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ABSTRACT, Conditions arc cstablished on o, 3 € R for there (o exist a con-
stant K = K{w, #) zuch that

> iyl flvy £ K (Z am*) w7112

TEE NEE
for all f € LY7) and B C ¢ where 3 I8 a compact metric gromp, O ia its
dual, f is the Fourier transform of f and w: & — R7T s the function taking
x £ (= to the area of the ball in F with centre ¢ and & on its boundary, This
in followed by & partial analogy for compact riemannian manifolds,

1. Introduction. The following is a special case of a result in [6] for multiple
Fourier series: given e, € R and &k € 2% = {1,2,.. .}, there exists a constant K
such that

12
(L1) (Z Iflinillz) < KIB™|| 12112

ne £

for all f € L*{T*) and all finite £ € Z* if and only if a, 3 satisty

{1.2) F<f2, ozl and oz g

{|E| denotes the cardinality of E and the function |z| is defined on T* by identifyving
this group with {—%, 2]%.} This is a local uncertainty inequality in the sense that
concentration of f limits the localization of f on any given set. The main result
bhelow, Theorem 2.4, 15 a direct analogue valid for all compact metrizable groups.
We then give a somewhat less complete version for compact analytic manifolds.

Local uncertainty inequalities for certain nomeompact Lie groups are given in [7]
and for R? in [1, 4, 5].

2. Compact metric groups. Throughout thiz section (& will be a compact
nonfinite metric group equipped with normalized Haar measure du and & will
be its unitary duael, that is, (7 is a maximal set of pairwise inequivalent unitary
irreducible continuous representations of 7. Denote by ¥, the (finite-dimensional)
Hilbert space on which ~ € €7 acts. As usual, the Fourier series of f € L}(G) is

written as i
£~ 37 dlner{ (),
JEG

where d(+) is the dimension of ¥, and f{y) = [ flz)v(z~ V) du(z). Our first
concern is to introduce a function which plays the role of [z| when 7 = T*,
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Let -, -] be a metric on ¢ which describes its topology., Without loss of gener-
ality assume that the metric is normalized so that sup{d(e, z): = € {7} = 1. Since
(7 is compact, this supremum s actnally attained. Denote [0,1] by I and define a
nondecreasing measurable funetion 4: I — I by

Alr) = p(B,) where B, = {z € G: d{z,¢) < r}.

Sinee (7 is nonfinite and compact, A{0) = (. Also the Fact that if v, ™, 7 as
n — oo for some sequence (rn), then B, =(,, By, shows that A is continuous on
the right.

Define a continuous map ¢: & — T by ¢(z) = d(x,e). Also let I3 denote the
complement of B, in {7

2.1 LEMMA. Foranye >0, giz e G: Alg(z)) <} <5

REMARK. A is right contimuous, ¢ is contimuous and so0 A4 o ¢ 15 measurable.
Hence the set in Lemma 2.1 is measurable.

PROOF OF 2.1. Givene >0, let ¥ = {x € & A(g(x)) < &}, Since always y €
By ¥ € U{Byizy: @ € Y} On the other hand, suppose y € | J{ By €Y},
that is, y € Bys for some x € V. Hence ¢(y} < #(z) and so A{é(y)) < Ald(z]) <
g, with the conclusion that § € ¥. This has established the fact that

Y = U{B'f’{i:}; Ie Y}
from which the conclusion in Lemma 2.1 is a straightforward consequence.

2.2 LEMMA. The function w= Ao ¢: G — I & measurable and satisfies

18
f w_adpEA{r} for=8<1
B, 1-4¢

and
| ? 1o < A(F)™F for 820

Jor each v > 0,
Further, for 8 < 0, w™" is continuous and henece bounded afnce G fs eompaect,
Consequently

fw_ﬁdp{m Jor 8 <0
c

PrROOF. We just give a sketch of the proof of the first inequality. Define &7y =
{z € G w{z)~' =t} for £ = 0. By the change of variable formula [3, (21.72)],

bx 2
(2.1) fw—"d,u:f B8 (G N B, Yt
r u]

First consider the integral f; = fr: A (G N B ) dt. Simee u(Gr N By) <
ulB.) = A{r), we have

1/A(r]
2.2) L< A{r}f 61 it = A(r)'—*.
1]

Now consider fy = fffA[rjﬂta‘ln[Gf M B.)dt. Whenever £ = 1/A(r), Gy © A,
{Let = € Gy; then A(@{z)) < t7! < A{r) and so ¢z} < r, that is, z € B,.}) Hence

=]
I = f Gt {6y ) dt.
1/A{r)
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Lemma 2.1 shows that g(&,) = 1/1 and so

=] 1=8
(2.3) I < f pre-1g=1 g = A 70
1/A(r) L0

Combining (2.2) and (2.3} and substituting in (2.1) gives the required inequality.
REMARK. In the above, notice that A(#) > 0 for » > 0. This is because By is a
neighbourhood of & for each r > 0 and so0 has positive Haar measure.
2.3 AsgUMPTION. To obtain a more complete analogy with the result {1.1) for
T* we will need (7 and its metric to satisfy the following: there exisis A > 0 such
that for all = [0, 1] there exists + £ [0, 1] with

(2.4) = Alr) £ As.

