0,1], and also & smooth terminal contact at 0,1, then (;.g
cannot be continuous in the closed inmterval [0,17]. However, by
restricting to closed sub-intervals [e, 1-c], & > O, the argunont
leading to (4.4) once again shows that b*(8) nust be ;g for
every €, which is g contradictien. However, it follews fron

Them;en 5.1 of Ghosh, Sinha, and Joshi (81) that the integrated

Bayes risk in the sense considered in this section has a finite

lower bound, and hence 4 finite mininmm. The preceding argument

then says that this infinun cannet be atbtained. In this sectian,

we give an cxaople of a g€} not having & compact support, nanely
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the standsrd normal, such that E{bg{e) + 2b' (Q}} q(e)de neecd not
even exist in the scuse of Lebesgue, thus illugtrating the difficule
fies in generating adniasible estinates via Bayesian nethods. We
conjecture that the inbegral in the followlng example does not exist
in the Riemann sensc as well, Finally, in Propositicnid.l, we give

sone sufficient conditions for the existence of a Dayoes estinatc.

2 2
manple Tet b(8) = of P am 0% /%), e g ¢,

2 ,. & 2 - e
g EG /2 Sin (ee fe) + e @-e GGS{BG XE) ves(449)

2
o=8°/2

L

Then b (&)
k|

Let dc{a)

a5 -

Then, § SORES {eﬂ; a6(8)
&

= i{ 092”2%‘ Sin'?{eggf'g) + 28 cas(eggf'g) + 20 e"ag";g Si.nieegfz}}ﬂﬁ
cealloB)

In order tc show that the integral in (4.6) doos not exigh, we

consider the integrul over the nmeaswrable subset [0,=). Making

- %72
the transformation e /% = ¥y, one has,

o
)i‘l}zE(ﬂ) + 2p' (8)3 =9 /2 44

Egﬂ,m

H

- 2
M— r 2 208 + g————shlii d LN (4’&? )
Dg,mftv’zlﬂg ¥ =Y N

€onsidering successively sequences of inmterwals
1= [@+1)5 -6, @ne1) 3+ 6] of rixed length 20 such that

Siny> 1-=e (>0 fixed) for yel , n2n (say), it is easy to
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show that (4.9) = + =+ On the other hand, considering sinilur
intereals of fixed lungth 20 with centre at (2n+1)n,n > n ,
such that cosy{ -1+ e, it can be shown that (4.7) = «= . Thus

the Integral in (4.8) ca mgt exiat in the sense of Lebesgue. The
oXanple above suggegbs that/ b{e) varies in the enbire ¢l (),
Then the ¥echnique of generating adniasible estinmates by obloining
Bayes solubions nmay not succeed cven in one dimensions. It is therc-
fore necessary to take a suitable sub-class of estimators provicusly

considercd. That the infinum exists if we allow only well ~ bohived
$

b's 1is demonstrated by the following proposition. q(8) is tuken us
2
e fa.

If b(s) waries in o sab-clasg of G“(I%) auch

y
that jibg(@) + 2b' (e}J] e® ‘f‘? d¢ coxists, and
1 2
-® o
clther i} ¢ iz a ldnit point of b{e) e 2 ag  [8) =P

or 1i) 1in 7%—54 exlats (with possibly diffcrent limits),
o] =>w © (8

then  inf \ { b2(e) + 20’ (a]} 972 49 ia finite, and the infimw
is attained by b (§) =- 8 = Eé%.

0of ¢ Tet 1) hold. Then for any beCV(R) such thet
j{hg(e} + 2’ {Gli e_egfz de exista,

| Hh 8) + 2p' (G)% ~6%/2 4

H (8) + 28 ‘bia)} -0°/2 de
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(integrating by parts and taking linits along sequences such that

16?

b(e) e = —> Q)

;Hc@ RTCH L 92% o® /2 ap
. 2 e
35 T

_ 2
= (8%.2) ¢=97/2 g

2

= E{bi(e) + E’bé(@)‘lg =972 aa. eae(448)

¥
Suppose now 1ii) holds but not i).

