S0ME EEMARKS ON THE POMPEIU PROBLEM FOR GROUPS
DAYVITY SCOTT AND ALLADD SITARAM

[Conmunuoicated by David 3. Ebin)

ABATRACT. A Borel ast E in a topological group & s aaid to be a P-set for
the space of integrahle functiong on O if the zero function s the only integrable
Function whose integral over all left and right translates of E by clements of
(x i gere, For a “suficiently nice™ group 7 and a Borel zet £ of finilc Haar
meaaure a certain condition on the Fourier transform of a function related o E
iz shown to be a sufficient condition for £ to be a P-set. This condition is then
applied to aeveral classes of groups including eertain compact. groups, certain
semisimple Lie groups, the Heisenherg gronps and the Euclidean motion group
of the plane.

1. Introduction. Let (X, 3, u) be a measure space on which a proup H acts
as a group of measure preserving transformations. The following kind of question
has come to be known in the literature as the “Pompein problem”® (see {Z]}): Given
a class € of measurable functions and a measurable set & C X [(of, say, positive
finite measure], when can you “recover” a given f € 7 from the “data” f;,. = L,
g< H? A simpler version of this question is: If f £ £ and .ng fdp=0%gc H, iz
J =07 This problem has been studied in detail when {a] X = R™ and H is cither
the group of translations or the group of rigid motions {sce for example [Ba-S1, Be
L, Br-8-T, Sa and 8i 1], and when {b) X is 4 symmetric space and H a transitive
group of isometries of X {see for example [Be-Sh, Be-Z, Rt T and 8i I1]}. Another
case which is worth studying is: X a locally compact unimodular group, w the Haar
measure on X, and H the group of two-sided transtations on X. Some progress on
this problem has been made by [. K. Rana (sec [R I1]}, who deals mainly with the
loeally compact abelian group situation. In [Si II] the case when X is a noncompact
semisimple Lie group is taken up very briefly. There it is shown that, unlike the case
of R® or symmetric spaces of the noncompact type, for & = SL(2, R), there exist
relatively compact sets & with positive Haar measure and nontrivial f € L1{G)
with the preperty thai fg el = fEsr fdp = 0¥y & . Actually, if one considers
two sided translations, a more natural question to ask iz the following: Do there
exist, K and f #£ 0 as above such that meh fdp=0V¥g, 02 € G Tt can be proved
that the example given in [SI II] actually satisfies this slightly stronger property.

The purpose of this paper is to consider the rase when X is 8 unimodular group
G, H is the group of two-sided translations of 7 on itself, and € = LY, u) with p
the Haar measure on (7. After proving (in §3} sufficient conditions for a set E to be
a P-set {aee §2 for the definition], we examine some concrete sitnations where the
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eonditions can be verified (zemisimple Lie groups, Heisenberg proups, the Euclidean
motion group on the plane and compact groups).

2. Notation and preliminaries. Throwghout thiz paper & will denote a
“sufficiently nice® locally compaet unimodular group and 6 its unitary dual, that
is, €7 is a maximal set of pairwise inequivalent irreducible unitary representations of
{7, We assume that, for the class of proups we are dealing with, I. Segal’s abatraect
Planchere] theorem is valid {see [Wa]). Fix a Haar measure p on & and let m
be the corresponding Plancherel measure on . ¥ will denote a Borel subset of
G with 0 < g(E) <coand E = {g € G:¢7* € E}. Let 1z and 1z denote the
indicator functions of K and E respectively. Note that 15 and 1 & are bounded
measurable functions and are in every £7(G,p) for 1 < p < oc. For f € £'({7) and
7 € 6, f(x] will denote the bounded linear operator on the Hilbert space Hy, the
representation space for w, given by

fmy = [ e auta),

where the integral has to be suitably interpreted, f{x), which is also denoted f Tx)
or w(f}, is the so-called operator valued Fourier transform of f. If A € L' N L?
then {m € G: h{r) = 0} is a measnrable subset of & and so it makes sense to
talk about m({r: h{x) = 0}). 1f g € G and k is a function on ¢, 9h and A9
will denote functions on (& defined by Ph(z) = Alg~'z) and A9(z) = hizg). A
set &, as above, 15 said to be a *P-sct for LY{G)" if and only if: f & LY{C) and
fp.Egz fdp = 0 ¥g, g2 € G inplies that [ = 0 ae. Fmally for f,k; € LYG),
fi; * hg will denote the convolution

(k1 * ho)(z) = fr h(zg)hale™") dunlg)
= [ matao™ata) (o).

One knows that (hy # ke) "(m) = Ay (whha(7) and (28} {r) = w(g)hir).
3. Some basic results.

LEMMA 3.1. Let F be a Borel set in G with () < u(E) < oo and f = L2(G).
Then fg.Egz fep = 0%, 90 € G if and only if Lp{wlx{g}f{7) = 0 ¥r € & and
Y € .

