Optimal estimation of finite population total under a general correlated model

BY RAHUL MUKERJEE

Stat-Math Division, Indian Statistical Institute, Calcutta- 700 035, India

AND S. SENGUPTA

Department of Statistics, University of Calcutta, Calcutta- 700 019, India

SUMMARY

Restricting attention to fixed size sampling designs and linear unbiased estimators of a finite population total, we give methods for finding estimators with minimum model expected variance and the optimal strategy under a general correlated superpopulation model. Some techniques popular in the theory of optimal experiments help in the derivation. Several earlier optimality results are deduced as special cases.

Some key words: Directional derivative; Finite population; Fixed size sampling design; Linear unbiased estimator; Optimal strategy; Superpopulation model.

1. Introduction

Let U be a finite population of N units labelled i = 1, ..., N, and y be a real variable assuming value Y_i on unit i. The problem is to estimate the population total $Y = \sum Y_i$ on the basis of a sample, i.e. a subset s of U, drawn according to a sampling design p with positive inclusion probability π_i for every unit i. We consider a superpopulation model consisting of prior distributions α such that

$$E_{\alpha}(Y_i) = \mu_i, \quad E_{\alpha}\{(Y_i - \mu_i)(Y_j - \mu_j)\} = v_{ij},$$
 (1.1)

where E_n and E_p denote expectations with respect to α and p respectively. Let P_n denote the class of designs p with fixed sample size n, and let L_q denote the class of linear unbiased estimators

$$e = a_s + \sum_{i \in s} b_{si} Y_i \tag{1.2}$$

based on p, where the a_i and b_{ii} 's are real constants satisfying

$$E_p(a_s) - \sum_s a_s p(s) = 0, \quad \sum_{s \to i} b_{si} p(s) = 1 \quad (i = 1, \dots, N),$$
 (1.3)

 Σ_s denoting the sum over all s. Writing H_n as the class of strategies (p, e) with $p \in P_n$ and $e \in L_n$, we derive the optimal strategy in H_n under the model (1·1), in the sense of rendering the model expected variance $E_n E_p\{(e-Y)^2\}$ a minimum for every α . The optimal strategy is generally found to depend on $\mu - (\mu_1, \ldots, \mu_N)'$ and $V = ((v_{ij}))$, which is assumed to be positive-definite.

It may be noted that $(1\cdot1)$ is a generalization of the models considered by Godambe (1955), Hájek (1959), Cassel, Särndal & Wretman (1976) and Tam (1984) and that the earlier optimality results obtained by these authors can be deduced as special cases. The results in this paper also give a method for finding the minimum model expected variance, under the general model (1·1), and hence may be found useful in studying the robustness of a strategy in H_n .

2. OPTIMALITY RESULTS

Consider $(p, e) \in H_n$ and let b_s be a $n \times 1$ vector with its elements b_{si} $(i \in s)$; let V_s be a $n \times n$ submatrix of V obtained by considering the units $i \in s$ and 1 be a $N \times 1$ vector with all elements unity. By (1·3), it is easy to verify that

$$E_{\alpha}E_{p}\{(e-Y)^{2}\} = \sum_{s} \left(a_{s} - \sum_{i=1}^{N} \mu_{i} + \sum_{i \in s} b_{si}\mu_{i}\right)^{2} p(s) + \sum_{s} b_{s}' V_{s} b_{s} p(s) - 1'V1$$

$$\geq \sum_{s} b_{s}' V_{s} b_{s} p(s) - 1'V1 \qquad (2.1)$$

with equality if and only if

$$a_{s} = \sum_{i=1}^{N} \mu_{i} - \sum_{i \in s} b_{si} \mu_{i}, \qquad (2.2)$$

for every s with p(s) > 0.