2
Define K(8) = b(e) ¢ /°

i:!;nce i) does not hold, X(6) iz bounded away from O ag [8] =D>=,

Note now
b (8) _ X (8) _%QE g *%92
“ 1 I Q e -+ ——wg—l-—* - ill("ﬁ_’.gj
b7 (8) K™ (e} K{s)

Integrating by parts,

, 2,
s 2 . ‘ PR = g
g E?SQ); E_@ /2 ﬂe = e B‘ E 8 f ﬂEl . it.(d‘ilbj
lo]>a K (82 el > a K(8)

Eilme K{8) 1is hounded away fron ¢ as |6| —>w . Also,
8 e"gg‘f‘?

de < =, inplying, by (4.9) and (4.0),

30 %Z% d8¢ exists and is finite. 3Bub, by hypa*hhésis,
= &
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1in B (&)

[ cxist, and, now these limits nust necessarily be O.

Now abserve,

, -
S i v2(8) + ' (e)} ¢ °ae
e > a

2
23 J b°(e) ¢ /2 ag (by choesing & large enpugh)

]
rol =
B,

2
x°(e) ¢® /% ag

1t
g

This canpletes the proof of Proposition Sodels

Renayk  Hypothesis 1) of Proposition 5.4.1 is to be compared to
a sinilar conditien imposed in Brown (81), nanely,

, 5 _nggﬂz
b{e) ¢ B (¢ ds) fTor scae 5 > 0, in which Brown has discussed
Problems relating to a general differential inequality arising out of

estimation problems, although from & notivation different from ocurs,
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CHAFTER 6

ESTIMATION OF ©'E GENFRATIZED VARLANCE THROUGH THE
WL SHART MATRIX

6.1 Introduction

In Chapters 4 and 5, we discusaed amme aspects of nuliipura.
neter adnissibility through the study of differential lnequalities,
The problens discussed in Chapters 4 and 5 typically involved
egtination of o nultidimensienal paranetyric function in a nmultiparc-
neter set up., Although we now have & congiderable literaiure on this
a%peci: of multiparameter adnissibility, much is yet to be dane regapd-
ing Stein effect on ene dimensiocnal parametric functions in a nulti-

paraneter fanjly. In this chapier, we conaider one such problen.

s Let X, ,ee0, Xy be i1d p voriate nernél with nean ¢ and
dispersion natrix I (p.d.). Consider the problem of estimating

7| on the basis of X,,...,Xy under the loss (a- |Z])° (272,
The sanple rean X and the Wighart matrix S are jodntly sufficient
for {#,%) and the problen of estimating |f| remains invariant

under the transformations.

T-> 4T +b, 5S—> ASA ,
where A 1is full rank and the equivaglant estinates are of the fornm
X ,5) =c|S{, ¢ > 0. There exists a best multiple of 5|, given by

c = (K-p+2)! 7 (K+2)}: , whexre K = W-1,
&

For p=1, Stein (64) showed that the standard estinate of || (=2
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ie imadrnissible, doninating it by o 'testimator's. The ides of

Steln was exploited Ly Shorrock and Zidek (76) vho proved the sane
result for all p > 1. Recently, Weerahandi, Tsul and Zidek (80}
proved that the standard estimate of the generalized residual
variance is inadnissible. It is not known, however, if in &he class
of estinates that depend on the Wishart natrix S alone, or egquiva-
lently when the mean & is known, this estinate of [2| is admissi-
ble or not. This problen, apart from the reason menticned in the
first paragraph, iz interesting also because of its difficulity. In
this chapter we have proved walng Brown (66) that this natuwral esbi-
nate of || is adnissible in a further sub-class of estipstes which
are functions of |S| alone. The original question raised before

is, however, still open.

