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it is well known that il the supports of a function & LR and its Fowrier
trensform [ are contuined in bounded rectangles, then /=11 almost everywhere. In
1974 Benedicky relaxed the requirements [or this conclusion by showing that the
supports of 7 and 7 e only have fnite measure. In this paper we exiend the
validity of this property to a wide varicty of locally compact groups. Lhese include
BYx &, where X s o compact sonnected Lie group, the motion group, the afline
group. the Heiserberg group, SP42 R), wnd sl noncompact semisimpie groups
with some additional restnchions an the lunchions £ £ 1998 Aqudemic Preve, Ine

Q. INTRODUCTION

Throughout ¢ will dencte a locally compact group equipped with left
Huar messure g, (IF (7 is compact, we luke e G) =1, and if & =R dm
will be Lebespue measure ) For simplicicy, instecad of jﬂ dgmix) we will
usually wrilte j};.,.dx, Always & will denote the dual of G, that is, a
maximal set of pairwisc inequivalent unitary irreducible {continuous)
tepresentalions of ¢ The Fourier transform f of f= LY} is defined by
FAy=2{f)=Ts Fflxraix)dx (or sometimes [ f{x) Ax—")dx) lor A6,
For such functions we inteoduce the nolation

A=A={xe@ fix)#0}, B=B={lcG:fil)=0}
166
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(To avoid any possible ambiguity, f and f are to he taken as specific
functions tather than equivalence classes. )

We are interested in gstablishing that the Fourier transforms on & wide
variety of such groups have the following reciprocal-supports property:

if fe LYG) satisfies
midd<m{G),  plB)<pG), (.1
then /=0 ae.

(Here p denotes some type of “measure” on G, usually closely akin to the
Plancherel measure. Also on soime occasions it is pecessary to slightly
tighten the condition on the support of £, and on others it may be substan-
tially relaxed.)

As stated in the abstract, this property was ¢slablished for the Fourier
transform oo B® by Benedicks [3] It is a peneralization of the classical
result that if the supports of f e L'(R) and its Fourier transform are con-
tained in rectangles, then F= ac [7. 2.9] Amrein and Berthier [1] later
gave a different proof. A related result due o Matolesi and Szics [15] is
the {ollowing: suppose feL'((), where ¢ is a locally compact abelian
group. If milA ) B;) < 1, where s denotes the Plancherel-Haar measure
on &, then f=0 ac.

There is a considerable body of results for B proved by such people
as Beurling, Levinson, Malliavin, Paley, F. and M. Riesz, and Wiener
which show that f =0 ae. foillows from various conditions on the size and
pature of A, and B, . For a survey see Benedetto [2]. A recent work which
incorporates and geoeralizes many of the early results is Benedicks [4].
We content oursclves with just one example, a classical result which will
be used in Section 3

0.1. TREOREM. Suppose feL*(R) satisfies m(R'A,)>0 and B,C
Fod, o) for some Qe R, Then =0 g.e.

Progf, Suppose £ 20 in LY{R). The condition 8.2 [£2, o) implies
: log | f{x)|

—— x> —
g 14 x°

(see [7, 3.47). Since log | fix)| =< fix), this is impossible if {xe R: f{x) =0}
has positive measure, -

Benedicks proof in [3] for R is based on the validity of property 0.1 for
the torius. As an introduction we show that the same idea wvsed for the

torus, namely the analyticity of trigonometric polynomials, establishes the
property for all compact connected Lie groups. (A frigonomeiric pelynontial
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on a comnpact group is a finite linear combination ol matrix elements
arising from the (linite-dimensionai) members of &)

0.2, Compact Groups. BSuppose that & is a compact ({nonfinite) group
and et i be the counting measuce on G, that is, g E)= # £, the cardinality
of &, for cach set E= (. The condition that #8,« #G = = for Fe L&)
means precisely that f equals a trigonometric polynomial almaost
everywhere. If 7 is also a Lie group, such an /' must be analytic. But
nonzere analvtic functions cunnot vanish on a set of positive measure when
¢ is connected. This proves part (i) of:

03 Lremwa.  Ler 7 be a compact group.

{1}  Suppose 7 is alse connected and Lie, If a frigonometric polynomial
£ on 7 safisfies m{d;) < 0, then f=0

(i) Suppoxe the fdemiify component Gy of G satbfies Q<milrg)=< 1.
(For exgmple, G iy o discommected Lie proup) Then there exisis a
trigentometric polynomial 20 it G with 0= mid) =1,

Froaf uf (ii).  Since &7, is normal [12, (L.1)], G/G, is a nontrivial com-
pact group and so we may choose ¢ (G/G,) * with v 1. Now y can be
identified with & member of G and as such is constant on cosets of G, [12,
(28.100]. Define y, =triyk O — C, the characier of v (tr denotes trace}, and
obsetve that y — y.[e) is a nontrivial trigonometric polynomial which s
identicaily zero on Gy,

Before passing to less obvious cases we remark that the reciprocal-sup-
ports property is a simple type of uncertainty principle since it restricts the
amount to which both a2 function and its Fourier transform can be concen-
trated. I[ts validity for R is used in [§, Se¢cl. 4] to establish generalizations
of the classicul Heisenberg uncertainly inequality.

The cases in each of the foillowing sections are all quite different so we
bave piven more introduchion it each section than if the paper was aimed
#t a particelar group of speciahses.

1. PropucTs witH R

As usual take Z={0,+1, +2, .} and Z' ={1,2,..}. In this section
G=R*x K, where deZ* and K is & compact group [except for
Corollary 1.4, where K s focally compact ). Its Haar measure is dg = dx dk,
where ox is Lebesgne measure on R and dk is normalized Haar measure
on K. The dual & of G s R¥'< K, K being a5 usual 2 maximal set of
pairwise inequivalent unitary irreducible representations of K. We will give
two versions of a reciprocal-supports property for the Fourier transform on
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&, Theorems 1.1 and 1.3, corresponding to two different “measures” on G.
The results of this section are oot only of intriosic interest (since they
extend the results of Benedicks) but one of them, Corollary 1.4, is ¢rucial
for the analysis on the Heiseoberg group given in Section 4

Each member (y, 7) of 7 is 4 map (x, k) = ¢ "™ (k) taking values in
#(3,), the Banach space of unitary operators on a Hilbert space 5 of
{finite} dimension (y). {H course, x=1(x;. ... Xz} ¥={F, - ¥s) and
Xv=x,¥ 4 -~ +x,v,) The Fourier transform { of £ L7} s given by

Finn=] | fixkye ik dkdx
R+ K

for {p,y1eGC=R*x K

Let ¢ be a funclion on G so that @i ¥, ¥he @), the Banach space of
bounded linear vperators on ¥,. Suppose that ¢ is measurable, meaning
that it 3% measorabie in the first variable. Extending the usual notions of
L'-norms for R¥ and £ (see [12, Vol. IL, {28.24)]) means that the £ -norm
of ¢ is

I#le= ¥ dv} | ullgly, i) v

where | 7| signifies the absolute value of the operator T, that is, |T] is the
unique positive definite operator satisfying | T|* = TT*, The corresponding
measure ¢ 15 defined by

#E)=|1z], for measurable £<G. (L1}

{Here 1:{y.7)=17,, the identity operator in #{#)} if (y,7)sE and O
otherwise.) Notice (hat

#E}= 3 diyV'miE,}, [1.2)
ve K
where £,= { yeR*: (y, y)€ £]. This is the first measure on G.
The proof of our first resuit is based on Benedicks' proof ior R®. We will
be frequently refermng back to this result of, more precisely, to
Corollary 1.2,

1.1, THeoREM. Let G =R < K, wher¢ deZ* and K is a compact cofi-
nected Lie group. Suppose thar fe LY{G) has m{d,) < o and w(B,)< oo,
o being defined by (1.1). Then f =0 ae.