Let $V_s^{-1} = ((v_s^{ij}))$. Define for i, j = 1, ..., N,

$$\phi_{ii} = \sum_{s=ii} v_s^{ij} p(s) \tag{2.3}$$

and Φ as the $N \times N$ matrix with its elements ϕ_{ij} . Since $\pi_i > 0$ for every i, it can be seen that Φ is nonsingular. This is because for any $w = (w_1, \ldots, w_N)'$, $w'\Phi w \ge 0$ with equality if and only if $w_i = 0$ for all $i \in s$, this being true for every s such that p(s) > 0; compare with $(3\cdot 1)$. Let

$$\lambda = (\lambda_1, \dots, \lambda_N)' = \Phi^{-1} 1, \tag{2.4}$$

 λ_s being a $n \times i$ subvector of λ given by the elements $i \in s$ and

$$b_s^* = V_s^{-1} \lambda_s \tag{2.5}$$

with its elements b_{xi}^* $(i \in s)$. From (1·3), (2·3)-(2·5),

$$\sum_{s} b_{s}^{*\prime} V_{s} b_{s}^{*} p(s) = \sum_{s} \lambda'_{s} V_{s}^{-1} \lambda_{s} p(s) = \lambda' \Phi \lambda = 1' \Phi^{-1} 1, \tag{2.6}$$

$$\sum_{s} b'_{s} V_{s} b''_{s} \rho(s) = \sum_{s} b'_{s} \lambda_{s} \rho(s) = 1' \lambda = 1' \Phi^{-1} 1.$$
 (2.7)

In view of (2.1), (2.2), (2.6), (2.7), we obtain

$$E_{\alpha}E_{p}(e-Y)^{2} \ge \sum_{x} (b_{x} - b_{x}^{*})' V_{x}(b_{x} - b_{x}^{*}) p(s) + 1'\Phi^{-1}1 - 1'V1 \ge 1'\Phi^{-1}1 - 1'V1$$
 (2.8)

with equality if and only if (2.2) holds and further

$$b_s = b_s^* \tag{2.9}$$

for every s with p(s) > 0. Note that the choice given by (2-2) and (2-9) is consistent with (1-3) since, by (2-3)-(2-5),

$$\sum_{s=i} b_{si}^* p(s) = \sum_{s>i} \sum_{j \in s} v_s^{ij} \lambda_j p(s) = \sum_{j=1}^N \lambda_j \phi_{ij} = 1.$$

Thus for a given p, the optimal estimator in L_n , under the model (1·1), is given by (2·2) and (2·9). The optimal design can now be obtained by minimizing the right-hand side of (2·8), or equivalently $1'\Phi^{-1}1$ with respect to $p \in P_n$. This is considered in § 3. The results so far obtained can be summarized as follows,

Theorem 1. For a given $p \in P_n$, under the superpopulation model (1·1),

$$E_{\alpha}E_{p}(e-Y)^{2} \ge 1'\Phi^{-1}1 - 1'V1$$

for every $e \in L_n$, with equality if and only if $e = e^*$, where e^* is specified by (2·2) and (2·9). Further, a strategy (p, e) is optimal in H_n provided $(p, e) = (p^*, e^*)$, where p^* is a sampling design that minimizes $1'\Phi^{-1}1$ with respect to $p \in P_n$.

Consider now a special case of (1·1) where, for $1 \le i + j \le N$, $v_{ij} = \rho(v_{ii}v_{jj})^{\frac{1}{2}}$, with the constant ρ free from i and j, $-1/(N-1) < \rho < 1$. By (2·3),

$$\phi_{ii} = g_1 v_{ii}^{-1} \pi_i \quad (1 \le i \le N), \quad \phi_{ii} = g_2 (v_0 v_{ii})^{-\frac{1}{2}} \pi_{ii} \quad (1 \le i \ne j \le N).$$

Here

$$g_1 = \frac{1 + (n-2)\rho}{(1-\rho)\{1 + (n-1)\rho\}}, \quad g_2 = \frac{-\rho}{(1-\rho)\{1 + (n-1)\rho\}},$$

and π_{ij} is the joint inclusion probability of units i and j. Define $l = (v_{11}^{\frac{1}{2}}, \dots, v_{NN}^{\frac{1}{2}})'$. Observe that, by well-known relations on π_i 's and π_{ij} 's, $I \Phi I = g_1 n + g_2 n(n-1)$ and that, by the Cauchy-Schwarz inequality, $1'\Phi^{-1}1 \ge (1'I)^2/(I'\Phi I)$. Hence

$$1'\Phi^{-1}1 - 1'V1 \ge (1 - \rho) \left\{ n^{-1} \left(\sum_{i=1}^{N} v_{ii}^{\frac{1}{2}} \right)^{2} - \sum_{i=1}^{N} v_{ii} \right\}$$

with equality if and only if ΦI is proportional to 1 or equivalently

$$\pi_i = nv_{ii}^{\frac{1}{2}} / \left(\sum_{i=1}^{N} v_{ii}^{\frac{1}{2}}\right) = \pi_{i0}$$

say for every i (i = 1, ..., N). Further, for any p with $\pi_i = \pi_{i0}$ (i = 1, ..., N), it is easy to verify that $b_{ii}^* = \pi_{i0}^{-1}$. We thus have the following result.

