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Abstract

The notion of a quanfum random walk in discrete tme s lormolated and the passge o @
connuous time diffvsion limit is cstablished. The limiting diffusion is described o terms of
sodutions of certain quantum stochastic differential equations.
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DHFFERION: QUANTIIM MAREKOY SEMIGROUP,; BOSON FOCK SPACE

1. Introduction

Suppse £, £+, - - - 15 a sequence of Li.d. real-valucd random variables with
mean {1 and variance unity. For any fixed positive integer n and x € B consider
the stochastic process

SAhxi=x il UZne<1,
eAATHE A E A4+ E) i jEarj4 L
Jo=l B e

It 15 a well-known resolt of classical probability theory that the probubility
measure of the stochastic process {5,(r, x). 1Z0} converges Im a suitable
topology to the probability measure of the process {x + wi(t), ¢ =0] as p— =
where {w(t), 1 =0} is the standard Browman motion process, In other words
the standard Brownian maotion process statting [rom x at time 0 can be
obtained as the limit of a random walk starting from x after a suitable rescaling
of length and time. Our aim is 1o indicate how such a passage from
diserete-time random walks to continuous-time diffusions could take place in
the context of quantum probability where evolution takes place in the algehra
of operators in a Hilbert space according to automorphisms induced by unitary
operators. To this end we first reformulate the above-mentioned eliassical
example in the language of operators in tensor products of Hilbert spaces and
then show how this |cads 1o quantum diffusions by using the ideas of boson
stochastic calenlus developed in [3] and outlined ot grealer length in [7].
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2. Classical random walk in the language of quantum probability

Let u be a probability measurc on B. If §,, &5, - - - is 2 sequence of i.i.d.
random variables with distribution @ then the path described by the random
walk starting from x and governed by the law p is deseribed by the sequenee

x,x+§-‘,x+'§|+§-1,“',I+E|+§z+“'+§u,‘

To describe such a dynamics in the language of unitary operators in a
Hilbert spuace we introduce the special Hilbert space

H=LAR)Y B Lo(p) B L) B - -
= Lo(R) @ L,(P)

where P=p % ---. It may be noted that the countable tensor product of
copies of Li(u) is taken with respect to the sequence of unit vectors each of
which iz the constant function 1 in Lyp). Define the unitary operators
W(m, n) in # for each 0=m < a <2 = by putting

(2.2) [Wim, nhulix, w)=wlx — {50 +---+ &1, w)

where w = (£,, &5, - - -) denotes the sample point of the i.i.d. sequence {§;} of
random variables. Introduce the shift & by putting

2.1

{23] H(Eh ‘22; o ] = (&2: &_‘L: " }
and define the indoced isometry § on # by
(2.4) (Su)(x, ar) = ulx, Buw).

Then we have
@.5) Wim, n )W, m)=W(l,n) for I<<m<n
SWim n)=Wim+1n+1)5
If iy, vp€ Lo} then
(g @ 1, Win, m)v, @ L)y = (g, T"™vg}
whete 1 is the constant function in L.{P), {-, -} denotes inner product and T
denotes the operator in L.{R) defined by

(Tuo)(w) = [ ualx - yye(ay).

Thus the stationary Markov contraction semigroup {T°.nme .} which
describes an irreversible evolution in L.(R) is derived from a reversible
evolution of unitary operators {Wim, a), 0=m <n <=} in the larger Hilbert
space L.(R) & L,(P) satistying the covariance condition in (2.5) under the
shift isometry 5. The family {W(m, n)} describes o discrete Heisenberg
dynamics in which an observable X, at time m evolves to the obscrvable
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X, =W(m nyX, Wimn) at time n>m, where T denotes adjoint. In
particular, if Xj, is the multiplication operator defined by

(X x, w)=xulx, w)
then W0, m)Y' X, W(0. n)= X, 1s the multiplication operator defined by
(X eMx, y=(x+E +- -+ E Julx, m)

and Wim, ;)X Wim. r)=24, for all m<n In other words the unitary
evolution {Wim, n)} implements the change of pesition from x + 5,4 - -+ +
£ attime mtox + & +---+ 5, at ime 1 of the classical random walk and
hence gives a description of the rundom wilk in the lTanguage of guantum
probability.

