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For 5=2°, ¢ = | odd, we determine how the copies of the Suzuki grovp 525} in
the symplestic group Spid, ») intarscct. Using this information wo detcrmeme how
the classical ovoids in symplectic 3-space H{s) meet and obtain 2 complete set of
doehfe cosel represcresdives of 570k in Spid, 51 We alio rote shat the permutation
representation of Spid, 51 on the cosets of Sz{s) s mulliplicily free, and its
irreducible constituents are eaplicitly deleemined. Tadesd, we show that the eomplos
Hecke ulpebry of this permulalion representation is womorphic le Lhe center of the
complex group alpebra of Sz(s). A combinatotal offshool of s study s the
comsiesebivn ol seyveral new geoies of Buskenbouwl disgram geomelnes of Lype
== which are embedded as subpepmeltes of migquelian and Suwruki-Tits
iversive planes. 10 1989 Acudemic Press. T

1. INTRODUCTION ANTY STATEMENT 0F RESULTS

L1 Let F, denow: the held of order 5 s=2% ¢2 1, Let 7 denote the
symplectic group Spi4, &) = H.(5} consisting of the linear automorphisms of
the: Tour-dirnensional vector space ¥ oover F, leaving a fxed non-degenerate
symplectic bilincar form on V invariant, The symplectic 3-space (or equiv-
alently [47 the regular generaiized quadrangle of order (+, )} Wis) &5 the
lincar geometry whose points are the points of the projective 3-space
PGi3, 8) and whose lines are the totally isotropic lines of PG(3, 5) with
respect to the given symplectic form.

It is well known that G has a unique conjugacy class of maximal sub-
groups. each isomorphic to SE(2, 5%)-2. In addition, if s=2* with ¢ =1
odd, then & bas a unigue conjugacy class of maximal subgroups, cach
isomorphic to the Suzuki group Sz(s)=2#.{5). Under the natural action of
7 on the poiuts of PG(3, 1), cach of thesc groups has precisely two poins
orbits one of which is an ovoid of W{s). Recall [13, p. 697 that an evoid
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144 BAGCHI AND SASTRY

of W{s} is a set of s*+ 1 points no two of which are collinear in W({s).
From the transitivity of ¢ on the poinls and the maximality of S4(2, 5212
and Sz(s). it follows that these subgroups are the full stabilizers in & of
their orbils, An ovoid of Wir) whose Tull set-wise stabilizer in G is
isomorphic to SL(2, s%)-2 (respectively Sz(5)) is called an elfiptic ovoid
{respectively Titz ovoid ) of Wis). These are the only known ovoids of Wis),
and are called the classical ovoids of W(s).

1.2, It is proved in |1, Corollary 2, p 139] that any ovoid of Wis)
meets a classical ovoid of Wis} in an odd number of points. Recall from
[3] that a conic of Wis) is by definition the intersection of an elliptic ovoid
of By} with oo of its secant planes, [t 15 known {see, for instance, the
discussion in [2, Section 3]} that any two elliptic ovoids of W(s} meet in
a point or in & conic of A(s). These hold for 5= 2° for all ¢ = 1.

1.3. For the rest of the paper {unless otherwise mentioned) we take
=271 =2r7 H o be a subgroup of G which is isomorphic o 5z(x) and
ft to be the Tits ovoid of #{s) fixed by #.

For any xc4#, the stabiliser of x in H contains a vnique Sylow 2-sub-
group S of H and the action of H on @] x} is regular, The union of x with
a nom-trivial orhit in 0% {x] of the center Z{S) of § ix a circle (see
Lemma 2.8(b) below) of the Suzuki-Tits inversive plane f{f) associated
with & as in [12, p. 126]. The union of any two such Z{5)-fixed circles
through x will be called a figure of eight at x.

