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Let # denote the set of cdf's on B with denaity everywhere paositive,
let Cf = HWF.G)e Fx F there exists & unigue z* € @ such that
Fix) > ix}or x < ¥ and Flx) < Glxdfor x = 2%}, O = {{F, G e ¥ ¥
& (4, F) e €.} Based on independent random zamples from F and &
(azsurned unkmown), we give distribution-free tests of By F — & versue
the alternatives that (F. Gy O, (F, )= O ar{F,G) e O, U Cg. Next,
assuming that {F, @) € C, (or in g), a point estimate of the crossing
point =¥ is obtained and is shown to be atrongly consistent and aaymptoti-
cally normal. Finally, an asmymptotically dietribution-free confidence inter-
val for x* is obtsined. All inferences are hased on a apecial criterion
functivoul of F and &, which yields =% when moximized (minimised) if
(F @) e O,y [[FG) s Oyl

L. Introaduction. Let 5 denote the set of cdf’s on B with density every-
where positive on .»°C K. [We consider only .= & or ..#= (0, »), aggumed to
be known & priorl.] Let C, = {(F,G) € 5 x 5 there exists a unique z* € .
such that Flx) > (F(x} for x <x® and Flx) < (Fx) for x> x*}, and let

n=(F.G)e ¥x ¥ (G,F)e C,). Assuming that we have independent
random samples X,,..., X, and ¥,,..., Y, from F and G (hoth unknown),
we firat obtain distribution-free (under H, ) testa for H,: F = G versua each of
HA (F,GieC,, HE (F.G)eCy and HAS (F,G)e= O, U 5. We then
obtain point and eonfidence interval eatimates of £*, given that (F, G} = C, or
(F,G) € Cy. The point estimate is shown to bhe strongly consistent and
asymptotically normesl. The confidence interval is asymptotically distribution-
free and has endpoints which are order statistics of the combined sample. All
of our inferences are based on the criterion functional (2.1).

Perhape the most immediate application of these results is to the following
problem. Suppose treatments C {e.g., control) and T (e.g., a “live’ treatment)
are applied (respectively} to two groups of subjects whose lifetimes X, ~ F and
Y, ~ G are then observed. The hypothesis H;* is of interest since (F,G) € C;
means that there exists some lifetime x* such that 1 - Fix) < 1 - Gix) for
all x <x* and 1 — F(x) > 1 — Glx) for ell x > x*, That is, control subjects
have a lower chance of survival to age v < x* than treaiment suhjecta, but a
higher chance of survival to any age x > x*. An example of this particular
setting, given in Dokaum (1974}, is discuseed in Seetion 3.1.
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All of our reaulta are for large samples. Hence we set N = n + m, and for
gsome fixed A € (0, 1}, assume that
{1.1) n=ny=[MNA], m =1, =N— [Ni]

(where [s] denotes the integer part of s). Thia amounts to assuming that
/N A my/N —=>1—-Aas N— = Further, let a;; = nymy/N.

Section 2 contains the main results. All results are stated and proved
assuming that = k. Only minor modifications are required for the case
== (i}, =). These are omitted for brevity. Section 3 contains some applications
of our methods. First, we apply our estimation technigque to the above-men-
tioned survival dataset considered by Doksam, in which the survival funetions
cross. We compare gur estimation results with those of Doksum. In this
process, we uncover the nonrobustness of our estimator to local shifts in the
data. Second, we compare the power of our teat with some competitors for
teating HP and special cases of it. Particularly, we make comparisons with
tests recently proposed by Deshpandé and Shanubhogue {1989} for testing the
gpecial case of HE where x* is known to be the common «th quantile of F
and (7, with o known. Section 4 containa proofs of the theorems. The proofs of
gome technical lemmas required in SBection 4 are given in Hawkins and Kochar
{1990). Software for implementing all of our methods iz available from the first
author.

2. Main results. For (F,.G)= ¥, afixed A € (0, 1) and ¢ € B, let

(21) (1) = [ {P(x) - G(x)] dH(x) ~ [ [F(x) = G(x)] dHy(x),

where H(x) = AF{x) + {1 — A)G{x). All inferencea in this paper are baged on
. The weight function H, may be replaced (without destroying the essential
properties of W} by any increasing bounded differentishle function, vielding
test atatistics and estimators with possibly different (better?) properties than
the ones studied here. Alternatively, different functions of (F — G') might be
considered in the integrand, of. Koul (1978). These variations may bhe inveati-
gated in a future paper.

