A Generalised Biane Process

K. R. Parthasarathy

Indian Statistical Institute, 7 S. J. S. Sansanwal Marg, New Delhi 110 016

Using the methods of quantum probability in a toy Fock space as outlined in [2] and the theory of finite dimensional representations of the 3-dimensional simple Lie algebra $sl(2,\mathbb{C})$ Ph. Biane [1] constructed a quantum Markov chain in discrete time and derived a classical Markov chain which is the discrete time quantum analogue of a classical Bessel process. Here exploiting the Peter-Weyl theory of representations of compact groups we extend Biane's construction to an arbitrary compact group G and derive a classical Markov chain whose state space is the space $\Gamma(G)$ of all characters of irreducible representations of G.

Let G be a compact second countable topological group and let $g \to L_g$ denote its left regular representation in the complex Hilbert space $L_2(G)$ of all square integrable functions on G with respect to its normalised Haar measure. Let $\mathcal{W}(G)$ denote the W^* algebra generated by the family $\{L_g, g \in G\}$ and let $\mathcal{Z}(G)$ be its centre. Denote by F(G) the countable set of all characters of irreducible unitary representations of G. For any χ let U^χ be an irreducible unitary representation of G with character χ and dimension $d(\chi)$. If $\chi_1, \chi_2 \in F(G)$ the tensor product $U^{\chi_1} \otimes U^{\chi_2}$ decomposes into a direct sum of irreducible representations. We shall denote by $m(\chi_1, \chi_2; \chi)$ the multiplicity with which the type U^χ appears in such a decomposition of $U^{\chi_1} \otimes U^{\chi_2}$. Define

$$p_{\chi_1,\chi_2}^{\chi} = \frac{m(\chi,\chi_1;\chi_2) d(\chi_2)}{d(\chi) d(\chi_1)} . \tag{1}$$

Then

$$\sum_{\chi_1 \in G} p_{\chi_1, \chi_2}^{\chi} = 1 \quad \text{for each } \chi, \chi_1 \in \Gamma(G) .$$

In other words, for every fixed $\chi \in \Gamma(G)$ the matrix $P^{\chi} = ((p_{\chi_1,\chi_2}^{\chi}))$ is a stochastic matrix over the state space $\Gamma(G)$. In each row of P^{χ} all but a finite number of entries are 0 and each entry is rational. Inspired by Biane's construction in [1] we shall now combine the Peter-Weyl theorem and the methods of quantum probability in order to realise explicitly a Markov chain with transition probability matrix P^{χ} in the state space $\Gamma(G)$.

As a special case consider $G = SU_2$. Let χ_n denote the character of the "unique" irreducible unitary representation of G of dimension n. By (1) and

Clebsch-Gordon formula

$$p_{\chi_i,\chi_j}^{\chi_2} \ = \left\{ \begin{array}{ll} \displaystyle \frac{i-1}{2i} & \text{if} \quad j=i-1, \\ \\ \displaystyle \frac{i+1}{2i} & \text{if} \quad j=i+1, \\ \\ 0 & \text{otherwise} \, . \end{array} \right.$$

This is the case covered by Biane [1].

To realise our goal we recall that by Peter-Weyl theorem $L_2(G)$ admits the Plancherel decomposition:

$$L_2(G) = \bigoplus_{\chi \in \Gamma(G)} \mathcal{H}_{\chi}$$

where dim $\mathcal{H}_{\chi} = d(\chi)^2$, L_g leaves each \mathcal{H}_{χ} invariant and $L_g|_{\mathcal{H}_{\chi}}$ is a direct sum of $d(\chi)$ copies of the representation U^{χ} . If π_{χ} denotes the orthogonal projection onto the component \mathcal{H}_{χ} then

$$\pi_{\chi} = d(\chi)^{-1} \int_{G} \chi(g) L_{g} dg \qquad (2)$$

thanks to Schur orthogonality relations. Furthermore the abelian W^* algebra Z(G) is generated by the family $\{\pi_{\chi}, \chi \in \Gamma(G)\}$.

Fix $\chi_0 \in \Gamma(G)$. Let U^{χ_0} act in the Hilbert space \mathcal{H} . Denote by ρ the density matrix $d(\chi_0)^{-1}I$ in \mathcal{H} . Fix a positive integer N and consider the Hilbert space $\mathcal{H}^{\otimes N} = \mathcal{H} \otimes \cdots \otimes \mathcal{H}$ where the tensor product is taken N-fold. Denote by $\mathcal{B}_{n]}$ the W^* algebra generated by all operators of the form $X_1 \otimes \cdots \otimes X_n \otimes I \otimes \cdots \otimes I$ where X_i are bounded operators in \mathcal{H} . Then $\mathcal{B}_{1]} \subset \mathcal{B}_{2]} \subset \cdots \subset \mathcal{B}_{N]} = \mathcal{B}$ yields a finite filtration in \mathcal{B} with conditional expectation maps $E_{n]}: \mathcal{B} \to \mathcal{B}_{n]}$, $1 \leq n \leq N$, defined by