By [6], the centralizer of any cyclic subgroup of & of order 5+ 2r + 1 ix
a cyclic subgroup of order 5° + 1. Therefore by [11, Lemma 27, any cyelic
subgroup of order & = 2r 4+ 1 of (7 acts semi-regularly on the points of W/(s).
A set of points of W{s) will be called a cap (respectively a cup) f it is a
point-orbit contained in 8 of a cyclic subgroup of & of order s+ 2r +1
(respectively 5 —2r+ 1)

Finally, any {cyclic) subgroup ¥ of IT of order 5 — 1 fixes precisely four
points of H(s), two of them on &, and acts semi-regularly on the remaining
points of Wis) (sce [3]) A set of points of W{x) will be called a pyendo-
eirefe if it is the union of the two T-fixed points on 8 with a nontrivial
T-orbit contained m 7 provided it is nol ene of Lhe two T-fixed circles of
g

In termy of these definitions, we prove:

THEORFM 1. Lety=2"'Y n=1 Then
(a) The fmrersection of an elliptic vvoid of Wix) and a Tits ovoid of
Wiz is either a cup or a cap.
(b)  The imtersection af any Iwe disfinct Tifx ovoids of Wis) is either
a point, @ psendo-circle, o figure of eight, a cup, or a cap.
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Now, Theorem 1, together with the second result mentioned in 1.2
above, implies:

CoroLLary 20 Ler x=2° &= 1. Then ihe cardinaliiy af ihe inferseciion
of any two distinct classical ovoids of W{s) is one of 1, s—(25)"* + 1, s+ 1,
SHEYT 1, or Qe 1L

[4  In Theorem 3 below we prosent a construction of a scmi-bipkane
from any pair of oveids of Ws). Recall that a seru-hiplane {[8, 15]} 13 a
finite connected incidence system in whick through any two distinet points
pass O or 2 blocks and any two distinet blocks have 0 or 2 points in
common. It follows that there are constants ¢ and & such that the number
of points = v =the number of blocks and the number of points in sach
block =& — the number of blocks through cach point. The semi-hiplane s
said to have parameters (v, k). In other words, a semi-biplane s a
Buekenhout diagram geometry of type ~— = —a, Apparently the only
known general constructions of semibiplanes are: {a)the doubling con-
siruction due 1o Floghes and ickey (see [B]) and (b} the constroction
from iovolutions in projective planes due to Huoghes in [8] For an
exhaustive enumeration of semi-biplanes with k=6 see [15]. Here we
prove:

THEOREM 3. Let 5=2° ez |, and let B, and . be two disiinct ovoids of
Wis) mecting in 82 + 1 — 1 poings, Then the fncidence system, with the “paine”
et 800y, the Yhlock™ set 000, and with coflinearity i Wis) as the
ncidence, is a semi-biplane with parameters (v, 5+ 1),

Theorem 3 and Corollary 2 yicld:

CoroLLArRY &4 ff x=2", then there exist semi-hiplanes with parameters
(v, ky={s", s+ 1) and (s” — 5, s+ 1). If, further. e > | is odd ihen there exist
serti-biplanes with parameters (v, k)= (7= 25, s+ 1), {85 —s— {27 541,
and (5% — s+ {260 s+ 1)

1.5, The basic idea in the proof of Theorem i s that the intersection of
any two classical ovoids has odd size {1, Corollary 2, p. 2397 and it is the
union of some of the poiot orbits of the interseetion of the full stabilisers
in ¢ of these two ovoids. To implement this idea, we require:

TheoreM 5. Let s=2""'=2r7 and let H< G =5p(4, ¥) be isomorphic
a2 Sz(s). Then

{a} H meets each copy vf SL(2,5%}-2 in G in a subgroup of avder
ds+2r + 1) Indeed, K— K H defings a bijection between the set of sub-
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groups K of G isomorphic 1o S£(2,5%)-2 and the set of subgroups of H of
erder s+ 27+ 1) and 43 —2r 4+ 1):

(b} & comtains:

(1) (s—1¥s*+ 1) copies of Sz(s) intersecting H in a Sylow 2-siub-
group of H.

(2) s(s= 105>+ 1) copies of S2{s) intersecting H in a subgroup of H
of arder 25 which contains the center of a Sylow 2-subgroup of H.

{3y s%s— 2Us* + 102 copiex of Se(s) intersecting H in a evclic
swbgrowp of H of order 1 — 1,

{4y &8 — 1 Hs—2¢)(s— 2r + 1)/4 copies of Sz(s) intersecting H in a
eyelie subgroup of I of order 5+ 2r + 1, and

(5) s — 1MWs-+ 2r)s+2r + 1)/4 copics of Salx) intersecting H i a
cvelic subgroup of B of order 5—2r + 1

Together, these account for all the copies of Sz(x) in G different from H.