To make the passage from discrete to continuous time we assume that
kS =10, [E.'_Ef' = 1 and proceed as follows: for any 0 =5 << ¢ < « define the unitary
operators W (s, t) by

[Wais, thuel(x, w) =ulx - "_i{.'-t-r'li toeet &)y w)

+1
(2.6) it jin=sel

Ehfm=ra—

=u{x. w) wtherwise.

In view of the rescaling of time we denote the shift isometry § defined by
(2.4) as 8., and write 5;, = {5, }'. Then

Wi i)W, 0=Wis,a) if s=r<u
(2.7 S Wals, )= Wols + fin. (4 j/n)S,  j=0,12,---.

We may compare {2.7) with (2.5} and say that [W,(s, {}} is u contiouous-
time cynlution by unitary operators covariant under shifts by j/r units of time
forj=10,1,2, - Ttis to be noted that W, (s. r} is strongly right-continuous in
i for cach fixed 5. We now wish to analyse the asymptotic behaviour of
IW. (5, Nt as n— =

Borrowing the language of Meyer in [7] we introduce the interesting and
fruitful notion of ‘toy colerent vactors’ in L.(P). For any fin the space C.(E )
of all complex-valued continuous functions on B, =] =) with compact
suppart define the associated toy cofterent vectors v, (f) by

-

{2.8) w1 =@ (1 +a7¥(j/r)E). =12

=1
in Lo(#). Then {y,(f), f € CA15,)} is a total family in L.{P) for each » and
(2.9) Cyn(F) yle )y = L1 {1+ "R

where {-,-} denolcs inner product which is conjupate lincar in the first
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variable. It is significant that

{2.10) ﬁiﬂl {u(f) ¥a(2)) =exp ffﬁ

where [?f denotes the Riemann integral of f over [a, #]. Furthermore for
iy, Y € Lo(R) and toy coherent vectors 4, (f), y.(g) we have

{10 ® Y (), Wls, )11y @ yrlg))

i J[[ﬁ,ﬂ(x}ug{x —n Y E e ED

(2.11) " f[ [1+4 r~5(rimE[1 + n te(rin)E |dx

scﬂgi—cgr{hrl.

H. A H

if

|
A

Dcfine the unitary Fourier transform F on L(R) by

@)= @) exp () =), w e La(R)

and denote the characteristic function of the distribution p by ¢. By
Plancherel’s theorem (2.11) becomes

(110 ® WlF), Wals, Do ® al2)}
= [Z070u) TT {#7h) —ine (=9 )F + )0 Im)

—n”' g (nThy)fg(rin)}
x 1 . [1+ " Fe(rin))dy

L 3% I WEEEH

(2.12)

where j, k, 5, ¢ satisfy the conditions in (2.11). Using the mean value theorem
for real and imapinary parts of ¢ and letting #— = in (2.12) we obtain

].i]'ﬂ {uu ® wR{JF}J Wn(-!;: Ifjlvll.'l E‘ wn{g}}
(2.13) i

= J. Bl ¥ )Y0ol ¥) exp { e I}If Gret -’:ng1

Elementary properties of the standard Brownian motion process {wif)}
enable us o express the rght-hand side of (2,13} as

[ aesn e exn (v - wisil + [+ =1 72+ g
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Now an application of Plancherel's theorem ta the above integral shows that

lim {“{I E’ w“{f}r “‘T.(S- {]UD 'E' "J’u'[E)}

n—=

(2.14)
= [ adyonte = wt) = wis Py gdarde(w)

where £, is the probability measure of the standard Brownian maotion and

(2.15) i Fi(w) = exp (J:ﬁiw—%ffz)

is the coherent vector associated with fin L,(F). Now consider the Hilhert
space

H =LA@ Lz{Pn}

and introduce the umtary operators Wis, 1), 025 =1 <<« defined by

{2.16} [Wis, ulix, wh=ulx - [w() — w(s)]. w).