Proof.  |n the proof we assume that K {el although it is easily seen
that the prool is valid in (his case. Suppose f& L'(() satisfies the
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hypotheses of the theorem. Replacement of f by a suilable dilate in the
first vamable shows that we may assume m(d,) <. Using monotone
convergence

| YT iyt

“ vk owe £
=Yty | wilgly+tay)de=p(B< o,
. b

where is the cube {xeR"0=x,<1, j=1,.,4} and 8=B, Hence

there exists a set KFc”  with m{E)=1 s0 that yeE implies

YR, Ayl v+ a07)) is fimte, that is, ye £ implies
((y+Z% % KynB s hinite. (1.3)

Assume that |/|, = 0. There must exist v, K so that the continuous
function i, y,) is nonvanishing. But this means that il is nonvanishing on
an interval and so we¢ may choose @ € E with the property that

# is not identically zero on (a+ Z¥) x K. {1.4)
Using Poisson summation on fix, k)e = define ¢ & L'{0x K) by

Hx k)= T, fixdm k) e s

we 2

Its Fourier coefficient at (s, v) e Z7x K iz obtained as

Bim )= ] Ak dk [ flxbn kye s et de

=[ yk~ Tk ¥ [ S S A el WL T
ks = ]..

= fla+m ).

Now fla+m, 10 only if (a+m. )& 8 and so, from (1.3) and {1.4), ¢ is
a nonzerc trigonometric polynomial on the connected Lie group — x &
{Here we think of || as the d-dimensional torus.} As such it can only
vanish on a set of measure zero by Lemma 0.3(i}.

Suppose for the moment that || f ], < o Then

|$x, KNIl 2 Lalx 4, k),
where 4= A4,. Also

J.F S L+ k) dxdk=mid) < L.

vr".lT
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Hence 3, 1 ;{x +#. &}, which only takes valuesin {0}« Z™, vanishes on 2
sel of positive measure in _ % K Thus s0 does ¢, which contradicts the
conclusion of the previous paragraph.

It only remains to prove that  [|f). i boite. First of adl
LA v, 1 < 1F |1, where the first norm is the operator nomm, Since fe L
and wiH )= oo, [rom the inversion [ormula [or Fowrier Lransforms and
1.2y,

|flx, kil = ‘ L L A ph ) e dy
B ek ;

-

S| YdT ISy ey

ull

<L T | la
=1 £y Y. dizV miB )}
=|fl1piB) < <,

which completes the proof.

Berause we will be continually referning to it, we isolate the following
{slight generalization of a) special case of Theorem 1.1. The proof reduces
to that of Theorem 1.1 (with K = {e}) by [irst establishing that /e L'(R9).

1.2, Coritrany. Suppuse | < p< o and et = LARY) or M(RY), the
space of bounded measures on B Assiame miA Ly o In the firse case or
misupp f) < o in the second Tu both casex [ ix defined If mi Be) < o, them
F=0o

We now show that the same conclusion holds for G=RYx & if we

lighten the restriction oo the support of " but relax it on the support of its
Fourier transform. If E= G, let EK={(x, M) {x, h)eE ke Kk}

1.3, Tueorem. Suppose fe LNG) with G=Rx K, where deZ* and X
is & compact group, For cach ke K, o€ K define

(dK), = {xeR™: [, k)e 4K, B ={yeR%(y»q)e 8]

where A=Ay and B=8, If m{{AKN )< and m{B, )= 0 for all ke X,
geX, then =0 ur

FProgf. Assume that K+ {¢], otherwise the result collapses to
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Corollary 1.2, If necessary, redefine f on a set of measure zerp so that
x—fix. k)e L'(R¥) for all ke K. Given ke K, o K, define f, e L'[R"} by

Fuxy=f gk} = | flx, kb7 (h) b

where y., = tria{-)} Naotice that £+ x,[x, £)# 0 implies (x, k) e AK and so
{reR: £ ix) £ 0] = (4K),. {1.5)