The authors would like to thank Professor John Thompson whose
question (personal conversation with the second-named author) —~Dwoes
S5p(4, ¢} comtain two copies of Sz{s) with (rivial intersection™—led to
Theorem 5(b). Of course, this theorem answers the question in the negative
when 5= 2.

1.6. Towards the study of the permutation representation (by conjuga-
tion) of Sp{4, 5} on the copies of Sz{s) in it {equivalently, the permutation
representation of Sp(4, 53 (by right multiplication) on the left cosets of a
fizxed copy of Sz(s} in it), we prove:

THrORFM 6. Let G oand H be av in Theorem 5. Purther, for 15i€5,
choose and fix a subgroup H, of H as in part (i) of Theorem 5(b), and ler
A, (respectively B,) be the normaliser in H (respectively in ) of H,. For part
{c) below we also assume that owr choice &5 such that 8 > ;. Then

{a) The complex character 1% of the permutation represeniation of G
on the cosets of H iy the sum of s+ 3 irreducible complex characters of G,
cuch appearing with multiplicity one. Indecd, using Enomotle’s notation in
[6] for the irreducihle complex characters of G, we have

21

1€ =B+ th+8,+0,+ ¥ ik (s+2r)k)
&1

5 2F 4+ 2
*1[ ¥ orsl{x+2r+ 10K+ ¥ 15[f5—2r+1}k}]. (1.1}

4 k=1 k=1
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(b} The restriction to H of the chavacter 15 of G decomposes as
falfows _
1§|,,T1”+lf‘;l—rZ-If;{‘_+[s,-"2—l}lf,f,_,_

{5 2r) {5+ 2¥)
e

{c) For 1=i<3, 2, et n; be a compleie set of represeniatives of

the nom-trivial {ie., #£A4,) (A, A bdouble cosets in B, Let =, vousist of

representarives of the (A, Ay )-double cosers in By which are conrained in ihe

set theoretic difference B\ B, . Finally, let ny= {1} and = =\)7_, =;. Then n
is @ compleie set of representatives of the (H, H)-double cosets in G.

CoroiLawry 7. Let O and H be as in Theorem 5. Then the complex

Heclee algebra of the permutation representation of G on the left cosets of H
is fxomorphic to the cenfer of the complex group algefra of H.

.lﬁ;+

A (12)

1.7, Remarks. {a) We are intrigued by ihe  isomorphism  in
Corollary 7 and wonder il it can be proved by exhibiting a natural and
explcit isomorphiso. We conjecture that Corollary 7 holds for the pairs
(G, H}= (G5}, *Gy(s)) and = (Fy(s5), *F,(5}) as well. {See the Note added
in proof) Computations are under way to verify this for the frs-named
pair. It may be speculated that these three cases, as well as the similar
(though not entirely analogous} phenomenon observed by Gow in [7]
may be instances of a peneral theorem involving a finite simple group & of
Chevalley type and the subgroup I consisting of the fixed points of an
involutional outer automorphism of &.

{b) The proof of Theorem 5 actually shows the following: if 4 is a
subgroup of H=5z{s)<Sp(4,5)=GC with {d|e{s", s 1,54+2r + 1}, then
the copics H* of Szi(s) in & with B~ H* = 4 constitute {together with )
a single orbat under the action of N2 A) under conjupation. If, on the other
hand, |4|=2s and A4 contains the center of & Svlow Z-subgroup B of H,
then the copies H* of Sz(s) in (7 with H~ H* =4 or B {together with 1)
constitute a single A {4) orbit,

fe} In view of the identifications mentioned in the [ootnote to the
character table of Sp(4. #) in [6], each of the characters z5{-) occuring in
(1.1} above occurs four times in the sum. The factor 174 outside the squarc
bracket in (1.1} indicaies that these characters are to be taken once each,

id) Note that Eq.{1.2} in Theorem 6({b) may be thought of as the
algebraic counterpart of the geometric content of Theorem b

{¢) In Theorem 6fc) we have |mpf= |z =1, imal =2, imal =52 — 1,
|7ty] = {5 —2r)4, and |m;| = {5+ 2r)/4 (see Lemma 2.3 below).