6l Preliminarieg

It is well known that % , under ¥, is distributed s the

product of p indepundent chi-sguare varlables XT,;..;,XP, with
EX;) =E-p+i, 1<i¢p. Thercfure, |5| is a scale paraneter for
the distribution of |5|. Hence, log |®| 1is a location paraneter
for the distribution of log |8|. 4lse, note that the loss

La, [2]) = @@= |2)° {2]7° is a function a/|E| alone, I is
we}l known that estimating |2} on the basis of |S| under the
loss Lla, |Z|} = Wla/|2|) is equivalent to estinating & = loglEi
on the basis of log|S5| under the loss L!(Q, a) = WI(G-a), where
W (x) = W™, In our problen, W(x) = (x-.1}2.

L]
Hence, W (x) = (¢*. 1)°.
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We will 1ct p{x) dencte the density of X = |§] when [&] = 1.
Gonsequently, the dcnsity of Y = logX when & = 0 is glven by

a(y) =¥ ple¥), - = <y <=y ceel2.1)

best invariant gstimate of 6 on the basis of the obsepvabion ¥

g.a_‘1)2, and as pointed out

exigts under the loss I (6-a) = (e
in Brown (66), there is no less in assuming that the vardable Y
has been so trunsformed that this best inveriant estimate is Y

itaelf, or in other words,

E 0 (EEY) = 5B (EY) 9ﬁl(2l2)

'gﬁ

In terms of X = |5, the meaning of this is that a scale change
has been done to X so that E(E) = E(KE) under the density px).
The original demsity q{y)} 4in (2.1) changes to c1s§fp(cge3)
becaunge of this change in X; bub the constants ¢, ,0, @we nob
golng to affect the subsequent amdlysis and we will use the same
notation p(x) and q(y) for the densities of X and Y (under
|Z{ =1 and & = 0 respectively). We will fuprbher assume without
logs that scale changes have been dane to K1""’KP so that for
1¢3¢p, B =B, i.e., the density of X, 1is of the Torm

—a.X LI |

f{xi) =K; e 171 xii , where Byt =ay o230

i alpeady pointed ouh, 5%121§)I 151 i admissible for 2] if
K+2) 1

and only if Y is adnissible for € in the transformed problen.
We are now in a position to appeal to Brown (66), We guote below a

theorenm of Brown (66) for futwe reference.
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Theorem 64341 (Prown (66}} Let & be a real location parameter
for the distribution of T in dimension f. TLet R, = risk of the

best invariant estimate (Y) of © under & loss I (g,a) =W (6-a).
Assume R _ < = and that

(1) R(¥+e¢;,8) —> R(Y,8) as i —>o

= Cq w3 A8 1 —rm

{(Y+c 4 @nd Y are, incidentally, invariant estimates, and have
constant risks)
o A
@) | % swp | v )W (s n] q(:ﬁr)dy] ar <
a v Y <A |

(1ii) j 7yl W (y) aly)dy< =,
Then the best invariant cstimate (YY) is admissible for estimating 6.

_ ; \ _ - _ ’ - {K-p+ 2} |5

T n 6,342 Tet S~ WP{K,«), E>pP, % p.da Then 5yt
o
is an admlssible estinator of |%| under the lozs (a- IEDEJEE“

in the class of estimates that depend on |S] alene.

Fpoof 1 We verify conditions (i), (ii) and (iii) of Theorem 6.3.1
in the transTormed,problem. (i) and (iii) are relatively easy to
verify, and we verify them first,.

Hote R(Y+c,,0) —> R(Y,0) as i-—>w

¢
<= B, (et o¥o ‘lf):'3 == Eyeqg e’ - 1)2 ag i —>w

2o, 2Y

_ c i
& = EQ-"-'-'D [{E 1_1} e -2(o i-—’l) EE] —>»{ ag i —dw
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3 o L, ¥
<=> (e *-1) By [{a +1) e = 2e ]_}0 ag i —vew
:;-{3#1}
If ci+}ﬁ as i -—>ew~, let a subsequence convarge to ¢ #0.