2.1. Hypothesis tests. Clearly o{t) = 0 for all ¢ under H,. Further, it
is easy to see by differentiation thet under H;', () iz increasing in ¢ < x*
and decreasing in ¢ > x*, with #{x*) = sup{g(¢): ¢ = R} > 0. Similarly,
under H, ¢(¢) iz decreasing in ¢ < 1*, increasing in ¢ > x* and d(x*) =
inf{y{t): ¢ & B} < 0. These observations suggest the following test statistics.
Let #(x}=n""L" (X, <) and G Ax) =m 'L IY, < x) denote the
empirical cdf's, For ¢ & B, define
In—

Bin() = | o | [T B(0) = 6)] )

n +
_Lm[ﬁ‘“{x} - ()] dﬁm(x)},

(2.2)
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where H,(x) = (n + m) YaF (x) + mG,(x)}. For testing the indicated hy-
potheses, we propose:

for H, versus H{}: T2 = aup{r¥,(1): t € R},
for H, versus HE: T2 = inf{¢},(t): ¢t € R},
for H, versua H¥, Ti48) = sup{|qu:m{.!]|; = H}.

Since the bracketed ({ }) factor of ¥, (#) converges to y(t} [see (2.3}), each of
these statisties will be near 0 under H;, but T will be large positive under
H{, T will be large negative under HP and T/4% will be large positive
under H#,

By a standard argument (essentially given in the proof of Theorem 1), one
may show that for F € & the distribution of ¥ (¢} under H is the same as
if F and G were uniform cdf’s. Thus all of the statistics T4, ’i"‘:‘":'j and T A%
are distribution free over % under H,. Of course, their disiributions will be
complicated functions of » and m, so a&mptotic distrihutiuns are necded,

The asymptotic null distributions of these statistics are given in Thecrem 1.
In this direction, let Z = {Z{u) 0 < x < 1} denote a mean-zero Gaussian
process with covariance E{Z()Z2(ul} = 3{u® — ™) — 3(u® + v%) + 2w? -
wip? + L for0sv=zu= L

THEOREM 1. Under H; and (1.1), as N — =,

{1} ij:,}w . Zs 2 aup{Z(u):0<u s 1},
(ii) T = Z, 2 inf{Z(k):0 u = 1),
(i) TAD | Z % qupl|Z(u)]:0 = u < 1}.

For 0<g <1, let Z5 4 Z;, and ZD g denote, respectively, the 1008
quantiles of Zg, Z; and Z,. Since Z= - Z we bave ZIE — Zg, 0 that
Zs 1-g = —£; 5. By Monte Carlcr simulation of the process Z (530 realizations
using the Chn]esk_v method on a grid of 500 points on [6, 1]), estimates of Z ,
and Zp ; were obtained. These are given in Table 1.

Some comparigons of the power of thege lests with ithat of competing tests is
giverl in Section 3.2,

Tarss 1
Approzimare critical wilues for fests
B ZS',I! ZD:F
0.90 0.458 (Lo
.95 0.674 0.587

.99 0743 . 743




CROSEING FOINT OF CDF'& 1629

2.2. Point esttmation of x*. We copsider estimating z* when it is known
{or assumed) that {F, &) = . Binee (F, G} = C, if and only if (G, F) = Oy,
the case (F,G) = Oy may be trivially reduced to the case (G, F) e C, by
reversing the labels F and . Condition (1.1) iz sssumed throughout this
sectinn, for some fixed A € (0,1).

For t = B, let &,,.(t) = (n + m) /nm iz, (8, dy(t) = tfvm'_mNU}, Then it is
proved in Hawkins and Kochar (1990) that regardless of F, 7 &,

{2.3) suphﬁ-ﬂt] - r.’y{ﬁjli =+ 0 asas N— =

ek
If (F,G) e C,, then as noted above, (¢} hag, regardless of & < (0, 1), a global
maximizer at ¢ = x*. In view of (2.3), it i3 natural to estimate £* by any value,
i} say, which maximizes #y (). However, it is easily checked, writing Z,,, =<
Zgy £ o+ = Z,, as the order statistics of the samples X,,..., X,
¥u .-, Y, vombined, that

Jw“} = N_'{ X [F'n,;'[zfa)} - é’mn;(z“!})]
{k-: z,:_r‘","‘-'ﬂ

{2.4)

Z [FnN(ZLkJ} B émn-[zl.’ﬂ]]}=

th: Zpy 20

and hence that §,(t) is a left-continuous step function with jumps at the
Z,'s. Thus the maximum of () is attained in the set {Z,,,..., Z ) £ Oy
or at ¢ = Z .~ Although (2.3) implies that, as N — «, the maximizer becomes
unique, there is a positive probability of multiple maxima for each finite . So,
to make our estimate £% well defined for each N, we set

(2.5) 2% = min{t: d(2) = max[dy(s): s € R]}.