(f}  We expect 1o use Theorem | (o setfic the following conjecture in
[37: if an automorphism of order s - 1 in an inversive plane of even order
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5 fixes exactly two circles through its two fixed points then the inversive
plane is of Suzuki-Tits type,

2. PRELIMINARIES

2.1, We use the description of ¢ = 5p(4, s) and A = Sz{s) given in {5,
pp. 234-237]. For 1, we F,, we lat

D)= XAV XD X, ),

M) =Xa, o) Xao alu™),
S {aft) Plu): 1, ueF,}.
Sy={f{uhueF,|.

Then § is a subgroup of ¢ of order s* and S, is the center of S.

Let L be the subgroup of & of order {s- 1} defincd m [5. p. 218}
{where the notation H is used for what we call £) and let T be the
subgroup of L of order 3— | delined by

T={h{yyeL: yla)=y(b)}.
Then
H=8TuSTiw,w,)*-8

is & subgroup of & of order s%(s— 1){»*+ 1) which is somorphic 1o Sz(s)
(see [3, p.2347) and 5 is a Sylow 2-subgroup of H.

For any subzroup A of the additive group of £, let T, be the subgroup
of the multiplicative proup F* of F, defined by

C,=1te F¥: rA=A}

and et 85,8, T, =7 be the subgroups given by
S={alt) p(u). ted,ucF,)
Ty={hzreT:xlb)eC,}

Then T, normalises 5. Note that in particular §,=5; when 4 =10 and
S,=8Swhen A=F . AMlso, T,=Tfor A=F,

For tefF, let P, denote the subgroup of ¢ consisting of the elements
Xo{u) Xolo) Xo ) plw) Xzg ) plx) satislyiog

{u_q_r.r‘}zr---l 3”_ or Il—r_

Clearly P,=5X,,,, is of order 5* and is a subgroup of index two of
cach P, with r=10),
Finally let M* (respectively M ™) be a subgroup of H of order
s+ 2r+ 1 (respectively s —2r 4 1},
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22 LemMa.  The only praper subgroups of H contgining 5, are of the
Sorm 8 U for some subgroup A of the adifitive group of F. and for some
subrgroup O of 1.

Provf. From the list [14, p. 137] of maximal subproups of #, the only
maximal subgroup containing 5, is 5T S0 it suffices to examine the sub-
groups of §T/5,. Since ST/%, is isomorphic to ¥, - F¥ (with F¥ acting on
the additive group of F, by multiplication), this is casy.

23, Lesivia. {a) Ler A be an additive subgroup of F,. Then
(i} for each nomrivial subgrowp U of T,, N5, -U)=8,T,=
Mol -3
(iiy i A={0}, then No(S,)= XX, X, o X2a o T and Ny(S,)=
ST
(i) i 1Al =2 then NAS V=P, T, NglS =8 -7;
vy i A =2, say A=1{0,1}, then Ng{S,)=P, Ny(5,)=8

(b) No(Th=L-{(waws)'ds NulT)=T-({w,0,>, and N(T} is
self~normealising in G.

(o) NJAMT)=MNEHRY N AMT ) =MT002%, where M- NL
=Foa, . and 11 i an element of H of order 4 acting semi-regalarfy o the
non-identity efements of MENZ. Further, for any subgroup K+ of H with
M* o KT NdME), N K ) =N (KT = Ny M

Proof. (a) and (b} are verified by routine computations using the
relations in & given in [5 pp. 213 aod 2357, Since the (s+ 1)th power of

a suitable Singer cycle in PGL{, 5) is in (7, (¢) follows from Wielandt's
theorem {9, Satz 5.8, p. 2857 and [9, Sa1z 7.3, p 188].

24 LrvMma. (a) For d=5% 5 | s+v2r41, or 5- 2r i1, any iwo
subgrowps of H of order d are conjugate in 1.
(b}  Anay fwo subgroups of H of order 25 containing the centre of some
Sviow 2-subgroup of H are conjugate in I,

Proof.  {a) follows from [10. Theorem 3.10, p. 190] and (b) from the
regutar action of T on 5/5,.

