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LAW OF ITERATED LOGARITHM FOR FLUCTUATION OF POSTERIOR
DISTRIBUTIONS FOR A CLASS OF DIFFUSION PROCESSES AND A
SEQUENTIAL TEST OF POWER ONE*

FRAKASA RAOD

{ Translated by Bernard Seckler)

1. Imtreduction. In [7], Prakasa Rao has proved the Bernstein-von Mises
Theorem concerning the asymptotic behavior of posterior distribution for a class ol
diffusion processes defined by a linear stochastic differential equation. Here the law
of iterated logarithm for fluctuations of the distributions around the true parameter
for the class of diffusion processes defined by (2.1) is obtained. As a consequence of
this result, a sequential test of power one is developed for testing the hypothesis of
the form Hy: # = f, against the alternative H,: # # 8,, where f is a parameter invalved
in the drift coefficient. Results obtained here are analogous to those in Lerche [37, (4]
in his study of the fuctuations of the posterior distributions for the case of independent
and identically distributed random variables. For a discussion related to the Bernstein-
von Mises Theorem, see Buaswa and Prakasa Rao [1].

2. Main result. Consider the stochastic differential equation

di(t)=[alt, £} +ab(1, £)]] ditalt, £} dW(2),

Em}:fu- =10,

where alt, x), B(x, 1) are real-valued functions defined on R_ = R, «r{t, x) is a positive
function defined on R, »x R, W is the standard Wiener process on R such that a(t, £),
by £), and ol &) are F-measurable where F =off{s) 0=5=1}. Suppose the
stochastic differential equation {2.1) has a unique sclution on [, T] for every T=0
and for every #c® open in R Let wa be the probability measure on C[40, T]
corresponding to the solution of (2.1) on [0, T]. Suppose that u ) and p 7, are mutually
absolutely continuous for all 8,, 8; in 8. It is well known that the Radon-Nikodym
derivative of wJ with respect to u g, is given bj.f

i, T (bit, £}]
o e o] Bt S -or [ 0]

[Ay) Suppose A is a prior probability measure on (8, &), where 3 is the o-algebra
of Borel subsets of @, Assume that A has density A{-) with respect to the Lebesgue
measure and that the density A(-) is continuwous and positive in an open neighborhood
of #,, the true parameter.

Suppose there exists 3 continuous positive monotonic increasing nonrandom
function Q{ T} of T such that Q(T) a0 as T o0 and a positive constant 8 such that

(2.1}

I ["[bs 807, ==
(A Bre= ouT) J; {G"(-!', E:}} els B oas T
Let
1 b(s, &)
{2.3) ar = Q{T}_[ (5, £) dWi(s),
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Tt is easy to see from (2.2} that the maximum likelihood estimator f; of § based on
&5 ={£(1), 0= 1 = T} satisfies the relation

(2.4) ar=(fr— 8,8 QI T).

The posterior density of ¢ given £; is

dul du!
(2.5) plo|& =ﬁ{£§u{6}/J- Bo (eTya i) ap.
AL =
Let us write o= Q{ T} #— d;} and

'u

dp s,
T
Q(T) f“) "
Note that p¥{v!£7) is the posterior density of Q({T){(8~ f,) given £7.
THeEOREM 2.1. Suppose the assumptions (A,) and (A} stared above hold and that

(2.6) P*Ev|£§1=Q{T}"P(5r+

(As) by 0y 5. [Py] as T oo,
Then
=) ﬂ 152 ) i
(2.7} }I_[gnj p*{v|§.ﬂ-(§) eV dn =0 as [ pg ]

A more general version of the above theorem is proved by Prakasa Rao in [7]
when the functions a{t, - ), 81, -) and o{¢, - ) depend on £(r) alone. However the same
proof with slight modifications goes through for this general case. We omit the details,

Let

" I’J{ﬁ,f}]2
: HT)=| -—=-1 ds.
(28 (n L {ﬂ'{-ﬁ‘-..f)