The following result gives the sirong consisiency of 23

Tueorewm 2. If (F,G) € C,, then £5 — «* a.5. as N = =

The next result says that £¥% is asymptotically normally distributed with
mean x* and variance which, as might be expacted, depends dramatically upon
how fast. F and (7 are changing near the crossing point x*. Put p* = Fx*) =
Glx*) and fix) = F'ix}, glx) = G'lx)

TueoreM 3. If (F,G) & O, then

aW3( &% ~ 2%} = N(0, p%(1 - p* 1/ f(5*) —2(x*)}}) asN =,

We see that estimating the asymptotic variance of £3; involves estimating

dengities. Thia problem is essentially circumvented in Section 2.3 by the
confidence interval for x*, which requires no such estimation.
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The guality of the approximation in Theorem 3 was studied via Monte Carlo
simulation. Generally, the results indicate that the approzimation improves as
n = m increases and deleriorates as [f(x*) — g{c®)| decreases. Apparently, Lhe
rate of convergence in Theorem 3 depends on [f(x*) — g{x* ). Although we did
not investigate thig issue thecoretically, some illumination of it is provided by
the proof of the theorem.

2.3. Intervel estitmation of x*. In this section we give an asymptotically
distribution-frec confidence interval for x*, assuming that (F,G) = ,. Such
iz, of eourse, provided by Theorem 3 il consistent estimales of f{x*} and
Z(x*) [or of f{x*) — g(x*)] are available. Our interval does not require such
eatimates, but only eertain guantities computed as by-products of Lthe eompu-
tation of £¥. Our method for obteining this interval is an adaptation of the
method uuthned in SBerfling (1980), page 103, for obtaining a confidence
interval for a specificd quantile. )

To define our interval, let g% = Hyu(£3) [Hy(x) = H, , (x)], and let z,
denote the 1001 — ) gquantile of N((, 1. Define random sequences {K ;1 and
[Kynt for N =1 by

_— N Ky = 5% — etz p5(1 — 553

-

N 7Ky = B + ax'2, [ B5(1 - )] by,

wheres

"E’N =2/Uy, Uy=2 2 Jn'f{'f"x[zqmﬁ?‘-n} - J"N{zﬁ}}}a

(EAy
ageslis [ pb] wom

dyv. = (i/N-p%5) [ £ (i/N-p%)

fEAL
and {4} is a sequence of conatants satisfving
(2.7} Ay = O(N"Y3*) some § » 0.

Finally, for j = 1,2, let K,y = K’y if K'y is an integer and = [K'y]+ 1,
otherwise. Then our asymptotic 100(1 — 2«¥% confidence interval is j awla) =
[z”irn ke Z[Kg.\']]'

THEOREM 4. If (F,G) e C,, then under (1.1) and for any {Ay} satisfving
(2.7), gg N — o,

(i) Plx* &Iy (a)} »1 - 2a,

[p*(1-p }]”2}
- 108 _ _ gn,—12
(1) a¥ ik, — Lk — 20872, “ g2} — Flz%) a1,
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TanLE 2
Performance of confidence infervad D, 000250 F = N0, 4), G = N0, 1)

Coverage probability Length
n I (0025 T (0.025) 10,025 T (D.0Z5)"
20 0.841 0919 412 311
500 0.923 0,941 2.91 1.97
100 0.934 {1951 1.70 1.9

*Length = 2 (198 " (p*(1 — p*3/1f(x*) — gla™ P

Part (i} says that I, («)is asymptotically distribution free. Part (ii} says that
the length of F.(a) is asymptotically that of the 100(1 — 2&)% confidence
interval, say Jy(e), 2% + a3’z [p*(1 — p* )% /1glx*} — flx*)|, which de-
rives from Theorem 3 if p*, g{e*) and f{x*) are known.

Table 2 gives Monte Carlo estimates {(based on 1000 trials) of the coverage
probability and average length of I,{0.025) (with A, = N~} for a typical
(F,Gye C, and m = n. These are compared with the length and Monte
Carlo—estimated coverage probability of the interval Jf,(0.025). {Note that
both intervals have nominal 95% coverage probabilities.) Generally, we sce
that 7,(0.025) compares well with .f,(0.025) if n = 50. Further Monte Carlo
results, given in Hawkin: and Kochar (1990}, indicate that the coverage
probability of T, (a) deteriorates as [f(x*) - g{x*)| decreases.