25 Lemma. (2} The number of (N XL N (3 Vedouble cosers in
NglX)is 2, 8/, V- (s—2r)4, or 1 + (542704 arcording av X is 8, T, M,
or M .

(b) ffA=1{0,1}<F,, then

Ph P =X (' + VX () X, o) Xy, W), o we F.}
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iy the union af two (N (8,), N, (50 -double cosers, namely the sei of those
eletments for which tr{u” ' '+ o+ w) =0 and the set of those for which this
frace { from F, {0 F,) is 1; in particidar, X (1) and X (1) may be chosen as
Fepresentatives of these twe double cosers,

Praaf. (a) for X =5 and (b} arc verified by routine computations. To
see [a) for the remaining cases we use Lemma 2.6 below and the fact that
{w,w,)? and 7% acts semi-regularly on the non-identity elements of T and
M* respectively.

26 Lemma.  Ler A be an abelian group and C a group of auivmorphisms
af A leaving o subgroup B of 4 fmvarignt. Then x, ve A are in the same
(BC, BC) dowble coset of AC iff x and v© are n the same coset of B for some
ce (.

FProaf. Trivial

2.7. We identify ¢ with 5P(4, 5s) via the isomorphism taking X (1),
Ao} Xopp(l) Xopyp(l) and Alz) to Fi+ By +Ey5, Lo+ 8 +Eys,
I,+E,,, and diag{e, f, # ', & ') respectively, where y(2a-b)=27
¥(B)=P7 E,is the 4 x4 matrix with T at the (i, 7)th place and 0 elsewhere,
and {, is the identity matrix of order 4 (sce [6, p. 76]).

Under this isomorphism, the Tits ovoid of F(s) stabilised by H is

O={p.tuiplx yhx yefF.l,
where p, = (1.0, 0,0) and
pix, ) =(xp+x7" P24 T x 1)

(See [10, pp. 182-1897.)

28, Lemma.  (a) H, with {ty natural faithful permutation representation
on 0, is a Zassenhaus group. The stabifizer in H of p. is 5T and the action
of § on 4 p.. | i regular.

(M) The wmion of each non-trivial Z(5) orbit in & with { p. | s a circle
of the mversive plane H8).

{c) The intersection of 8 with its image wnder x is | p. b for half of
the elements x i PP, and is o fioure of eight af p_ for the remaining half.

Proof. For {a) see [ 10, Theorem 3.3, p. 184,

2(5) stubihises { p_.} o { pt0, ¥): y= F.} which is clearly the intcrsection
of # with a plane of PG(3, r), and hence is a circle of N#). Since H acts
transilively on the cirgles of /{#) and since the full stahilizer of such a circle
in H is of order s(s — 1), it follows that each circle of A#) is stabilized by
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a unique conjugate of Z(8) in H. A two-way count shows that Z(5) fixes
exactly s circles of f{if), hence (b Letx =X (" F DX {01 X, | oo} Xop, siw) e
PP, By computation, we see that {@ 8% =25+ 1 or 1 according as
the traces (frem F, to F.) of e+w and {14197 %2 are equal or
not, If 88 is of size 25+ 1 then it is the union of {p_ | with two non-
trivial Z{5)-orbits, and hence by (b) it is then o Agure of cight at g This
proves (&)

3. Proors

31 Proaf of Theovem 5. (a) By Lemma 2.3(c), the normaliser L in &
of any subproup ML of 7 of order s +2¢4+ 1 is an extension of a cyclic
group L, of order 5° 4+ 1 by a cyclic group of order 4. Of the s+ 1 paint
urbits of Ly, exactly one is an ¢iliptic oveid 0 of W) (see [1, Lemma 2,
p. 14170 Since L acts on the Lj-orbits, it follows that L stabilizes 8,,. That
is, L = ¥ where N is the tull stabilizer in & of §,, whenee N =S1(2, 5%). 2.
We have ¥V {ME ) =LAnHc N H But N ML) is maximal in H, so
that N M * =N H Thus lor cach subgroup M= of arder {3 +2r + 1}
in H we have exhibited a copy N of SL(2,5%)-2 in G with N, (M?*)=
N H. But the total number of choices for ML s s%(y - 1Ms—2r + 114 +
e — s+ 2r+ 1) =5s"— 112 which iz also the tetal number of
copies of SL(2,5")-2 in (7. This proves (a}.