A wide class of groups, including the connected compact Lie groups, ean be eguip-
ped with compatible metrics so that this condition is satisfied,

Whenever E C 7, define |E|y = (3 d(~)?)/2

2.4 THEOREM. Let G be a compact metric group and suppose o, 3 € R. Con-
sider the following inequality: there exists a conatant K = K{w, 3) such that

1/2
{2.5) (Z d{‘:}tl‘{f(‘r)f('ﬂ’)) < K|E[3*|[w” fiz
FEE

Jor all finite E C (7 and all f LYG).

(1) The inequality is vafid for {{e, 5 a > 0, 3 < 1f2 and 3 < o} and
{{o, ) =0, §<0}.

(ii} If O also satisfies Assumption 2.3 the incquality continucs to hold when
D<a=7<1/2

2.5 REMARK. When 7 = T* the function w = A o ¢ can be chosen to equal
lz|¥. Purthermore, in this case |E|; reduces to |E|.

Proor (OFr THEOREM 2.4}, We first introduce spaces which are nonabelian
analogues of I#(Z). Full details are available in Hewitt and Ross [2]. Let @ be the
set, of functions ¥ on G with () € B(},) for 4 € &, where B{X.,) is the space of
bounded linear operators on ¥, For 1 < p £ o0, let &, be the normed subspace
of € as in [2, (28.24)]: denote the corresponding norm by [| - ||p. In particular,

112 = (2 cq dlmte{w(x) 0 ()2 and [[¢|o = sup, e |5l where [[w{+)]]
is the operator norm of 4¢(y). Let E be a finite subset of (e

(i) Throughout the proof of part (i} we assume that o, F € R satisfy o > 0 and
# < 1/2. Define thg € & by wig{y)} = Iz, the identity operator in B{X.}, when
+ € E and 0 otherwise. For p € [1,20] define p and p* by p' = p(p— 1)~! and
p¥=2p(p-2"".
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Given f € L!, the following sequence of inequalities follows from (28.33) and
{31.22) of [2] and Holder's inequality:

142
(E d['r}'-r{f[’ﬂfh'l‘]) = |[¥gfil2

=3
< |lWsllpw ISl (where 2 <p < o)
= ||'¢I’E||p*||f||p’

1cE

lip
< (Z d{':r]”) [[{A 0 &)} ~?||pui(A 0 8)" ]2

Let o = 1/p¥. By Lemma 2.2, [[{A o ¢)77||,» is finite when Fp* < 1 {that is,
when # < o) and o= 1/p* > 0, and when 8 < Dand o = .

In the preceding argnment we required 2 < p < oo which implies 0 < & < 1/2.
Henee § < 1/2 is also required. Thus for the pairs {{a.3): 0 € 2 £ 1/2, <
1/2, 3 < e} and {{0.3): &< 0} we have the required inequality with the constant
K = ||[{Ao¢})7?||1;o. Since |E|z > 1 for nonempty E, |E|2* < |E{2*" whenever
i < o', This completes part (i) because the validity of the inequality (2.5) for
a pair (¢, ) implies its validity for all pairs (of, 5}, with o' > &, with the same
constant.

(i) Up until the last step, the proof of part (1) follows that of Theorem 17 of [4]
or Theorem 1.1 of [7]. We then invoke (2.4). Given r € {1}, let f; = flp, and

fa=f—fi. Then

1/2
(Z d{ﬂtrtfh}*fm}) < I+ fa,
~E B

whers
172
I = (z d(y)te(fy [’ﬂ'flh”)
TEE
< 1Ef|lfilloo < |El2llFilly < |Elallw™|lsllw® fi]l2
_,g‘{?.]—..‘i‘+l,-’3

= |E|2m||wﬁfl”2

and

1/2
I= (Z ffl:'ﬂtf[fn{’)‘}"fzi’:f}})

Bt A
< 1 f2llz < 1w Lo ool [w° fall2 < Alr) ™| |w” f2] 2.