PROOF. It can be easily proved that the condition fm Eus Fdu=0%g ., ¢
is equivalent to the condition 1z +9f =0 ¥y € G. By the injectivity of the Fourier
transform, this in turn is equivalent to (1 ¢ f)(r) = 0 ¥r & 7, ¥g € G. The
fermma then follows from the standard properties of the operator valued Fourfer
transform mentioned n §2.

PROPOSITION 3.2, Let E be us in Lemma 3.1, Ifm({z € G: 1z(x) =0} =0
then E da o P-get for LN3).

PROOF. Suppose E satisfies the above condition and f € LY((7) is such that
fsn gy, {8 =0, ¥g1,92 € G. Then we have to show that f = 0 ac. By Lemma
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31 iﬁ.[n‘)w(g}f[r) =0¥g e G ¥r el Nowforafixed r € G, lot Hy he
the Hilbert space on which « acts. Since « is irreducible, for any noneero v € I,
Span{r{g)v: g € ('} is dense in H,. Therefore if 1:(7} # 0 we must have flmy=o.
{Otherwise choose v € Hy such that w = f{x}v # 0. Then since 1 (@) # 0 and
span{r{giw! is dense in H_, we must have iE{w}ﬂ'{y}ﬂr # 0 for some g € (7 thus
giving a contradiction.) Thus f(x) = 0 ae. = and therefore f = 0 ae. (For
k& L' N L%, the fact that h(x) = 0 a.c. = implies b = 0 ae. follows from the
abstract Plancherel theorem. That it contlinues to be valid for A € L! follows from
a simple argument involving convolution against an approximate identity.}

4. Some applications of the basic results.

{a} SEMISIMPLE LIE GROUPS. Let 7 be a noncompact, conmected, semisimple,
rank-1 Lie group with finite centre. {For simplieity we assume rank ¢ = 1, though
this is not really necessarv.) The example of a set £ which is not a P-set given
in [$i II] depends on the existence of the discrete series. In this section we show
how the existence of the diserete series is not really necessary to construct such
cxamples, thus answering a question raised at the end of |81 II).

Let G = KAN be an Iwasawa decomposition of G. Let M be the centralizer
of 4 in K. A is isomorphic to R. For o & M let {WFIA}AE i be the principal
series of representations of (7 (see [Wa)). If 7 has diserete series let us denote the
corresponding subset of (7 by (4. Then one knows that the Plancherel measure, m,
for €7 is “supported” on the principal serics and Gy (moreover if 7 € Gy, mim) > 0).
Now for certain groups one can pick & € K for which the trivial representation of
M does not oceur in 8lpe. (SL(2,R) and SL(2, C) are examples of such groups.}
Let xs(k) = (dim §){tracc &(k)} for k € K and § € K. Pick a nontrivial function
f € LYG) with the property that %5 * f = f. (That such functions exist can
be shown in the case of SL(2,R) or SL{2,C).} For such f, one can show that
f (#1,) = 0 where 1 denotes the trivial representation of M. Now take F to be a
K-bi-invariant set in & of positive finite measure. (Tt 13 actually enough to take £
invariant on one side by K.) Again for such a set one can show m, 3 ({1z) =0if o is
not the trivial representation of M. Also 1 glml=0ifr e 7¢. Combining all this
we have 14(x)m(g)f(m) = 0¥y € G and ae. 7 € (1. Thus fgLEgﬂ Jlz)dp{z) =0
Y. g2 € (7 follows from Lemma 3.1, ie. E is not a P-set for L1{G) since f was
chosen to be nontrivial. (Note: Lemma 3.1 continues to be wvalid if we replace
“Yr e, Vg€ G by “ae. w e, Yge (™)

In particular, if & is relatively compact the above shows that things are in sharp
contrast to the case of R™ or a symmetric space of the noncompact type where any
relatively compact set E of positive measure is a P-set for L' (see [R 1, Sa, §i II]).

In view of the “holomorphy” of the Fourier transform for L! functions on a
semisimple Lie group one can restate Proposition 3.2 for noncompact semi simple
@ as follows: If foreach ¢ € M 34, € Awithm, s (1) # O0and n{lz) £ 0¥r € Gy
then E is a P-set for L1((7). However what would be interesting is to apply this to
obtain a geometric criterion for F to be a P-set for L1(G). For cxample if T is a
discrete subgroup of G with volume (G/T) < oo, then is a fundamental domain for
/T a P-set for L7 Notice that this is analogous to the case of a rectangle in R?.
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(b) COMPACT GROUPS. In this case € is discrete (though not necessarily count-
able) and for x € &, m{n) = dim(r) > 0. Using the Peter-Weyl theorem we can
strengthen Proposition 3.2 to read: E is a P-set for L' f ig{m) #£0¥r € G.