(bY Let ¥« H be a subgroup of i such that any &-conjugate of ¥
contained in # is in fact an H-conjugate of ¥. We note that the subgroups
denoted as cither A or X in this paragraph have this property, Let p( ¥)
denote the index of ¥ (¥) in N( Y. Since the number of conjugates of Y
in (7 (respectively in T} is [F: Nl ¥)] (respectively DI N (¥)]) and
since the number of conjugates of H in & is [G: ], a two-way coum
shows that p(¥) is the number of copies of Sz{s) in © {including F) whick
contwin Y. By Lemmas23 and 24, p(X)=1 if A<X¥<H and
1Al e {.ﬁ §—1, 5+ 2r+ 1}; hence in each of these cases, the p(A)— 1 copie:
of 8z{s) {other than A) containing 4 intersect H precisely in 4. Oun the
other hand, if [A] =25 and A contains the center of a Sylow 2-subproup B
of f, then 4 < # and Lemmas 2.2, 2.3, and 24 mmply thai il 4 <X =< B8,
then p{X)=wiB), while f 4 <X=<H, X 4 8 then u{X)=1 Thus, the
piA)— i B) copies of 5z(s) in & which contain 4 but not B intersect Ff
precisely In 4 im this case

Now [vom Lemmas 2.3 and 24 we see that the numbers of subgroups 4
of H with |4|=s% s- 1, 5+2r+1, or 3--2r+ 1, or with |A] =25 and 4
containing the center of a Sylow 2-subgroup of H, are respectively 52+ 1,
AP 1V, Sla—-Dis—2r+ 1), sMs—DNs+2r 4174, and (" + 1s— 13
The corresponding values of (A are s, s— 1 o —2r+1, s+ 2r+ 1, and 25
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This yields a total of {s—1)-(F+ 1)+ {r=2}-547+1}2 + (5=2r) -
SHE = IHs =20+ 1)/ + (s+ 210 0s—Dis+2r+1)/d + 5-(s7 + 1} s—1)
copics of Sz(r} (other than ) in & whose intersections with H are as
deseribed in (b). But this sum adds up to * {5+ 1)*(s —1)— 1, which is the
tota! number of copies of 5z(s) {other than &'} in &. This proves {b).

3.2 Proof of Theorem 1. {a) Fix a Tis ovoid 7 in Wis) Let & be its
stahilizer in (7 = Sp(d, 5). Thus H = Sz(s). If 6% is any eiliptic ovoid of W7s),
then letting & denote the stabiliser of #* in &, if follows from Theorem 5(a)
that for 535 — 1 s — 2r +1)/4 {respectively s%(s — 1}s+2r+ 1)/4) of the
choices for 0%, A& conlains a cvelic subgroup of order s+2r+ 1
(respectively s—2r+ 1) acting semi-regularly on the peints of W),
whence each K~ N-orbit has at least s+ 2r+ 1 (respectively 5 -2r+4 1)
points in 1t sinee & o 0% ds 2 nonempiy (by [, Corollary 2, p. 139]) anion
of Ko N-orbits, it follows that |0 0% 254 2r+ 1 (respectively
=5—2r4 1)

Let 7 be the gumber of ordered pairs (x, ), where 0% is an clliptic
ovoid of W(s) and xefl~&#* The number of choices for x is 5* + 1 and
through each point x of Wis) pass s*(5 — 1)/2 elliptic ovoids of H7s), hence
a=s(s+ 15— 1)/2. On the other hand, the previous paragraph yields
the cstimate nz(s+2r+1) - So—1Ns—2r+1)4 + (s—2r41) -
sHs—1)s+2r+1)/4 — s*5* 4 1)s- 1)/2. Since equality holds here. the
inequalities in the previous paragrapb must alse be equalities, This implies
{al.