(In boih cases the Anal inequality follows from Lemma 2.2.) Hence

12
- s (A
(26) (;d[ﬂtr{f{'ﬂ mn) < A6)~ (G208 +1) 11l
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using the fact that ||w” fi||2, [[w? f2]lz < |[w? f|a-

The proof is completed by applying inequality {2.4) {that iz, Assurmption 2.3}
with s = |£3| 7% If E is nonempty (which we can of course assume), then [£}; = 1
and s0 8 = |Ez|~? < 1. Thus by inequality (2.4}, l;here exists r such that A[ )<
AE;T? and A{r) 2 |E|7%. Thus A(r)¥/2 < AY2|E[;Y and A(r)™? < |E[27 which,
upon substitution into (2.8), gives

1/2 75
(Z d[“r)'r-r{f{’:r}f{’:r}"}) < |Bl3" (W ks 1) llw? £z,

NEE
as required.

3. Compact manifolds. In this section X will denote a compact oriented
riemannian manifold. A suitable reference is Warner [10]. Let d denote the metric
on X induced by the given riemannian structure on X. Fix zp € X and write
dlx) = dix,xq) for r e X,

Denote the Laplace-Beltrami operator (with respeet to the given riemanmian
structure) on C°°(X), the space of infinitely differentiable functions on X, by 4A.

The spectrum & of A is of the form A = {A, A, ... y where 0 S 4 < dg < - --
Let ¥, be the cigenspace corresponding to A € A, Then d(A) = dim ¥, < co and

xy=gy x.
AEA

Fix an orthonormal basis qﬁr”"' e )‘[A} for each Xy, and define o{X) by

e(A) = max{||¢P|o: 7 € {1,....d(A)}}.

{For simplicity we suppress the fact that o{A}) depends upon the chosen basis.)

For cach subset £ € A denote the orthogonal projection of L2(X) onto
P ¥ icr H by Pe. (When E is a singleton {A}, denote P by Pi.] Suppose
0<#<1/2 and define Ky by

Ko=||(Acg) 2.

where A(r) is the volume (in the canonical riemannian measure induced by the
riemannian structure) of the set {r € X5 d{x, 20) = r}. Asin Lemma 2.2, Kp < 00
sinee 0 < # < 1/2,
it =3 ([ fr.ﬁ{”)
_1'—]

Let f € L2(X). Then
2
< e ([ 1) < KEPaIao @I
Heuce, whenever F C A,

WPeSII3 < K3 Y e(a?dia)]|(4 =) f|I3

AEE
= Kin(EY||(A =) Sz,

where u(E) = {32, cp d(Me(A)?)1/2,

FTES)
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In summary, with notation as above,

(3.1} 1Pefllz < Kops{ EDil(A o 3)° Fll2

for f € L¥X), E C Aand 0 € & < 1/2 where Ky < o0, a local uncertainty
inequality directly analogous to (1.1) and Theorem 2.4.

3.1 THE TWOQ-DIMENSIONAL SPHERE. Suppose X = &2, the two-dimensional
sphere, with the usual riemannian structure. In spherical coordinates

S={legr0fa<2r, 0sF<m}

with the usual identifications. The eigenvalues of the Laplace-Beltrami operator are
n(n+ 1) with n € N = {0} UZ" and the corresponding eigenspaces ¥y, (n41; have
dimension 2rn 4+ 1 [8]. Let {¥™ —n < m <n, m € Z} be the associated spherical
functions: they form a ecolumn of entry functions for the usual description of the
{2n + 1}-dimensional representation of ST/(2}) [9] and thus satisfy ||V |l < L.

The functions {{2n + 1}}?¥™: —n < < n, m € Z} make up an orthonormal
basis for Hpin+1) and so, with respect to this basis, ¢, = c{n{n+1)) < (2n+1)V/2.
The metric d{, -} with respect to the usual riemannian structure on 52 is just the
euclidean distance along great circles. Define ¢ on 52 by ¢(a, 5} = A, that is, the
gevdesic distance between the pole (0,0) and (e, 7). Then

(Ao g)a ) =2x(l —cos f7),

the surface area of the cap {{o, #)}: 0 S < 27, 0 £ § < 7). Suppose E C N;
with the above notation, {3.1) becomes

1/2
1Pzl < Ko (Zmn + 1}2) [, 1 — cos 8|, B d

ns K

for f € L¥(5%) and 0 < # < 1/2 where

L/2
S —20
o (fs! S )

3 g s

=f f{zw[i—cosﬁ]}'“"sinﬁdﬁdﬂ
1] L]

= 2(2x) 71 — 26)7! '

and dy s the (riemannian} measure given by du = sin §d 9 de.
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