Let Pr,: denote the posterior probability measure of § given the process £;. Note
that, for any 4 =0,

loglog 7(TH " _ . _ {103[03 ﬂ;n}‘”)
O ey o B et
]ﬂg]ﬂgfl{?}}”z

- Pu{ a3

i log 1 Tyl
gwocrner_ﬂﬂ;;d@m{%l} )
(since v = Q{ TP - &, 1)

loglog r{ T}} o 2)
(T}

k501 ar loglog 7(T)H] 2 o
i b 8 loglog ILTH ™ e 87y
P“*ﬂ( Br d‘?':”{. AT } B ’{

{this lollows from (2.4)}

log log TJ] Vi ar ][
=i +dQ(T)

log log rm} “2)
Er

o
=% (52-don] (1)

+o{l).
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Almost surely [Fy ] as T where Na(x, ) denotes the probability of the interval
{x, ¥} corresponding to the normal density with mean 0 and variance 8. This follows
from Theorem 2.1. Observe that

oy log log f{Tj}”1 oy {lnglog r(ﬂ}ln)
. (ol Ty e et s RS N S, T L Lt RANE
10 ﬁ(ﬁr D{j{ @) ) CEE R oy
’ - log Ty °
=P{—d§EY+JEurfﬁ:r}(~“ﬁ U{T}{ﬂ{%}) éd},
where ¥ is N({0, 1} and this in turn can be written as
Pi—-d=Z=4d),
whare £ is
a7 (7)1 (1) )
(231 M (Q[T}ﬁrilﬂg log 7(T)1">" B2Q(T)log log H(TH"3)

Relations (2.9)-(2.11) imply that, for any d =,
log log T{T}) B e (Ing log #( 1) ”2)
= e - Nk = i S = H= G kel Forkeal = Mioth Sk
PME(‘HD d{ (T ZH=btd D
=P{-d=Z=d}+to(l) as.[P]

{212

as T—=a0, where Z is as defined by (2.11). Note that
(T2

(2,13} B 0(T o8 Tog r{T}j"’ln}ﬂ as.[Py] as. T=a
since
7(T}
Br= oD +f=0 as[P)] asT-x
and { F)-=a0 as [Fy] as T =0, Furthermore,
arr{T)" B QI T)
Q{ T)Briloglog 7{( T (v{ T)log log 7( T)*?
{2.14) =
=I BistdW{(s)/(=(T)loglog r(TH"",
1
where
L b5 &)
G

By the law of the iterated logarithm for stochastic integrals (ef, McKean [6]), it follows
that

— |l Bis) awis)]

lim : =
T-=[20( T) log log v [T

(2.15) 1 as

In particular, it can be seen that, if & =< +2, then

{2.16) mP{-d=Z=d}=0 as.[Py]
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from (2.13) and (2.15) and, if d =2, then
(2.17) lim Pl-d=Z=d}=1 as.[B).

T+

Let By {a} denote the closed sphere with radius o and center &,. Relations (2,16} and
{2.17) prove that

I v =
(2.18) ﬁpm;{ggn(d{w} )}_{ﬂ ifd =2,

(T} Tl ifd=va,
Py -as., where A" denotes complement of a set A. Suppose d =+72. Note that

L
P10~ 04> v3{ BEIIYT) -z ) +o(1) as.

T
In view of (2.15), it follows that, for any given e =0,
T
hix) dW{. o 1
(2,19} Mo hls) dW(s)] =VI-0 ()

(r{T)loglog +{ T1}"/*~ (loglog r{ T

infinitely often Py -almost surely, where & is the standard normal distribution funcrion.
This implies that

Tm P(IZ|>vD=1-¢ as.[Py]

tor every =0 lrom (2.13), {2.11) and the representation (2.14). Hence
ﬁ P(|Z|=+2)=1 as.[B,],
which shows that
. — o =[loglog r(T)]"? _
{2.20) ]1"1}2 Pm;[Bﬂu(vz{'-ﬂ—-W} =1 as Pl

Combining (2.18) and (2.20}), we have the following theorem.
THeEOREM 2.2. Suppose the assumptions (A)), (A;), and {A;) hold. Then

o . lﬂgtogr{T}}l"z)}_{{} ifd =2,
(2.21) l‘ﬂpﬁfﬂ[ﬂ"ﬂ(‘i{ {T) T oi#d=43,

a5 [ By] where
NIk
r{T}—L {(ﬂ:s‘ -f}} s,

The next result is a consequence of Theorem 2.1 and the properties of the normal
distribution function.