We denote this subseguence by { 23 itself. Hote e l-1-—-> e® -1 2 0.

ey Z,_, D
Hence from (3.1), ¢ “+ 1 —> “'“"“"""33?_"
Ly (&%)

<= e+1 =2 (by (2.2))

<= e® =1,
a contradiction., This verifies (i).

To verify (iii), we observe that
§ 1yl W () ey ay
= ﬁlyliei"ﬂ 12 Y peV) ay

=§ y{ey-ﬂg e¥ plc¥) ay - g y(ey-‘l}z e¥ p(a¥) ay

¥2 0 y& 0
=\ . 2 Y A ‘ 2
= S logx (x-1)° p(x)dx - f logx {(x=1)"p{x) dx
logx >0 logx £ 0O
= | jlogx| -1 ptx) ax cee(342)

Mote that for x> 1, |logx|= logxg & x° and for x£1, |logx]|
= log 13-: L x"% . for any &> 0, where by ,48, are two constants
F]
depending on &, Therefore, (3.2) is finite if
gxz-\}a D(JE)ﬂI {m -u@ﬁ)

fxe parax <= (G ed)

for aome => 0.
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How recall that X is distributed as 'ﬁ' X; 4 where Xy ,...,Kp

. 1=
are independemnt with densitica as given by (2.3). I is clear

€ > 0 cun be chosen so that B(;®) <=, for 1£igp. Thus B.4)
is truﬁﬂ- (3’ li) is immediﬂte-

Finally, we now go on to vepifying (ii).

For a fixed ¥, let ey-"-“ac.Fix A> O
A
Then Sup g Cu' () =W (F+ ¥ alyay
y

1t

Sup S e - 1)2- (c e¥ —1)2___]E'F p(e¥)ay
=X

c> 0
e?-;
= Sup =12 = (ex=-1T] plxdax eee(3.5)
e>0 Vv,
5]
it is casy to verify that for a fixed A > O, i

A
e
5 Cx-1)22 (ex - 1)3]13111.)& is maximized when
-h
a

e_?“ e
o o= 3 xp(x}dx/ S xgp(x)dx . veslDa6)
G-h eal
a_l
Therefore, defining, gl{h) = j xp(x)dx
¥
e-l
ah
h{?ﬁ.) = j xgp(‘}‘:)ﬂx " uti(?’-?)
.y §

&
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from (3.5), (5.6}, it follows that

, (1) - n(W]*
311'29 5 [W“ (K} - W‘ (:{ ¥ }"Jj q(}t}ﬁ}i = ]: g j LY 0{5 -B}
Yy - ()

__ | 2 Ceg(n -n(n3?
{(11) w11l be verified if we can show j ' k€ =
A h(n) .
- 0 # (ﬁ '9)
E‘ .
For A in an intoervalO< A<a, h(A) | g(n), and 3}5{% arc bounded,

Therefore, it is enough to show that the integral in (3.9} is finite

at the tail near <. Since h(A} 1is incrcasing, and by (2.2),
g{W) -n{r) —> 0 ag A —>=, it is encugh to show that

e}

K g(r) « h(A)|dh € =, We will show this now. We prove this when
o

p = 2, For & general p, the proof is similapr, and will be indicated.

Chqgfipl

!s

(Xg‘l-- }’

h(a)
*h{x <eh

where X, ,%; arc as before.

