A NOTE ON THE STRUCTURE OF A STOCHASTIC MODEL CONSIDERED BY V. M. DANDEKAR*

By D. BASU

Indian Statistical Institute, Calcutta

Mr. Dandekar starts with the stochastic process $x_0, x_1, x_2, ...,$ ad inf. which may be characterised by the following defining postulates:

- Π_1 : Each x_i can take only the two values 0 (= failure) and 1 (= success) and the probability that $x_0 = 1$ is p.
- Π_2 : For any m (or less) consecutive x_i 's at most one can be 1.
- Π_3 : If any m-1 (or more) consecutive x_i 's are known to be zeros then the next x_i is 1 with probability p.
- Π_4 : If $x_0 = 0$ then the conditional stochastic process $x_1, x_2, ...$ is the same as the original process $x_0, x_1, x_2, ...$
- Let $P_n=P(r_n=1), n=0,1,2,\dots (P_0=p,q=1-p)$ and let $\pi(t)$ be the generating function $\sum_{i=1}^{\infty}P_nt^i$.

The recurrence relation

$$P_n = pP_{n-n} + qP_{n-1}, n = 1, 2, ...$$

where $P_r = 0$ for negative r is easily verified.

Hence

or Therefore

It is easily checked that the zeros $\alpha_1, \alpha_2, ..., \alpha_m$ of the polynomial $z^m - qz^{m-1} - p$ are all distinct. Hence we have

$$\label{eq:posterior} \psi(1/z) = z \sum_{i}^{\infty} c_i (z-\alpha_i)^{-1} \quad \text{where} \quad c_i = p x_i \{ m x_i - (m-1)q \}^{-1},$$

10

$$\varphi(t) = \sum_{i=1}^{m} c_i (1 - \alpha_i t)^{-1}.$$

Equating co-efficients of t" we have

$$P_n = \sum_{i=1}^{m} c_i \alpha_i^n.$$

^{*} Dandekar, V. M. (1955): Certain modified forms of binomial and Poisson distributions, Sunkhys, 15, Part 3,

[PART 3

Now, it is easily seen that one of the α_i 's is unity and that all the others lie within the unit circle (provided q > 0).

Therefore lim P. = ---

$$\lim_{n \to \infty} P_n = \frac{p}{m - (m - 1)q} = \frac{p}{1 + (m - 1)p} \text{ (if } q > 0).$$

Mr. Dandekar considers the following problem:

If we make an abrupt start on the stochastic process $x_0, x_1, x_2, ...,$ i.e. if we take an x_n without knowing what n is and without knowing what happened to the previous x_i 's then what is the probability that $x_n = 1$?

The question stated as a bove has no answer. If n were known then the answer is P_n . If we have a priori knowledge about n being a random variable then the answer is $\sum P_n P_n$, where $q_n = P(n = i)$. Mr. Dandekar arrives at the conclusion

$$P(x_n = 1) = p/\{1 + (m-1)p\}$$

by an ingenious argument.

As we have noted before this is the limit of P_n as $n\to\infty$. When Mr. Dandekar makes an abrupt start on the stochastic process $(x_0, x_1, x_2, ...)$ he implicitly assumes that the process is in operation for an indefinitely long time. He then gets a new stochastic process $(y_0, y_1, y_2, ...)$ with the following characteristics:

 Π_1' : The marginal distribution of each y_i is the same—each taking the two values 0 and 1 with probabilities $1-\pi$ and π respectively.

 Π'_a : Same as Π_a with x_i replaced by y_i .

 Π'_s : Same as Π_s with x_i replaced by y_i .

It is easy to verify that the above three properties may be taken as the defining postulates of the stochastic process $\{y_0,y_1,y_4,\ldots\}$. That $\pi=p/\{1+(m-1)p\}$ may then be proved as follows:

By Π'_1 , $P(y_{m-1}=1)=\pi$. By Π'_4 , the event $y_{m-1}=1$ can happen only if $y_0=y_1=\ldots:=y_{m-2}=0$ and by Π'_4 , $P(y_{m-1}=1|y_0=y_1=\ldots:=y_{m-2}=0)=p$. By Π'_1 and Π'_4 , the probability that at least one of the first (m-1) y_i 's is 1 is (m-1) π .

Hence $\pi = \{1-(m-1)\pi\}p$ or $\pi = p/\{1+(m-1)p\}$.

If it is known that r (r < m-1) consecutive y_i 's are zeros then the probability that the next y_i is 1 is

$$1 - \frac{1 - (r+1)\pi}{1 - r\pi} = \pi/(1 - r\pi).$$

(This follows from II, and II,).

I wish to thank Professor C. R. Rao for drawing my attention to this problem.

Paper received : January, 1955.