(b} We exploit the bijection between the Tits ovoids of W(s) and the
copies of Sz(s) stabilizing them. Fix a Tits ovoid # with stabilizer A in (7.
If #* is any other Tits ovoid of Wis) with stabilizer #* then 8% 45 a
union of M~ H*orbits, and by [1, Corcllary 2], #~ #* has odd size (in
particular it is non-cmpty ). From Theorem 3(b) it now lollows immediately
that (i) for the {s—1)s*+ 1} Tits ovoids A* with |H ~ H*| =5 we have
10~ 0% =1 fuse Lemma 2.8(a}); (ii}for the s3s—1HsF2rlsF 2r + 1 )4
copies of 8% with [Fn A¥ =5+ 2r+ 1 we have |0nd* =2y +2r + 1. Also,
by Lemma 28(c] and Remark 1.7{b}, we see that (ii} for half of the
s{s - 1}s" £ 1) copies of 6* with 'H ~ H*| =25 we have § ~0* a ligure of
eight (and in particnlar |# ~ 6% =25+ 1) while for the remaining half of
thern |8~ 8% = 1. Finally, [or any A4 < H with |4 =5— 1, No{A) fixes the
two fixed points of 4 in ), so that Remark 1.7(b} implies that all the Tits
ovoids 8* for which v H*= 4 comtains these two fixed points. Since
f! v % has odd size and since A4 acts semiregularly on & minus its two fixed
points in £, it follows that (iv) for each of the #*(s — 2)(s* + 1)/2 copies of
#* for which |F~ H* =s—1, we have |0 0* =5+ L

Now we count the pumber »: of ordered pairs (x, §%), where (*£8is a
Tits ovoid of W{s) and x @~ @% There are s*+ 1 choices for x, and
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for each point x of Wis) the number of Tits ovoids of HW{s) containing
x 18 &[#* -1} (which number includes # when xeff). Tience
n={s"+ 1){s* - 5*—1). On the other hand, the previous paragraph vields
the cstimate

mzlis- LN +134 (s +2r+ 1086705 LMs -~ 2rds— 2r+1)d
s =2+ 1) -85 s+ 2eha+ 2r + Va4 1 osle— (s + 1)72
254+ D) -s{s =10+ 1V2+ {5+ 1) 55— 2)5° + 1)2
= {57+ )T =5 —1)

Since cgualily holds here, all she ipegualitics in the previows paragraph
must also be egualitics, This implies (b).

3% Proof of Theorem 3, This 1s immmediale from: (1) any two poinls in
an ovold of W{s) are non-collinear; {ii) given any two non-collinear points
of Wir), the sel of poinls collinear with both s a non-isotropic line of
PG ) (with respect to the symplectic polarity of PG{3. s) defiming
Wis)); and (i) any non-isetropic line of AG(3, ») meets any oveid of #i{s)
in 0 or 2 points.

34 Proof of Theorem 6. (a) Of the s+ 3 conjugacy classes of Sz(s)
(sce LE4 1), only two fuse in Spi4, 5) (namely the two classes of clements of
order 4). In the character table of Spid, 5) givenin L6, p. 93], 4, A5 A0
B 27+ 18 2700, lsige2— 1 and Bi{(v+2r+ 1)), =i (s T )4
are the representatives, respectively, of the conjugacy classes of elements of
Sa(x) of order 13 order 2@ order 4: (the 572 — 1 classes of nop-identily
elements of) order dividing #—1: {the (sF 2r)/4 classes of non-identity
clements of) erder dividing s 7 2r+ 1

A computation, which makes use of the character table of Spi4, 5} in [6]
and the Frobenins reciprocity, now yields (1.1}, proving {a}

(b} Using the character table of I as given in {14, p. 1417 (with the
notation for the irreducible characters of H as in [ 147) we see the restric-
tions to i of irreducible characters which appear in 1§ decompose as

5#2—1
Bilu=01p=Wd+ X+ E_. X

i=1
m2-1

Bolp=Td+(s+ DX +{s+1) ¥ X,
i=1

124 2rivd lg-—-21riid
+is—2r+1) ¥ Y +@++1D Y Z

i—1 i—1

+rW + W),
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§f2—1
yilk s+ 200) g=Td +(s+ )X +(5+3) ¥ X,
fu1
'I'X+u-r1 - 2] + Mj—l&[F +1)
(& + 2rpd fo- 2r)id

+is—=2r+3) Y, Y+(s+2r+3) ) Z,
i=1

=1

Fr(W, + W)

{here the suffizes + 2&(1 + 27} and £246(1 4+ ) in the two X terms are to be
taken modulo s— [, with the sign so chosen that, reduced modulo 5 —1,
they lie berween 1 and 52 —1);