3. Some applications and evaluation

3.1. Life distributions. We first apply our procedures to the survival prob-
lem of Doksum {1974} noted in Section 1. The data [due to Bjerkdal {1960)] on
n =65 control and m = 60 treated {(with tubercle bacilli) puines pigs are
displayed in Doksur’s paper, From the graph of the empirical ¢ds, the edf”"s
F and {7 of the control and treatment group lifetimes apparently eross onee at
about 160, the value of T = 2.07 is significant at the 0.01 level. In this
gituation, where crosaing ia apparent, primary intereat would be in eslimating
the crossing point x*. We obtained £} = 114 and (using A, = N~'"*) the
approximale 95% confidence interval 1,,(0.025) = [52, 160]. This value of £3; is
surprising in light of the empirical edf plot. By comparison, using Doksum’s
method {which indirvectly estimates x™), we obtain from his Figure 2 Lhe
estimate 130 (approximately} for x* and 90% confidence interval {— ==, 250].
{His confidence interval hag no lower limil.)

In trying to uncover the source of cur apparently “had” estimate £3,, we
noticed that the guinea pig dats contain zeveral ties, Since our assumptions
shoul F and {7 imply that ties occur with probability 0, we decided to break
the ties at random by replacing X, by X' = X, + U, /1000, ¥; by Y =¥, +
W, /1000, where U, .. ., U, w,..., W, areiid U0, 1) variables. The resulting
estimates are much more appealing: £5 = 181.0, I, (0.025} = [114, 291]. This
dramatic change surprised us until we noticed from (2.4) and (2.5) that #3 will
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clearly be nonrobust to small shifts in the data. Ome might poasibly derive the
influence function of £}; we expect the local shift sensitivity to be +=.

3.2. Power comparisons for HY and related hypotheses. To the authors'
knowledge, there are no competing tests aimed specifically at testing H,
versus any of H, HE or H#E. Of course, certain omnibus tests, such as the
Kolmogorov-Smirnev test, may be viewed as competitors in a general sense.
Further, Deshpandé and Shanubhogue (1989} have devised two testa for H,
versus HD® (say), which is a special case of HF in which it is assumed that
F(x*) = G(2*) =  for some known « (i.e., F and & have common a-guantile,
gay £,). Hence it is of interest to compare the power of our test for H; versus
HE to that of the Kolmogorov—Smirnov teat and the Deshpandé—
Shanubhogue tests.

The first Deshpandé-Shanubhogue test is based on

T.= [ G — B dhx)

+ f;ﬂ{x}[l - J“(;;—n%—l-{?m[x])]d@m{xL

where o/ (1} is the indicator function of (0, &]. T, is an estimate of
8% = [ G(x)dF(x) + | F(x)dG(x),
-m gﬁ

which equals } under H, and strictly exceeds § under HP¥ Thus H,
is rejected in favor of HD® if T, is “large.” The second Deshpandé—Shanub-
hogue statistic is the following medification of the Mood (1954) scale statistic:

Ar

M, = E {i-(N+ 1)‘5’-'}2WN:':

i-1
where Wy, equals 1 if Z;, 1s an X observation and equals 0, otherwise.

Another special case of Hf arises in the context of the classical scale
problem. Consider HY: Flx} = F%x — £,), G(x) = F%#lx — £, 8 < 1, where
F' is an unknown increasing odf satisfying F"0) = «. Then under HY,
(F,G) e Oy with x* = £, making HY a special ease of H?® if & is known
and a special case of HE regardless of o. Our test of M, versus H® may thus
be viewed as 2 competitor of the seale teats due to Mood {1954), Ansari and
Bradlay {1960) and others. Of course, since these latter tests use the informa-
tion about the known common e-guantile and sre simed directly at scale
alternatives, they may be expected to have higher power against H;® than our
test.