Then we can express (2.14} as

(2.17) l]rﬂ {ag @y, (f ), Wails, 10, @ yrig)}

= {u, @ B(f). W(s, 1)0a @ wig))
for all uy, vye Ly(R), f, g e C.(l,). Furthermore
(2.18) Wit )Wis, ) =W n) for UEs<i<u-<r
It §, denotes the shift isometry defined in &' by
(5, u)x, wi=ulx. B,w)

{Rwit)=wit+h)y—wih) foral E=0D
then
(2.19) S Wis =Wy +h, 1 + )5,

Equations (2.18) and (2.19) imply that {W{s, £)} is 2 unitary evolution in %"
covariant under shift in time. In the sense of (2.17) the unitary evolution
{W.(5.r)} defined by the rescaled random walk in (2.6) approaches the
covariant unitary evolution {Wis. )} detined by the stundard Brownian
maotion in (2,16},

The asymptotic result (2.17) suggests the {ollowing notion of convergenee
for a sequence of unitary evolutions in varying Hilbert spaces.
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Definition. Let #,, n=mw, 1,2, --- bc a family of Hilbert spaces and let #
denote an index sct. Suppose that for cach fixed a there is & total family
{4, o @ € F} of vectors in &, and a family {W, (s, 1), 0=s=¢ <] of unitary
operators in 3, such that W,{(s, ¢} is strongly right-continuous in ¢ for fixed
s, Wi, s)=1 and W,(t, ))W,(s, H=W,(5, 0) for 0=s=i=u<x. We say
that {W,(-, -)y..} converges to {W.(-, <), y.. } as n— oo if

il_lﬂ {wn,mr Wn(js ﬂﬂ"n.ﬁ} = {wm,nu W..,.{.’i‘, I}w“.,ﬂ}

foreach o, fefanddEs St <=

Remark. In the example that we have discussed it is only apparent that the
Hilbert space # defined by (2.1) is not varving. In vicw of the scaling of time
involved in (2.6) the number of times the tensor product of Lo(p) is taken in
an interval of unit length is equal to r at the sath stage. 1o the limit we abtain
therefore the continuous tensor product La(F).

The notion of convergence of operators in varying Hilbert spaces introduced
here has also been independently armived at recently by A. Bach and L.
Accardi in their seminars at the University of Rome IL

3. Passage to Weyl operators from a quantum random walk

Since all the discussions hereafter will be concerned with Hilbert spaces we
fix our notations as follows. All the Hilbert spuces will be taeitly assumed to be
complex and separable with inner product ¢-, -} which is conjugate lincar in
the first vaniable. For any Hilbert space § we denote by 28(h) the £™*-algebra of
all hounded operators on §. For any operator A € B(h) we write 4' for its
adjoint. By C.(R ., b) we meun the space of all continuous maps from [0, =)
into & with compact support. Suppose h=16 & ;@ - - - is a countable tensor
product of Hilbert spaces by, f=1, 2, - - - with respect to the sequence {£);} of
unit vectors &, € b, f=1,2, - +. If A isan operatorin b; @0, & - -- @ §; the
ampliation A of A to § is the unique operator satisfying the relations

() Bu, @ - e A By 8-
= {1, Ru, @ - Qu, Av, v, @ Qv r [1 ww)
[LIFREY

for all sequences {u,}, {i,} such that u,, v, € b, lor cach a4 and ¥, =v, = o,
for all but a fnite number of 1's.
We start with the simplest ¢case and construct a ‘quantum random walk’ in

(3.1 H=2DCIR. -
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where the countable tensor product is taken with respeet 1o the sequence (€3],
Ay L Ee 2
Q’:(ﬂ) in Thj=1,2- -. We may look upon " as the L, space of a

coin-tossing experiment or as the Hilbert space for describing the states of a
two-level observable like spin. If {, z are complex numbers such that |{|=1,
z.=1 then the matrix

L O (S LA -
32 L‘_( { (1—|f=”—;1%z.)

is unitary #nd inner automorphism by U on the algebra of 2 % 2 matrices can
be interpreted as & one-step transition in a quantum random walk.