&2 1 5 2ehid
sl p=Td+s-X+(s+1) ¥ X, +(z-2r+1) } T,
i=1 ==
(5 2rpd
{3+ +1) Y ZZoHrH W W)
i—=1

k=0 {mods+2r+1);

and

Hi—1 7+ 2eiid
rkl p=ld+sX+(s+ 10 ¥ X +{s—2r+1) } ¥V,
i=1 i=1
[ - 2r)d
+{s+2r+1) ¥ ZoHtr—1(W, + W)

i=1

if &=0(mods -2r+1)

Adding, we get, in view of {a},

1€ =5+ 3) 1d+ (s +2¢— 1) X
#I—1

+rs =)W, + W)+ ++3) Y X

i—1
(&= Zr4

+ (7 =2 +2¢—3} Y ¥,
i=1

t5 - 2rhi
+ (s + 2+ 29—3) F,  Z.
i=1

Now (b} follows from the computations
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Hi-1
e =ld+X¥+2 ¥ X,
im 1
52—
B, =1d+ 52X + {52+ 1) X,
=i
Ir+2riit fr—2r)id
+(2-1) ¥ r4+52-1 Y Z;
(] =1
52 5 1 iy + Ariid
=+ 5+ 22X +(s+1) Y X+{x—2r+1) Y Y,
=1 i—=h
(% — 2r)id
+is+2r+1} 3 Z o br(W ML)

i—1

sin =1
1 =ld+(s-2)X+(s-2r+1) ¥ X,
iz
124 Zeyid

Fis -4r+3} ¥ T,
i—= 1L

i.':—.lr'l-.-'-'l
+{s—1) ..%_. Z,+r(W,+ W)t

f=1
and
=1
L, =ld+i{s+2 )X+ {s+2r+1) 3 X,
F—1

{: 42004

LESH Y B
=1

{7 Tepd
+is+4r+3) Y Z4rW,+ W)

il

(e} From the proofl of Theorem 5(b) {alsc see Remarks 1.7{h}) we see
that for xema,, IFm It = F,. Since the ffs have distinct orders, it follows
that the (H, H) double coset in & represenled by any xe ), has size
different from that represented by any rem, if i/ Alwo, il x, vem;
represent the same (H, H)-double coser, then we have HxH = HvH
and HrH ={,={cff'. Thus y=hch, with k, h, in H Henee
HAHY= (Hr HYt=({HrnH")*, whence h,eB,. Since x, veB, it
follows that &, = B,. Thus /|, ke 4, and hence x amd p represent the same
(A, A,) double coset in B,. From the choice of n,, it fallows that x =y,
Thus the elemenis of n represent distinet (&, & )-double cosets. From
Lemmas 24 and 2.5 {also see Remark 1.7{e)). in! =5+ 3 while, from
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Thecrem 6(a}, 54 3 Is also the total number of (H, ) double cosets o &.
This proves (c).

3.5 Remarks. We note that in the character table of Sp{d, #) in [6] the
degrees of {, and {, have been interchanged We actually have
degf(f, ) =s{s + 1)%2 and deglf.} = 5(s* + 1)/2.

3.6. Proof of Corollary 7. Let A be the compiex Hecke algebra of 15
and let 8 be the center of the complex group algebra C[H] of #. From
Thecrem 6(a) and {c) we have dim A=ys+43 while from [14] we have
dimB=s+3. B s tovially commutative, while by Theorem 6{a) 15 is
multiplicity frec and hence A iz commuotative. Thus A and B are both
(% + 3)-dimensional commutative semi-simple complex algebras, and hence
both are isomorphic (as algebras) to ©° "7, This proves the Corolfary.

Nove added in procl.  Recenl compulations by the second named author (“Intersection
pattern of the Rec groups io-Goi1™ )" preprint) shows that the conjecture in 1.7(a) is false
for the pair {75, *F5), but just barely so. ladeed, only one irredueible complex character of
&y inamely the unique one of degree s(r+ 15! + 1)/2} appears in this permutation character
with mwitiplicity fean, while the remaining <+ irreducible constituents appear with
multiplicity ore each, The Conjecture is still open for the pur (F,, *F,
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