Turorem 2.3, Suppose the assumplions (A }-{A,) hold. Then , for every neighbor-
hood V of 0y, there exisis a consiant b, > 0 such thay

(2.22) lim ™ TP V=0 as[Py]

T

Froof. Given an open neighborhood V of #,, observe that, for sufficiently small
=0,

ﬂiptc.ﬁ{Vc]EJ‘ pr(v|&]) do

| e TS

1z ]
=(2£) j eV dp v (1) as[P,] asT-
" |l B T
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by Theorem 2.1. But

12 ; L1z
(a8 commana] ()74
[l Q1T W2 prEt) 42T

2

VIFEQT)

- (1420 B FEFU TSR

by Feller [2, p. 175]. Hence

2

D=g 172367 e fT']P ] =—
(v VISQIT)

and the Tast term tends to zero as {T) - 20 a5 T— o0 This proves the theorem,

3. Application. We now develop a sequential test with power one for testing the
hypothesis H,: ## = 8, against the alternative H,: # # &, for the parameter § appearing
in {2.1). Note that a sequential level a-test with power one is given by a stopping time
T satisfying

(i) P fiT<x®=w;

(i) Pa{T=o)=1for 84,

The hypothesis is rejected as soon as T-<oo, Otherwise we continue the procedure,
We assume that @ is open. Let (T be positive increasing such that $(T)=o(r(T))
and ¢ T) = v;loglog +{ T}, where v, 0 to be chosen later. For any £ =0, define

(3.1) T‘=ini‘{T3='U: ng[szo({'fg;)w)]:»1—8}.

This stopping time defines a sequential test with power one. In fact Theorem 2.2 implies
that

B Tt=w)=a
when v,=+2(1+ &) for some &§ >0 suitably chosen. Furthermore,
PAT*<m)=1 for@#d,,

by Theorem 2.3.
In order to compute « approiimately for a given § or vice versa, we can take

normal appreximation to the posterior distribution in defining T*. Note that, when
#, is the true parameter,

) )
”"HQ{T} L ($E§i)}
{Q{T moin' (fg;)}

1 T jlll
:1—F-m.‘.'{|vﬁr+ar| QrT}(¢ET$) }

141
=1—P{IU,BT+{IT| Q[T}(dlz‘;:) } a.s [Pl

=1- PTE.;.
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where v is N(Q, 87"). Let

172
(3.2} T**:inf{TéU: P[|vﬁr+ wr| = G{T}("&FT}) }{f}.
[ T)
Then
(3.3} a* =P, (T < x)

is an approximation for o,
4. Example. Consider the stochastic differential equation
(4.1} dX, =—0X,di+dw,, (=10,

where §:= 0. Suppose the process {X,} is observed up to time T. It is easy to check
that the maximum likelihood estimator 8, of & satishes the relation

i T T
{4.2) ﬂT—Ei‘.;.=J_ X,dW,/-[ Xidr
L L)
when #; is the true parameter. Let

T
(4.3) Y,:I X, dw,.

i

Clearly the quadratic variation process of the martingale { Y7} is
T

(4.4) {Yr) =f X7 dr.
I

Since the parameter 8,1, the process {X,} is stationarv and ergodic and, by the
ergodic theorem, it follows that

"
45 2| xra - mx

1]
as T'= oo, where E denotes the expectation with respect to the erpodic measure under
#y. We assume that 0= E{X7) < a0, Hence { ¥Yri+ 0 a.5 [Fy,) as T—+=c, By the strong
law of large numbers for continuous time square integrable martingales (cf. Baswa
and Prakasa Rao [1, p. 394]), it follows thart

¥r
4.6 =0 as [P as T o0,
(6) o [Ps]
Hence
(4.7) Br— 0,20 as.[Py) as Teoo

This shows that condition {A;) holds. Relation (4.7) also follows from Lemma 17.4 in
Liptser and Shirvaev [5, p. 210]. Let Q( T} =T"". Clearly,

T
Br=lTj Xidt—s B=E{(XJ)>0 asT-w
i)

by (4.5.). This relation shows that {A;) holds. Hence Theorems 2.1-2.3 hold for the
Ornstein-Uhlenbeck process defined by (4.1} under condition (A, )
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