Therefore, h(x) - gld)

LS W2 Y <
=By X1, ) l%xiﬁ.ﬁ A?zh& . eh}ﬁg
< £ , e &, ¢ Mo
X 2 x; ?g; 17X,
' = B4 (SLX) T KE¢-E(G£ X} I 1x
2 A oA 1, 17 -A oM 2
1 =2

T era (3100
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A
=
Now, Kzg {xg—xz} e X5 dx,
-A
1 ﬂ:k.
*1
- ot }E% »”néx‘z ﬂ?*.w] 11.(‘5.1?}
a 2
2 -A
L
*1
intég:-ating by parts and using [32+1 = a,.
One similarly has,
B @2_K) I -
' 1 1 —y s A
g ¢ X, < e
Xy ¥
.
K Boet |33
K, =~a X, * .
1 Y
e .
“2

1
Now, from (3.10), taking conditional expectations given X, ,X,
respectively in the first and the secord term, cnd wg@%iﬂg indepen~
derwe of X, ,X,, one has,

1
SEh(H—g(M\&h
a .
* 0y "“zfj APt ‘“gﬁf AP,
2 1 e t\Fet _ 1 ¢ S B T
< -—-E[ () £ 0 (g } ]J{
Sj{“e X i
K
o
K. ﬁ"' ~A B+ "“1K‘" w-+1
+-—1E|:e e %—— v e { L ]
*4 2

o a(3413)


http://www.cvisiontech.com

-~ 94 -

We handle the first term in (3.13); the second term is similorly
handled.

The first term in (3.13)

S S
K.K -lﬁ-ﬂ-’t —ﬂx £.-1
2 2 2 1 .71
=‘%‘"‘j[ﬁe ) Xy e % 0y
2 - %4
rx
&
2o 2 Xy B _a.x. B.-1
g__}g :{Ee i"[;acht ax. laxn L..Ga8
x1 T 1 1
o

In (3,14), we integrate first with respect to A, and then with
respect to X4, by interchanging the order of inmtegration.

A
- o E—'::u-—- _*1 ﬁ‘ -I-‘I
Now, e 2% (&= % ax
) 1
1 ,,.
-
i SR PN 5 =h _
= S 2 2 du , by suhstmutine, l:{e%——- = . ave(5415)
Q
o
= =0 3-':-; A 32*1
Similarly, 3 & ) aa
) 1
¢o-aou By, oM o
={ ¢ ? n?an, vy suatituting & = u. ..(3.16)
1 1
*

Therefore, the first term in (3,.13)
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. 1
§ Py
K EL.r o0 ®1 _alg B “ a.m B %X, Pa=1
e ! D o ) 2 =
sl [S ge u - du + egugdu’] xX e Tlx, T ax
P ‘ k 1 1 1
0O { 1
%
K’]KE ](F’:;_.*T:' C [3_;+1 “{11}{1
T, T e &y
*o
e
G i) (B, +2)
a i B+
2 ng ﬂ?‘i
. i < --i(jc'i?}
21-1 tf]._!-+1
{12 C!._i

The second %ern in (3.13) is similarly handled.

This proves (; (h(3) - g(W)dx ¢ =, and the proaf of Thooren 6.3.2

[y
is complcte, when (=2,

For a gereral p, we writec N(a) - z(0) as

' 2 N . o
E{C{.‘ - XD _y ﬁx ?E S
szn;-}{ < 11 < jEEtii-ﬁ-
\ g :
4 v = 1 (3 2
PR G-, R L A
¥ K' ; — X .(: }{: { R —
_,T 5 2 1 3 LN B p
5
+ £ ] - E ] ] ) [ ] - - - L - » L ) - [ ] [ ] L] & - » L] - & L] » [ 4

o
15 a-l/g \ . ;a/.{{ o T 1+
L ey e Xy <X < PA .‘.Apﬁ_& P
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and the same technique goes through, and infact as in (3.17), we
shall be able to exactly calculate the individual fcrns .

A remark on Theorcm 6.3.2 The problem of estimating |[Z| on the

basis of the loss (a- |Z|)°/|2|° remains invariant under the
group of transformations S —> ASA', where J|A] =+1. |S]| is a
maximal invariant on the sample space with respect to this group
of transformations. This is a partial justification for estinmat-
ing |Z| on the basis of |8|, although this group is not campact,
and therefore this does not settle the main problem .
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