Now suppose that {, z are two complex-valued continuous functions on [,
such that [ s bounded and ‘z{t))=1. Dchne the unitary matrix-valued
functions £, (¢} by

T ¢ e (3 nH(Nz(n Y
(3-3) talt) = ( nH{) {1-n7t |.f(.r}|‘j’}:'*z(t}fa

for all large n. Let ¥, denote the unitary operator which is the ampliation of
the unitary operator Li{j/n)} on the jth copy of * in (3.1). For any

U=Es =z et

(3.4) il l™ 2ty
H I H H

=1 otherwise.
Then W s, £)is a unitary operator in & for each 0 Z5 =< = and
Wl i)W (s. ) =Wois, ) forall O0=Zs=r=p <o

For fixed s, Wiy, ) is strongly right contimuous in & Thus {W,(s, 1)}
desenibes a quantum dynamical evolotion where transition takes place at times
1/n, 2/n, - -

For any complex-valued continuous function f with compact support m B,
Le. f e C.{R.) define the toy coherenf vector ,(f) in # by

(3.5) valf) = @ L& =4 (i)
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where €7 is expressed as C @ C. Then

{wﬂ{f}ﬁ m{'ill‘ r}u}ﬂ(g]}
= IR D n i (rin)), Un(rim)[1@a~g(rin)])
*x []  M+a"'(fe)rin)] if j!né.&f&j+l“=:kfrzérf;k:l
rEffAL, R 1
By elementary algebra we get
() Wals, D (g)}
= JI [+ae(rin)]
rg{ 41, k)
k
x [T {00 —n~ irin) 2 + n Y — g2l + fgz(1 — n 7 I Hr/n)}
r=p+1
i Ginde S gttt
n n
Thus
T (£, Wals, 04(3))
(3.6)

~exof [ Jo+ [ +fete -1 -Tig - 110}

We shall now express the right-hand side of the above equation as
{w(f), Wis, Dwig)} in a suitable Hilbert space whete {W(s, f)} is a strongly
continuous unitary ¢volution and w(f}, y(g) are suitable vectors. To this end
we introduce some definitions.

For any Hilbert space b we denote by §™" its n-fold symmetric tensor
product and define the boson Fock space T{D) as

(3.7} M=CEHELD--- DH"F-- .
For any & = f let
(3.8) wr =19 ® ) w¥F¥d. - ) e ..

denote the coherent vector associated with u in (k). For any u € § and unitary
operator U on § we define the unitary Wevl operator Wi(w, U) in T(h) by
putting

(3.9) Wiw, i) =exp =3l — {u, Uv}iyp(lv tu), veb

and extending to I'(§) (s¢c [3]). Then the Weyl operators obey the commuta-
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tion relations
(3.10) Wi, U)W (v, Vi=exp {—ilm{u, Uv}}W{a+ Uv, UV).

When h=LAR.). u=p.4f and U is multipheation by 1— ¥, 54 xp.42
where . q is the indicator function of the interval |, t] in B, and , z arc as in
{3.3) the Weyl operator Wig, 1) — Wi, L) satisfies

Wit )W(s.t)=Wis,u) forall D=s=¢Su<w,
(3.11) ((f), Wis, thw(g))

s expuuhfg + ( (fi+fg(z—1)—Tzg -} IFI‘*}.}

for all f, z e LR .} Combining (3.6} and (3.11) we conclude that {W, (s, &),
W lf), O0Es=t== fel(R.)} converges as n—2% 1o {Ws 0, ()
NEz=¢<=, fel {R,)} in the boson Tock space T{LA{[R .} in the sense of
the definition at the end of Section 2.

Remari 1. The family of unitary operators [Wir), 120} where Wit}=
Wi, ¢} described above in I{L,{#.)) obeys the guantum siochastic
differential equation

(3.12) dW = {IdA™ 4+ (z — DA — Fzdd — L {20 W

in terms of the quantum processes 4%, A and 4 called respeetively the
creation, pauge and amnihilation processes in [3]. The process 4+ A7 and
—i{A — A"} are two non-commuting classical Brownian motions in the vacuum
state yit) and the pair {A{f)+A'(r), —i{A(r)— A'(N]. ¢ 20} 1s (he quantum
Brownian motion first introduced in [1]. The process Ni{r) = A{r) + A:[4(1) +
AN+ A, tZ=0 is a classical Poisson process of intensity A realized as a
commuting [amily of self-gdjoint operators in [{Z.(l¥.]) in the vacuum state
yri0). For more details in this direction the reader may reter to [3], [7].