Table 3 gives the resunlta of a amall Monte Carlo gtudy comparing the power
of our test (HK) hased on T2 with that of the tests of Kolmogorov and
Smirnov (KS), DS (DST denotes the test based on T'*_, DSM the test based on
M_), Mood (M} and Angari and Bradley (AB). All powers are estimates based on
1000 Monte Carlo trials at the nominal 0.05 significance level, with »n = m.
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TabLe 3
Fower compartsons for Hy versus Hf’ special coses
{nomingd significance level is 0.05)

1633

Eatimated puveer

F G e HE KS DST DSM M AR
W0, 1) N(D4) 20 0182 0122 (488 D638 0798 0.728
B0 0546 039 0941 0981 0890 0.968

100 0845 0752 0999 1000 1000  1.000

Exp* Weib 30 0237 0188 0301 0484 D645 0,580
50 0624 0537 0792 0864 05944 0800

100 0956 0883 0887 0995 0996  0.992

*F — Exponentialimean = 2/w772), F = Weibulin =2, 4 = 1% x* = 27172 = 1.13;

meani 71 = mean{ ).

Large-sample eritical values are used in all cases, Betting 1 is a acale alterna-
tive with « = 0.60, for which M and AB are apecifically desighed. The power
results reflect this fact. Setting 2 satisfies (F,G) = O, but is not a acale
alternative (although F and & have the same mean}, Predictably, DST and
DSM have higher power than HE, since they use knowledge of a (here
a = 0.72) which HK does not require. Surprisingly, M and AB have higher
powers than the other tests, even for this nonscale alternative. Comparing HEK
with KS, we see that HK has slightly higher power than KS, although for

n = 20, KB 15 slightly conservative, making comparison difficult.

4. Proofs of the theorems,

Proor oF THEOREM 1. For 0 < p < 1 put

W9 =y e [ P8 - 6] aF(3)
+er-1<p;[é"‘(x] - B x)] dF(x}],
(4.1) —_—
Boulp) =y { JT ) ~ G()] dB, u(2)

+f |Gt = Bui) dﬂmrxj}-

Then T 4 = suplg?,(p) 0<p<1), T8 =infli® (p» 0 <p <1} and

TAB) = gup(l§?,(p): 0 < p < 1},
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WB first deal with l,ﬂr U (p) Via the transformations u = F(x), U, = F(X)),
= F(Y,), and defining

Wi(u) = (nh’mm’N}lﬂfnﬂvl ﬁ [I{U; = u) —u]
i=1

!

_m\,]E[I{V‘:H}_RJ} Dcuxl,
we have
(42) B8 (p) = [ Wylu)du - f;m(quu, 0=p=l.

Now it ia classical that if W, = {W,{z): 0 < u = 1), then
(4.3} W=, W as N - x,

where WP denotes the Brownian bridge process and -+, denotes weak conver-
gence of measures on 13 (f0, 1]); see Billingsley (1968). Further, by (4.2),

(4.4) biama(P) = (TWy)(p), O0=p=l,
where T B{0, 1]} = B0, 1]} is defined by
(Th){p) = Lph(u) du — flhl[u} du.

One may verlf_v that T is Skorohod continuous (e, i,y —g ko implies Th, -4
Th). Put &5 = {:.:r““ {pX 0= p< 1} Then, by (4.3} and (4. 1),

(4.5) D0 = TW, = TW® as N - =
Now put $% = (47 . (p¥ 0 < p < 1}. Then [writing Hy(x) = A, . (x)]
sup |d2, . B) — B2, (p)]
rzp=1

(4.6) = sup |f Wy (e )d(Hy(F Hu)) —~ )

b=p=1l

+ sup | [ Wn(u)d(By(F Y(u)) - u)|.

NzZp=1|'p

Further, we may [upon assuming with no loss of generality under A, that F is
the X0, 1} distribution] repeat the steps of Cedrgé and Révész (1981), page
187 [beginning at line 3, with their B3y} replaced by our W,{u)}, to obtain
that the guantity in (4.6) is o,(1). [This will require using (4.3} and its
implication that {Wy} is tight.) Expreasluns {(4.5) and (4.6} thus imply that

(4.7) By =, TW® as N - =,
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Now (1), (ii) and (iii) all follow from (4.7) by the Skorohod continuity of the
“sup”, “inf” and “sup| - | functionals, if we verify that TW" =; Z. That
TW?" is Gaussian is immediate, as is the fact that E[(TW "X p)l =0, 0<p = 1.
The desired covariance structure follows by writing

TWO(p) = [ [W(x) — uW(0)] du - ['[W(u) - uW(1)] au,
i o

where W = {W(): 0 < u < 1} is the Wiener process, and using formulas such
as (10), page 133 in Hoel, Port and Stone (1972) to evaluate
cov( TW (p), TW (p')). O

Proor oF THEOREM 2. We claim that
{4.8) #i(£%) = (x*) as. implies that £} - x* as.
Given thie claim, the result follows by noting that
i 3%) = o) <0 (8%) — bl #) |+l 28) - w(x*)]

and ohserving that the first term on the right side is o{1) a.s. by (2.3}, while
the second term equals

supdiy(t) - sumar(r)\ < sup|dn(t) — ¢(8)| = o(1) as,
t i f
again by (2.3,
To prove (4.8), we claim that ¢ has the following property:
{4.9) ¥ &> 0,37 > 0such that, for every x,
iz ~x%| = ¢ implies |(x) — ${2*)| = 7.