The Euclidean Fourier transform £, of Foo 15 given by

Frapd=1 | flnich Ve ™y (h) dhdx
1l

=tr1r v _lf-f-x: i I}ﬂ“’!} ahe Txiny dx
LS

)
Jge

=trJ iJ fix,bloth "Vdhe T dxalk)
=tr(f{ y, &) a(k)),

wherz the pepultimate equality was obtained via the transformation
h— k% Now F{y 6)=0 imphes f.(¥)=0for all £ X and 50

{yeR*:f (;)#£0}cB,. (1.6)

From (1.5), (1.6], the h}rE-otheses of the theorem, and Corellary 1.2, f, =0
ae for all kK, oK. Now for cach xeR? the Fourier series of
k= fix ks

Sl k)~ T dio) fiolx)

e K

Thus § =0 a.e by the uniqueness of Fourier serigs on compact groups.

Further results are available for T=R x H, where A is 4 noocomprct
locaily compact group, which doa’l require the supports of the function nor
its transform to have finite measure. They are achieved by reducing the
problem to R. One form is used in Section 4.

As before, G =R x H. Variables in & and & will be written as (x, x) and
(z, v}, respectively, where s, re R, x= H, and ye H. Given fe LYG), define

Fle, }'}J | Fla, xhplx—"ye ™ dyds
R4
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For fe L*(G) with G abelian, # is defined wsing the usval completion
argumcnt 5o that the Foutier transform provides an isometric isomorphism
between L2(G) and £2((G) by Planchercls theorem,

14 Corotrawy. Lef G=RxH, where H is a locally compact
topalogical proup. Suppose that the following conditions on G - C are
Seetigfied

(1) fel'iG) OR fe LYG) and H is abelian,
{11} rhere existe E2 R with m{EY< o such thoe

A S B H,
() for cach ye H,
miteR: fit, 1) #0) < oo,
(i the case when H iv abelion, this condition cam be relaxed to
(Hi) for aa ye B, mireR fit, 1) #0) <o)
Then F=0ue,
Proaf.  Assume that fe LY} satisies conditions (i) and (i) Also

medify / on a set of measure vero so that all its scetions io both directions
are integrable. For each ye & define ¢, on R by

B, (5 =1{F f(s, F) (1.7}

{In this proof # and # will denote the operations of taking Fourier trans-
forms, in the L' or L7 sense, in the first and second variables, respectively. )
Evidently {5: ¢,{s)# 0} = E from (ii) and so, once again from {ii), we have

miseR:§,(51£0) <m0 for yeH. (1.8}

By wriling ot the relevant integrals and by applying Fubini’s theorem
for lunctions with valugs in a Banach space, we see

{8,) " () ={F(F N1, ¥)= e, ). {1.9}

Since {r:{g&y}‘{:};&ﬂ}z{r:f{:, »1==0}, the measurc of the first set is
finite by (iii). Combining this fact with (1.8) and applying Corollary 1.2
shows that ¢, =0 a.e. for each ye & Thus f=0 on ¢ implying £ =0 ae.
Fe, 18247,

Now let f& L%() with H abelian and suppose that (ii) and (ifi) are
satisfied. The proof mimics thal above except that Plancherel’s theorem is
mvoked in severai places. Redefine £ and £ on sets of measure zero so that
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all these sections are square integrable. As before, define ¢, on R by (1.7}
{ail Fourier transforms are now in the Li-sense). Since

e . i
. #ss 2 ddy= ([ Fse ) dr)as
N

SR I
=.| ([ |fir, p1e? fﬂ) dv =111z
RN

Ffe iR x H). Hence & #, { is well-defined almost everywhere. Suppose
for the moment that

FA=F  ae (110

so that (s,) " {eh=Fz, ¥) Tor aa (L yJeG {cf. (19)) The prool is
completed as in the previous casc by using (ii) and (iii) to show that for
A yEH‘ the sets on which ¢, and its transform are nonzero have finite
TMCASULE.

Il only remains to establish (1,10} It is valid when fel'(z) so its
validity for L*(G) follows by approximating fe £3G) by functions in
LG EHG).