Remaric 2. Tt is possible to generalize the asymptotic result comeerning the
random walk process W, (s, 1) defined by (3.4) to the casc when OF is replaced
by {2 f and the Hilbert space

(3.13) H=(CONVCOHD -

is considered, the countable tensor product being taken with respect to the unit
vector 1 B0 in cach copy of CE . We proceed as follows. For anv I € with
]| =<1 and unitary operator Z in ! we introduce the unitary operator U in
[ Bt in analogy with (3.2) by putting

_ L I A
(3-14) v={"" o a2
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where we have used the bra and ket notation of Dirac. Let %¥%(f) denote (he
group of unitary operators on I Suppose now ! iz a Pvalued bounded
continuous function on B, and Z is a strongly continuous %(f)-valued function
on R,. Define U,(t) to be the unitary operator in {3.14) when { is replaced by
n~H(t) and Z by Z(r). Let V. denote the unitary operator in # which is the
ampliation of U (j/n) on the jth copy C& 1 in (3.13). Now define Wo(s, )
¢xactly as in (3.4). For any Fvalued continuous function f on B, with compact
support define the toy coherent vector v,(f) by (3.5). Then it is straight-
forward to establish the asymptotic result

EIE {wn(f}r wn(j"! f]*ﬂn(z‘a’}}

=exp [ T 00 + [ (PO O} + (6D (20) - ()

= {C) ZC)g () — 2 G
= { ﬂ’{ﬂs W{I[:,r]fs 1- X+ Xh-.:]Z}‘p(g}}

where W(}, z) is the Weyl operator on T({LR,)®1} when L,(R,)®Ffis
interpreted as the Hilbert space of f-valued squarc-integrable functions on B ..
This shows that the random walk described by the evolution {W.(s, 1)}
converges in the sense of the definition at the end of Section 2 to the evolution
[W(s, )} described by the Weyl aperators

W{.i'1 I’} o W{}E[:,;]E: 1- x|.'r.rj + x[.g.:]z}~

It can once again be shown that Wir)= W(0, £} obeys a quantum stochastic
differential equation which is a multi- (possibly infinite-) dimensional version
of {3.12).

It is sigmificant to note that all classical stochastic processes with independent
increments can be described in terms of the operators W(s, ¢) described above

(see [8], [9]).

4. Passage to a quantum diffusion from a quantum random walk
By analogy with the discussion of Section 2 we consider the Hilbert space
(4.1) H=hB{(CEHR(CHH®D- -}

where Iy and T are fixed Hilbert spaces and the countable tensor product in { }
is taken with respect to the sequence of unit vectors 1@ 0 in each copy of
C & 1. For any operator L:f,~ By ® { such that ||L]| = 1 and unitary aperators
Zand V on B, @f and 6, respectively we construct a unitary operator U on
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b @ (C P f) by identifying it with b, @ (h, @ 1) and defining {7 in the matrix
notation as

(4.2) U=([1—LL*L}5 —L'Z )(V 0 }

(1-LLYZN0 Vi1,

Tt is instructive to compare this with (3.14) wherein hy=0. V=1 and
Lu=u|l), weC. Inner automorphism by U7 in the algebra of operators on
B @(C B 1) enables us 10 make the transition X — UNX @ 1)I7 from an
operator X on b, to an operator on b, @ (CE ). I V, is the ampliation of &
from 0, (jth copy of CTE L) to # in (4.1) and

{4.3) Wim,m)=V,V, ---V,,, for 0Z2m=<n
then {W(m, 1)} is a unitary evolution in discrete time. If 5 is the shift isometry
defined by

SuB5Q5L® 1 -u@{IRERE® -
then
{4.4) SWim nl=Wim+1,a+1)5
Let

Q={130)@1P0}&---

in ®;_, (L {). Then we have the relations
(4.5) (@0, Wim mlo@Q)={n, {{1-L'L3EVI" ™},

(u@Q, Wim, n)l' X QIWim, njr ®@Q)

L ={u, T"™(X)w}

for all u. v e by and any bounded operator X in §, where T is the completely
positive map on the C* algebra #8(l,) of all bounded operators in §, defined by

{4.7) FXY =Vl - LLRX(1 - L)+ L' X @ L,L)V.