Suppose ¢ is a compact Lic group. Equip & with a bi-invarant Riemannian
structure and fix a positive mumber iy such that for any s < I, the exponential
mapping is an analytic diffeornorphism from the open ball of radius # around 0 onto
the open peodesic ball of rading s around e, [sing & real analyticity argument along
the lines used in [Be-Z] for compact s:.rmmemc spaces of rank-1, onc can show that
for fixed 7 € (7, the mappmg r — 1g_(7) i= a nontrivial real analytic function of
7 in the interval [}, Ry) and hence can vanish on oaly & countable set S; of values
for r. {Here By is the geodesm ball in €& of radius r about e. Also since w(e) = [,
1g, [7) i 2 nontrivial fanction of r.) Since (7 is a Lie group (3 iy countable and so
it will follow that for r in [0, Ry)\S, la (7} # 0 ¥x € G, where § = |} §,. Thus
for all such », B, is a P-get for L. (In the case of compact symmetric spaces of
rank-1, [Be-Z] woere actually able to identify explicitly the exceptional countable
set 5.}

Now suppose (7 is a compaet group for which & is not countable. Then for any
£ of positive measure in &, by the Peter-Wey] theorem,

I1gl3 = > tr{ig(8)  15(8)) d(6) < .
sed
Since €3 is not eountable, we have tr(l plé)+ 3. g14}) = 0 for all but countably many
§. Eeuivalently 1z(8) = 0 for all but conntably many 8. So £ cannot be a P-set.
Thus, in this case, there are no P-sets.

In [R 1] Rana asks the question whether in an arbitrary locally compact, seeond
countable group, determining sets exist for the left action. In [act we do not know
the answer to this question even if we consider, as in this paper, two-gsided action.
However, the example above shows that things can be quite bad if we do not assume
second countability.

{¢) THE HEISENBERG GROUP H,. The Heisenberg group H, is a simply
comnected nilpotent Lie group and eonsists of triples (p,q,t) with p,g € R™ and
t € R {as a set H, is just R*"+!), Multiplication is defined by

(pomt) (B d ) =(p+ g+t + 0+ (g - p'y)/2]
where pg denotes the nsual dot product in BR™ . The Hiar measare dp 1s just dp dg dE.
For each &  R\{0}, one can define an irreducible unitary representation m, on
L3(R™) by: ((ma(p.q,1))f)(z) = PTamtmshwatImht £z 4 hp). {mp dpemgo) i
family of inequivalent irreducible unitary representations and in fact the Plancherel
measure is supported on this family and is given by dm = [h]™ dh. If g € O H,),
arlg) i piven by an integral operatﬂr with kernel Ky (x, w) given by

i —a w4
Kplz,w) = |h|“ ESQJ(T: 2 :h)

where Fag is the ordinary (Euclidean} Fourier transform of ¢ in the second and
third variables. Exploiting the above connection with the ordinary Fourier trans-
form and using analyticity propertics of the ordinary Founer transform for com-
pactly supported functions, one can easily prove: If g € C*(H,) and g # 0 then
m{h: mplg) = 0}) = A slight modification of this leads to the following:
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LEMMA 4.1, [f g s a nonirivial bounded measurable compactly supported func-
tion on H,, then m{{h: mpig) =0}) =10

In view of Proposition 3.2 the following corollary s immoediate.

COROLLARY 4.2, fLet E be o bounded (i.c. E compact) Bovel set of positive
Haar measure in H,. Then E is o P-set for LY(H,).

We conclude this section with the following question: Does the above hold for
any simply ¢connected wilpotent Lie group?

Far details about the representations of nilpatent Lic groups and M, sce [L] and
[T).

{d] THE EUCLIDEAN MOTION GROUP ON THE PLANE. For p £ R? and
A € 50{2) let 7,4 be the rigid motion of B? defined by 7, a{v) = dv+p, v € R%
Let G = {rp.4:p € R, A € 50(2)}. The group multiplication is composition
of rigid motions and G as a manifold is difeomorphic to B2 x 80(2). The Haar
measure is dpdk where dp 1s Lebesgue measure on R? and Jk is Iaar measure on
S50(2). Let {my}nher~ be the “principal scries” representations of © (sec [Sua] for
details). The “prineipal series”, each of which is realized on L?[S0(2)), is a subset
of (7 that supports the Plancherel measure m. If one examines the proof of the
Paley-Wiener theorem for & proved in [Su] onc finds: if g € C%°(G) and g # 0,
then m{{k: mpig) = 0}) = 0. A shight modification of this once again ylields:

LEMMA 4.3, ffg is a nontriviel bounded mensurable comparctly supported fune-
fion on &, then m({h: 7p{g) =0} =0.

Consequently we have

COROLLARY 4.4. If F i3 a bounded (ie. E compact] mensurable subset of G
of posttive Haar measure, then E ia a P-set for L),

Again we end this section with a question of what happens to motion groups in
general? (By a motion group we mean a semidirect product of a compact gromp
and a vector group.)

5. Conecluding remarks. We hope that this paper demonstirates that much
needs to be done regarding the Pompein problem for groups. For example what
happens if we drop the integrability condition on the functions? From [Be II
one understands that these questions are related to questions about mean periodic
funetions on unimodular gronps—again an area where much needs to be done. See
also [We|. Also it is clear from the above examples that the Pompeiu problem on
a given group & is very much related to the “structure and nature” of e
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