2. TaE Momion Groue M(2)

Let S6(2) act on R* in the usual manner. The group & = M{2) of rigid
transformations of R*
g=i(x kpv—iy+x

for xe R, ke S042) is called the motion group of RY It is the sermidirect
product of S0(2) and R® Haar measure on G is dg = dx dk, where dx is
Lebesgue measure on R® and 4% is normalized Haar measure on SO(2).
Details of the following summary may be found in [17, Chap. TV ].

To each reR* = (0, =:) assign (he unitary irreducible representation £/
of G as operators in (1.7 SO{2))) defined by

(e )y = e O g ),

where g=i(x k)e M(2), ¢ Li(5N2)) teS50(2), and ¢,=(0,1). This
family of representations makes up G,, a subset of G which supports the
Planchers] measure, that is, u(G.G,}=0, where g is the Plancherel
measure. The Plancherel measure jt on R {+—,) is defined by

o E] =J. ¢y for measurable E= R, (2.1)
£

where dr is Lebesgoe measure on R,
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The Fourier transform § of fe L) is a [unction R* — B L S50(2)))
defined by

-

(Firign) = || FUx, k) e > (k=) ok d

“RIx BCND)

for r=0, ¢e L3SO(2)}, and t£ SO(2). Let B, be theset {reR™ iyl

21 Tueorem. Let feL'nLYMI(2)}y and suppose that for  aa
ke 80(2) the Lebesgue measure of {xeR?:ix, k)e A} and the Plancherel
meastre (2.1) of By are finite. (From fhe rontinuity of the Fourier transform
it follows that B, is indeed g measurable et ) Then f=10 ae.

Proof. Let # denote the usual Founier transform of f in the first
variable, Arpuing as in the proof of the second case of Corollary 1.4,
k— % f(p ke L} (86(2)) for aa. yeR™

Suppose r¢ B, From the definition of f. after the transformation
k- tic” b we see that

| frses, ik ik die =0

~ 502

for ¢eL%S(2)) and aa. e 50(2). Hence & flreq, t57')=0 for aa
k. e 52). By choosing k. ¢ appropriately we conclude that for aa,
wE SN

FfiEw£0  onlyil $eS0(2) Besr E,

where £ R? has measure zero, Mote further that the Lebesgue measure of
the geoeralized annulus SC{218¢, is finite by hypothesis.

On the other hand, the measure of the set {xeR*: f(x, #}#0} is finite
for a.a. we SEN2). Applying Corollary 1.2 completes the prool.

3. Tue AFFINE GROUP

In this section & denotes the “ax + & proup, that is, the group of affine
transformations of R. 1 consists of the subset {ia, b)i o, be R? a0} of B*
with the preduct

(a, b)a', b') = (aa’, al’ + B). (3.1)

Left Haar measure on & i de = a ™" da db, where da and db are Lebesgue
measurss on R, The following facts about ¢ are proved and developed in
[10,13F

SO 12
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Let £3(R*) denote the Hilbert space of square integrable functions on
the multiplicative group R~ ={reR: =0} equipped with Haar measure
¢ ' There is a direct analogue of Plancherel's theorem for unimodular
groups valid for & It is based op just two unitary irreducible represen-
lalions =, .7 acting on L5{R™*). They are defined by

R ENT ) S 107

where g2 L5R™), re R*. Denote the set {n, ., m_}by G
Given f& LYG), its Fourier transform § on ¢, is defined by

=] | fteb)e™ ™ glara= da b

R-mt

for e LR"Y) and reR'. Our result for the afline group only places a
¥ery minor restriction on 4,.

31 THeomeM. Ler feL'(G) also sarisfy a 'feLHG) I m{beR:
fla, B1=0'=0forae aeR* gnd fim | 1=0{(or fin 1=0), then f =0 g

Proof. Suppose f satisfies the above hypotheses (with f(r_)=0). Let
F f denote the wsusl Fouder transform of f with respect to the second
variabie. Using an L* argument similar to that in the proofs of 1.4 and 2.1
we conclude that o » ¢ 7' Fla 1 LR T ) for aa. bR

The fact that f{z, )=0 leads to

f CamlFH flait ) flaya  da=0  for gel’R")andaa teR*.