$$E_{n]} X_{1} \otimes \cdots \otimes X_{N} = \left(\prod_{i=n+1}^{N} \operatorname{tr} \rho X_{i} \right) X_{1} \otimes \cdots \otimes X_{n} \otimes I \otimes \cdots \otimes I$$

for all $X_i \in \mathcal{B}(\mathcal{H})$ and linear extension. Thanks to Peter-Weyl theorem there exists a unique identity preserving and continuous * homomorphism $j_n: \mathcal{W}(G) \to \mathcal{B}_{n}$ satisfying

$$j_n(L_g) = U_g^{\chi_0} \otimes \cdots \otimes U_g^{\chi_0} \otimes I \otimes \cdots \otimes I$$
 for all $g \in G$ (3)

where $U_g^{\chi_0}$ appears n-fold and I, (N-n)-fold. Then

$$E_{n-1} j_n(L_g) = j_{n-1} (d(\chi_0)^{-1} \chi_0(g) L_g)$$
 for all $g \in G$. (4)

Thus there exists a completely positive map $T: \mathcal{W}(G) \to \mathcal{W}(G)$ satisfying

$$E_{n-1} j_n(X) = j_{n-1}(T(X)), \quad X \in W(G),$$
 (5)

$$T(L_g) = d(\chi_0)^{-1} \chi_0(g) L_g \quad \text{for all} \quad g \in G . \tag{6}$$

From (2) and Schur orthogonality relations it now follows that

$$T(\pi_{\chi}) = [d(\chi_{0})d(\chi)]^{-1} \int \chi_{0}(g)\chi(g)L_{g} dg$$

$$= \sum_{\chi' \in \Gamma(G)} [d(\chi_{0})d(\chi)]^{-1} d(\chi') m(\chi_{0}, \chi; \chi') \pi_{\chi'}$$

$$= \sum_{\chi' \in \Gamma(G)} p_{\chi, \chi'}^{\chi_{0}} \pi_{\chi'}.$$
(7)

We now establish the following lemma.

Lemma 1. For any $m < n, Z \in \mathcal{Z}(G), X \in \mathcal{W}(G)$

$$[j_m(Z), j_n(X)] = 0$$
 (8)

In particular, the family $\{j_m(Z), m = 1, 2, ..., N, Z \in \mathcal{Z}(G)\}\$ is commutative.

Proof. We have for any $g, h \in G$,

$$\begin{split} [j_m(L_g), j_n(L_h)] &= \underbrace{[U_g^{\chi_0} \otimes \cdots \otimes U_g^{\chi_0}}_{m\text{-fold}} \otimes I \otimes \cdots \otimes I, \underbrace{U_h^{\chi_0} \otimes \cdots \otimes U_h^{\chi_0}}_{n\text{-fold}} \otimes I \otimes \cdots \otimes I] \\ &= j_m([L_g, L_h]) \underbrace{I \otimes \cdots \otimes I}_{m\text{-fold}} \otimes \underbrace{U_h^{\chi_0} \otimes \cdots \otimes U_h^{\chi_0}}_{(n-m)\text{-fold}} \otimes \underbrace{I \otimes \cdots \otimes I}_{(N-n)\text{-fold}} \end{split}.$$

Since Z can be approximated by linear combinations of L_g , $g \in G$, it follows that $[j_m(Z), j_n(L_h)] = 0$. Since X can be approximated by linear combinations of L_h we have (8). The second part is immediate.

From (3), (5) - (7) and Lemma 1 we have the following theorem.

Theorem 2. For any fixed $\chi_0 \in \Gamma(G)$ let the W^* homomorphisms $j_n : \mathcal{W}(G) \to \mathcal{B}$, $1 \leq n \leq N$, be defined by (3). In the state $\rho^{\otimes N}$, where $\rho = d(\chi_0)^{-1}I$, the sequence $\{j_n, 1 \leq n \leq N\}$ is a quantum Markov chain in the sense of Accardifferigerio-Lewis with transition operator $T : \mathcal{W}(G) \to \mathcal{W}(G)$ satisfying $T(L_g) = d(\chi_0)^{-1}\chi_0(g)L_g$ for all $g \in G$. T leaves the centre Z(G) of $\mathcal{W}(G)$ invariant. The family $\{j_n(Z), Z \in Z(G), 1 \leq n \leq N\}$ is commutative. In the state $\rho^{\otimes N}$ the sequence $\{j_n|_{Z(G)}, 1 \leq n \leq N\}$ is a classical Markov chain with state space $\Gamma(G)$ and transition probability matrix $P^{\chi_0} = ((p_{\chi,\chi'}^{\chi_0})), \chi, \chi' \in \Gamma(G)$, defined by (1).

Remark. We can replace the W^* algebra $\mathcal{W}(G)$ by the * unital algebra $\mathcal{U}(G)$ of left invariant differential operators on G if G is a compact connected Lie group. In such a case $\mathcal{Z}(G)$ can be replaced by the centre z(G) of $\mathcal{U}(G)$. If we choose this infinitesimal description, put $G = SU_2$ and choose χ_0 as the character of the unique 2-dimensional irreducible unitary representation of G, then we obtain Biane's example in [1].