Clearly property (4.9) gives (4.8), since it implies that {x,} — ¢{x*) ensures
that x, —» x® for any sequence {x,}.

To prove that o has property (4.9), we follow the argument of Parzen
(1962}, Theorem 3.4, If {4.9) did not hold then there would exist an ¢ > 0 and
a sequence {x,} such that

(4.10) |l =%y — {x)] < 71
and
{4.11) le* — x| = &.

Now since (¢} ia decreasing in { > x* and increasing in # < x*, jx,| - =
clearly makes (4.10} impossible, so we can assume that ix,| < M, say, for all £.
Thus (x,} contains a convergent subsequence x, — £, with |x* — £| > £, But
then (4.10) implies that @(£) = ¢(x*), contradicting the fact that x* is the
unigque maximizer of . O
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ProoF oF THEorEM 3. First, write by Taylor's theorem for some i,
between £% and «* [noting that F(x*) — G(x*} = 0],

(4.12) @X*[F(#%) - G(a%)} = [ F(dn) — g(£x) ek (£ - =*).
We then claim that
A(F(#) — G(5)) = a¥*{G (+*) — Gz}

(4.13)
— a}¥{ B, (x*) - P(x*)} + 0,(1).

Further, gince (F,G) € C,, for x < ™ we have
0 < F{x) - G(x) = F{x*) — GLa™) + [ F(x*) —g(x*)](x —2*) + ofx — ™),

which implies that f{x*) < g{x*). Thus, since the two terms on the right side
of (4.13) are independent. and trivially asymptotically normal by the iid central
limit theorem, the result follows from {(4.12) (4.13) and Slutsky’s theorsm
(using Theorem 2),

The tough part is establishing (4.13), for which we need the following
technical results, proved in Hawkins and Kochar (1990).

LeMma 1. If (F,G) € €, and (1.1} holds, then as N — =,

N[ B, (#4) — F(4%)]

(i) .
— N2 £, (x*) - F(x*)] = 0,(1),
N2 G, (&) — G(£%)]
{ii) : .
- NYV2[ G, (2%} - G(2*)] = 0,(1),
(iii) N'ZB, (2%) — G, (2)] = O(N 172,

Given these results (4.13) part is immediate, since upon multiplying the
expression in part (i} by (—1) and adding to that in part (i), we get

N F(2) - G(#)] + NG, (45) - B, (5%)]
- N'2[G,, (x*) - G(a*)| + NY2IF, (x%) - F(x*)] = 0,(1),

which, in view of part (iii} and the fact that o, = O{N"%}), ia the same as
{4.13). O

Froor oF THEOREM 4. The whole thing rests on the following technical
lemma [proved in Hawkins and Kochar (1990)], which is an adaptation of
Serfling (1980), page 104, expression (1).
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Levyia 2. Under the conditions of Theorem 4,

) A 1_{'2
1 [BR(L - BY)] _
{a} z(Ku-:’J - {ixf - z:ra’h’uz £l I*} B f[.t*} = OP{GNUE

A Iy )
{b} ZLKM-] . (:'EN * guah_lfﬂ g(x*] T f(xs}

).

=a(ax'?)

Given this result, part (ii} follows easily. Regarding part (i}, we have
P{x* & I-"'-'[-u}} = P{Z{Km‘J = I*} 2 P{zllxmr] i I*}.
But by Lemma 2(a),
it 2 0) N
“gle*) — f(=*} |

as N — =, the convergence holding by Theorem 3. It zimilarly follows that
P{Z . < x*}—> a, giving part (i). O

Pz,

Koy ¥} = P{af{z[f} — Y o f1).>

Kaw

Remarks. It has been pointed out to us by an Associate Editor that
Theorems 1 and 3 may alzo be proved hy the statistical differential method,
following Gill (1989). We do not attempt this here or in Hawkins and Kochar
(1990), where only standard results are utilized,
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