R

Hence for aa acsRY

& fla, =10 for aa teR’.

But by hypothesis, for a.8. ae R * the function # — f{e, #) vanishes on a set
of positive measure, The L. condition on f ensures that almost all of these
functions beloag to L*{R). Appiication of Thearem 0.1 completes the proof.
If fir )=10, replace fla, b) with fla. —h).

3.2 Full Affine Group. Let @ denote the judl affine group. that is, the
group of pairs {(a, ) a, HeR, a#0) with the product (3.1} It is amusing
to notice that the reciprocal-supports property holds for & in the simplest
possible manner. In this case the cortesponding G, consists of just one
element & and a multiple of n iz equivalent {o the left regular represen-
tation. Henee if fe L'{G), then fin) =0 implies £ =0 a.e.
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4. Tur HEsEsBERG (GROUR

The Heisenberg group G is the subgroup of GL{3, R} consisting of the
matrices

! » =
g 1 ¥ for x p-eR
00 t
For simplicity we write these elements as g =(x, p, 7). Haar measure on &
is dg = dx dv d=.

Corresponding to each AcR™ =R {0} there is an irreducible unitary
representation T ol @ consisting of unitary operators in #{L3R}). It is
defined by

{T;#-'_}“] =g Laldlde - }'H+s]¢',{lu _}_-}_

These representations make up the “reduced” dual G, of G [18, 2.12]
Plancherel measure on R (G, is |4| di although in our casc the
appropriate measure i simply Lebesgue meusure dd. The Fouder trans-
form f of fe L4G) is defined by

e

= [I] flx, y 2y 20020 - yy s d de.

R
where JeR*, dc LYR), and t =R,

41. THEOREM. Let fe L'(G)r LEG), where G iy the Heisenberg group.
Suppose  that mizeR:fi(x, y,2)#0l<w for au x, yeR and
miicR™ :f'{;l}aéﬂ} <oz Then =0 ae (In both cases m standy for
ardinary Lebesgue measure and the corresponding sets ave medsarable.)

frogf. Let #F,f denote the Euclidean Fourer transform of £ in the first

and third variables. Then #; € L3R?) so that, using a linear change of
variables,

L sty =3, O dydi=| [ 100 », O e dy< o
BR+*R ‘RR

for A#0 and aa. £ Hence y— 3, fliy, r— 1, {1e L3R for 1#0 and a.a.
LieR



178 FRICE AND SITARAM

From the assumption fii) =0 we deduce (hat

j

0={[{ fix. v, 2he 2 =r+ e y) de dy dz
L

il

| s =) 2 9= 31 dy

"

=| AUy =5 Ddi3) ds

for all g £5{R) and wa. te R Henow F, flay, e—p 2] =0loraa £, peR
This implies that lor aa yeR

FEOeR:F AL r )20} =, Rx B (.1}

where B=8,={icR": f{.)#0}. Recall that m(B) < ix.

On the other band, for aa. x yeR. m{z fix, 2} 20} < . Now
{x.z)— fix, . z)e L¥ for aa yeR so thal the preceding fact couples with
(4.1} to pive =0 a.e. using Corollary 1.4.

4.2 Remarks. (1) Since the Plancherel measure on R* is given by
|i| dd, the Plancherel measure of a set being finite impiics that the
Lebesgue measure is finite, Thus we are actually proving a stightly stronget
version of 1.1,

(i) Roughly speaking, the above resull says that in the case of the
Heisenberg group we can't have nonzero functions fe L? which are
concentrated in the o direction and which have f concentrated. This
interpretation is given a quantitative formulation in a forthcoming paper
on local uncertainty inequalities for proups.