Eyuations (4.5) —(4.7) justify calling the umitary cvolution {W{m. n))
defined by (4.3) a homogeneous quanium random walk.

Now let Lif), Z{t), F1{1) be operator-valued functions on K, such that L{f)
is an aperatar from By into O, @ £, Z(r) is a unitary operator in b, & f and Hit)
is i self-adjoint operator on [, We assumdg that

(1) sap, (IL{O|| + |H )]} = =

(i) L({-), Z{-} and H{-} are continuous in the uniform topology.

On the hasis of the operator-valued functions £, Z, H weo construct a
sequence of evolutions as follows, Simce : L) <= T for all (=0 and
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sufficiently large n we define the unitary operator Uylt) in 5, ® (CED
through the expression in (4.2) by substituting n~22.(f), Z(z), exp { —in " H{t)}
for L, Z, V respectively. As in (3.4) define V, in & to be the ampliation of the
unitary operator {f,(j/n) from the tensor product of B, and the jth copy of
C@!to & in (4.1) and determine the unitary evolution W, (s, ) according to
(3.4). For any f-valued continuous function f on B, with compact support
define the associated toy coherent vector 4, (F) =&, [1 & n¥(j/n)] in
{CENRCHEH®---. Then we have the following theorem.

Theorem 4.1, There exists a strongly continuous unitary evolution {W (s, #1}
in the Hilbert space by ® MR & 1) such that

Hm {u & y,(f), Wls, v ® y.iz))

={(u@u{f), Ws, (v @ pig))

for all 0=s<t<en, w,vel, fgeCiR,, ) where w(f) denotes the
coherent vector associated with f when f is considered an element of
LR )@ f Furthermore

d
1 ® Y(f), WO, v B w(s))

={u@f(HSf)LLWO. o B pig))

@@ () {Z() - W0, v @gl) @ yig)

—{u @ y(f).LOWQO, v B (1) @ yig))

= {w @y(f), {0+ ELOLEOIW 0, Ho @ y(g))
where L), Z(t) and W, ¢} denote also their ampliations to O, &1&
L (R &)

FProof. We restrict ourselves to the case when [=C and L, Z, H are
independent of ¢. The general case is proved exactly along the same lines
cxeept for the introduction of a more ¢laborate notation and using the results
ol |5] instead of [3] in boson stochastic calculus.

Fix f, g € C,(R.) and define the operators M,,, r=0, 1, 2, - - - in };, through
their bilinear forms by putting

{”; va} = {u & wn{.f}r Wn{ﬂr r"r";}u @ tpn{g}}
o ] ; =1
(49) < I1 {1+ tim)

j=r+1

{4.8)

For each fixed # we shall now write a difference eguation for the sequence
M, r=0,1,2,---. To begin with we consider the case m=1. Theo
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;M” =] and

L @y (f), WilD, riv @ yaig))
(4.10) ={u @y (f), VWO, r = v & y,(g)
= {V:lu '@' wt{f}' W,f[], P !}U IE' w]{g}}
where V) 15 the ampliation of
_L=L'Ly —L'Z rexp(—iH) u
L= ( L (1- r_."'f.}'zz.)( 0 exp (—:’H)) :
Considered as an operator in the tensor product of By, and the rth copy of
LELin ¥=h, LBV ---RLCHTE---. We can express for any
weh), ael
(4.11) V@1 B a)=R(alu @101+ 5alu ROD 1)
where
(4.12) Ri{ax)=exp {:‘_Hj-.[{l— LYLY: + al?), |
S(e) = exp GH)L{—L + afl — LL ).

Substituting for ¥ in (4.10) from (4.11) and using the expressions for the
toy cohcrent vectors 4 (), v (g) we obtain
o, M) = (ROFEDM, Mo v + (g(R)S(Fir . Mo, )
or equivalently, in view of (4.12}
M= ((1- LMY+ Fin)L + gr){—L' +F{n(1 — LLT)H Z)

(4.13)
xexp(—iHM, .