(ii) Actually Theorem 4.1 is valid for all the Heisenberg groups H,.
The Heisenberg group H, is just R¥*! with the following multiplication,

(o, G NP, g, Fy=lp+p. g+g. i+ +(p-g —p -9k}

whete p. ¢, o', ' eR”, ¢, ' e R, and - denotes the usual inner product for R
{When n=1, it is easy to prove that H, is isomorphic o ) H, is a simply
connected two step nilpotent Lie group with Haar measure dpdgde. 1t has a
family of inequivalent irreducible unitary representations {n,},.g-. &ll
tealized on LAR"). As for G, one can write explicil formulae for the .
In the general case the Plancherel measure is (4" @ and onc can prove
exactly as before the foflowing: Let fe L'(H,) n LI{H }. Suppose miteR;
Fip. g 320t < o for almost all p. geR” and m{icR": FlAy#£0) < oo
Then =0 ae. (In both cases mr stands for ordim.rg, Lebesgue measure.)
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5. SEmismrLE Lie Graups

In vigw of qur previgus resulis, in particolar Thecrem 2.1 for the motion
group, it iz naiural to ask whether an analogue of property {(.1) is valid for
any connected noncompact semisimple Lis group. In this section we [irst
prove a version for 7= 5L{2 R} and then lor general semisimple Lis
groups with certain restrictions on the functicos involved. A good refercoce
for the following background is lang [147. See also Chrenpreis and
Mautner [5].

Lot £=800(2) and let & be an irreducible unitary representation of & on
the Hilbert space %7, By a mafriv element of 7 we mean a function of G of
the form x — {m{xh, w3, where v, w are K-finite elements in A, Frllowing
Lang [13], let {T+} and {T, }, 2cR', be the principal series represen-
tations of &, {D7 ) and {D_ 1, weZ*, the discrete series representations,
and u the Plancherel measure. These representations form the set &, a
subset of the dual of SE(2, R) which supports the Planchersi measure.
Also p mostricted to [T} [resp {F7 1] is cdtanhfm2)A i [resp.
cd cothi{mi2)i ¢2] and on 1D} and 1 D2} it is integer valued, Define f on
the above representations for e L4 in the usual mamner by fin)==(f).

5.1, THREOREM, (riven [ & LY((F), suppose that
MAKA K) < ahed B =,

where m is Haar meagsure on 5L{2, R) {see [ 14, p. 166] ), u is the Planchere!
meastre, A;= |xe G f(x)£0}, and B=B,= Ime&,: fim)#0). Then f=0
e (Again B ix a measurable vuhsef of fr..}

Proaf. We assume that the rcader is somewhat familiar with the
representation theory of and harmonic analvsis on the group & = SL(2, R},
Each fe LYY can be written as f=%,. . z f... (in the sense, at least, of
disirabutions ), where £, =x. * F # x.,, the x,, fe X, being the charucters of
S22} Hence il soffices 10 show that each f =0 ae.

The hypothesis on 4, shows that {x: £ (*x}+£0} always has finite
measure. Also, if f{m) =0 for some me &, then f (7)=0. Let A be one of
the functions f,... Depending on w,n, TF{A}=0 for aill icR™ or
To(h)="0for ali 1e R~ Without loss of generality assume that £ vanishes
on {7; :.eR'} One knows that T} (k) is ewsentially a “scalar-valucd
function” on R* (see [14] For details) and is given by a holomorphic
function it a skrp containing the real axis. Thus the hypothesis on B forces
TrH{hy=0for AcR+

Since & is a function such that TEih) =0 for all 1 and since Mk, gh;) =
talk VR g valky), Ky, ko e K, g€ SLI2, R), for some characters ¢, x, of k,
ane can show thal A4 must be necessarily a finite linear combination of
matrix ¢lements bascd on members 1 of the discrete series for which
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r(f)# 0. However, Lthese are real analvtic functions on & and so the fact
that {x: A(x)# 0} has only finite measure implics 5 =0,

52 Remark. An examioation of the above proof shows that we have
actually proved the following stronger version: Let fe L'NG) have the
propertics that the measure of the complement of K4 K is positive and the
pemeasures of [N (B~ {7 1) and {T, (8,n{T, 1) are positive,
Then =0 ae.

5.3. Semivimple Lie Growps. Michael Cowling has peointed out that
results of Harish-Chandra on representations of semisimple Lie groups
allow the above method to go through for arbitrary connected noncompact
semtisimple Lie groups with finite centres. However, the details require
comsiderable technical knowledge of representations of semisimple Lis
groups and will be given in a forthcoming paper [19]. Here we take up o
special case—we assume that f is a function on G such that flxk) = fix)
for all xe& and ke & (where K is a fived maximal compact subgroup
of ), that is, f is night X-invariant.

A pood reference for this section is the excellent survey article of
R. Gangolli [97. For any unexplained terminology and potation in Lhis
section we refer the reader to [9].

Let & be a connected noncompact semisimple Lie group with finite
centre and K a fixed maximal compact subgroup of &. Let G=EAN be an
Iwasawa decomposition, a the Lic algebra of 4, o® its dual, and B the
Weyl group of the pair (7, A) Let in;},, .. be the spherical-principal
series representations of O

All these representations can be reafized on the space H=L(K/M)
{where M is the centralizer of A in K). Then {=;, H) is an irreducible
unilury representation of ¢ and #; and 7, are unitarily equivalent if and
omly if v=sd for some s W, Let i be the (Harsh--Chandra} Plancherel
measure restricted to o®/ W, In view of whal we smd above we can "Lft™ p
to a W-invaniant mecasure on a* We will denote this measore also by g
We will peed the Taet that il a measorable subset I¥ of 0¥ has positive
p-measure, then it has positive Lebesgue measure. This follows from the
fact that u is giveno by a smooth density which is in facl analytic on a*,

As belore, et A,={xe&G: f{x)#0} and B,={lea*: m,{f)#0}; boih
sets arc measurable.

5S4 TueoreM. Ler G, K, and p be as above. Suppose fe LY G) has the
following properiies.

(1) f is vight K-inpariant,
{ii) pla™.B,)=0.
Then [ =0 ae.
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Belore we give the proof we remark that Theorem 5.4 easily implies the
following (weaker) statement, which is an analogue of proper 0.1,

Suppose f is a right K-invariant integrable function on G such that 4,
has finitc Haar measure and the Plancherel measure of {ne G r{f)£0] is
fimite. Then F=0 a.e.

Proof of 53, The function f* defined by f*x)=/ix"") is lefl
K-invariant and hence g=* + / is K-biinvanant. Now a,({)=0 if and
ondy if {gh="0 (becavse m;(gi=a,1*7;(f)). Since g is A-biinvariant,
A g="0if and only il F4)= 10, where £ is the sphericai Fourier transform
of g {see [2]). However, il is well known that F has a holomorphic exten-
giom in a tube contwiniog o* [8] and hence #{A4)=0 on a set of positive
g-measere implies =0 Henee, since A — 3 is one-to-one on K-biinvariant
L'-functions, g=0 ae Since g=/* * £ it lollows thal F=0 ae

6. PosT3CRIPT

In the above we have présented o gualditative uncertainty principle lor
certain groups and families of groups. However, there are versions valid for
more general objects. For instance, il X is 3 compact connected analytic
manilold. consider the decomposition

LiN=YH,,
i

where the sum iz over the eigenvalues . of the Laplace-Beltrami operator
on X and i, s the (finile-dimensional} eigenspace corresponding to A
{There are only countable many such 4'%s.) Given feLYX) such that f
vanishes on a set of positive measure, then either f=0 ae or infinitely
many of the projections f; on A, must be nontrivial, {Il { is almost
everywhere a finite linear combination of eigenfunctions of the Laplacian, it
15 equal almost everywhere to a real analytic function. Conseque—tly
if f vanishes on a set of positive measurc we must have =0 ae} A
quantitative version of this result will appear in a forthcoming paper [20].

There are limits on how widespread is the phenomenon discussed in this
paper. For example, Mautner [16, Theorem 9.17] shows that there exist
members w of & for 6 = PGL2, 12}, where L2 is & P-adic held, such that in
a2 suitable orthonormal basis the matrix coefficents of m bave compact
support. Representations of this (ype are referred to as supercuspidal and
are known to exist for all reductive P-adic groups [11]. The question
arises as to just how general is the principle described in this paper.
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