To obtain the recurrence relations for M, we have only lo change
L, f(r), g(r) and H to n~tL, n73f(rin), R 'g(rin) and n~"H in (4.13). We
express it in the form of a diffecrence equation:

(4.14) n{M, — Mt = DM, |,
where
Do=n{{l-nT"L'L¥expi in 'H)-1)
FAF(rL A+ (el im)(L — 0T LLYYZ — g(rin)Ll' Z) exp (—in~ ' #).

It is significant that s # — = the differenee equation (4.14) becomes the
differential equation

(4.15)

{4.16) ﬂiT? =D(OM{H),  M(0)=1
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where
4.1 Di{ty=—iH - L'L+ f{OL + (fe){n)Z — g(0)1.7 7.

Define the operator-valued step functions

¥ F+1
D()=D, if “=i<t
W)= D 1 i "
3641
MG)=M,, if iérc:rT, FL

Since

Lm sup || £2.4s)— B2(s)]|=0 forall =0
m— U=y

it foliows from a routine but detailed analysis of (4.14) and (4.16) that

(4.18) lim sup |M.(s)— M| =0 forall r=0

—e (1SS

where M is the unique solution of (4.16). Now define

mo =m0 [1 [re-ffl)} # L=<

ot #
4.19 M
1% F=0,1,2,---
(4.20) N{f)=M(0) exp f fe.
Then it follows from (4.18) that
{4.21) Lim sup [|N,(s)— N{s)||=0.

A [=Rs 2y

From (4.16) and {4.20) we obtain

‘;—*’:f = {FOL + (FR)UNZ = 1) = g(IZ = i ~ LT LIN(D).

Using (4.9}, the definitions of M, (t}, N.{r} and (4.21) we obtain
hn_l {H @ wn [.f]! W\-’[u: f)U @ w::(g]}

= {u, N(t)r}

and the convergence is wniform in every bounded interval. From the boson
stochastic calculus developed in [3]) we know that there exists a unitary
evolutdon {Wi(s, t)} in By @ T, )Y such that W{rd= W0, ¢} obevs the
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guantum stochastic differential equation
AW = [LdA™ +(Z - D)dA - L'ZdA — (i + L7 1)dey W

with W(0) =1, in terms of the triple (A", A, A} consisting of creation, gauge
and annthilation processes. This is equivalent to saving that

{1 @ (F), W0, O @ ylg)) = (u, N
where N(f)} is the solution of {4.22) with initial condition ¥{0)=exp [} fe.

Thus we have shown that

i {a @ w,(f) W0, 0 & w,(g)) = {a @ w(f), WD, He & yie))

fl—

uniformly in # over every bounded interval, shifting the origin from O to s does
not involve any change in the argument. Equation {4.22} is the same as (4.8) in
the special case 1=,

Remark. Using the Heisenberg dynamics induced by the evalution {W(s, 1)}
in Theorem 4.1 one can define for any X e 3(0,)

()= w0 (X @ )W, 0. =41
Define the completely positive maps T, : %(5,) — 33 §,) by
(. (X W) ={u®d, Xt D)
where € is the Fock vacuum in [{L (&, ) 2 f). Then

d .
ST = £T(X)

where
FAX) = i H(), X] - L)X + XL (L)
— 2L X ® 1)L(N}.

which is the well-known generator of 2 quantum Markov semigroup of
operators on 38(hy) derived by Gorini et al. [2] as well as Lindblad [6], We can
say that {W(s. £)} is the Schridinger picture of 3 guantum diffusion described
by the generators . 1L H(#), 1), Z(1) are independent of ¢ then {W{y, 11} i3
covariant under time shifts and one obtains a homogencous diffusion. Thus we
have shown how gquantum diffusions can be oblained as Lmits of disercte-time
gquantum random walks,
In Theorem 4.1 one would cxpect that for any X « 3}
lim (& ® w,(f). Wiz, ) (X 2 OW.(s e & yle)

Jpm——rr

={u@ylf). Wis, (X @ DWis, e @ yrlg))
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for all w, v € by, f, g € C.AR, . 1). (This has now heen established: sec [10].)
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