COROLLARY 1. Under the superpopulation model $(1\cdot 1)$ with $v_{ij} = \rho(v_{ii}v_{jj})^{\frac{1}{2}}$ $(1 \le i \ne j \le N)$, a strategy (p,e) is optimal in H_n if and only if $\pi_i = \pi_{i0}$ for every i $(i=1,\ldots,N)$ and e is given by the generalized difference estimator

$$e = \sum_{i \in s} (Y_i - \mu_i) / \pi_{i0} + \sum_{i=1}^{N} \mu_i$$

for every s with p(s) > 0.

The earlier optimality results obtained by Godambe (1955), Hájek (1959), Cassel, Särndal & Wretman (1976) and Tam (1984) follow immediately from Corollary 1. Note, however, that in general the optimal estimator, as specified by (2·2) and (2·9), will not be a generalized difference estimator since the optimal coefficients b_{si}^* may depend on s. The following example serves as an illustration.

Example 1. Let N = 4, n = 2, $v_n = \sigma^2$ (i = 1, ..., 4), $v_0 = 0.5\sigma^2$ $(1 \le i \ne j \le 3)$ and $v_0 = 0$ otherwise. As shown in Example 2 in § 3 then the optimal design is given by p^* , where $p^*(1, 2) = p^*(1, 3) = p^*(2, 3) = 0.1181$, $p^*(1, 4) = p^*(2, 4) = p^*(3, 4) = 0.2152$. Hence by (2.2), (2.9), the optimal strategy in H_n is (p^*, e^*) , where

$$e^*(s) = \begin{cases} 1.7889 \sum_{i \in s} (Y_i - \mu_i) + \sum_{i=1}^4 \mu_i & \text{if } s = (i, j), 1 \le i < j \le 3; \\ 2.6834(Y_i - \mu_i) + 1.5489(Y_4 - \mu_4) + \sum_{i=1}^4 \mu_i & \text{if } s = (i, 4), 1 \le i \le 3. \end{cases}$$

Note that e^* is different from e_1 , the generalized difference estimator under the design p^* . It can be checked that $E_\alpha E_{p^*} \{ (e^* - Y)^2 \} = 2.598 \sigma^2$, while $E_\alpha E_{p^*} \{ (e_1 - Y)^2 \} = 2.932 \sigma^2$,

so that the use of e^* rather than e_1 ensures a gain of over 10% in efficiency. Similarly, if one considers simple random sampling without replacement, say \bar{p} , then by (2·2), (2·9) it can be seen that \bar{e} , the corresponding optimal estimator, is different from e_2 , the corresponding generalized difference estimator. Furthermore, $E_a E_{\bar{p}} \{(\bar{e} - Y)^2\} = 2 \cdot 714\sigma^2$, $E_a E_{\bar{p}} \{(e_2 - Y)^2\} = 3\sigma^2$, so that the gain in efficiency through the use of \bar{e} rather than of e_2 is again about 10%.

3. OPTIMAL SAMPLING DESIGN

As noted in § 2, the derivation of the optimal design requires the minimization of $1^{r}\Phi^{-1}1$ with respect to $p \in P_n$. Although in general an analytic solution to this nonlinear programming problem is not available, the algorithms popular in the theory of optimal experiments (Fedorov, 1972; Silvey, 1980) are useful.

Since we are considering unordered estimators, a design p in P_n may be conveniently represented by nonnegative quantities $\{p(s), s \in \mathcal{F}\}$, where

$$\mathcal{S} = \{(i_1, \ldots, i_n): 1 \leq i_1 \leq \ldots \leq i_n \leq N\}.$$

Clearly, $\Sigma' p(s) = 1$, where Σ' represents summation over \mathcal{S} . Then by (2.3),

$$\Phi = \sum_{s}' p(s) T(s), \tag{3.1}$$

where, for example with s = (1, ..., n), the $N \times N$ matrix T(1, ..., n) is defined as

$$T(1,\ldots,n) = \begin{pmatrix} V_{12\ldots n}^{-1} & 0 \\ 0 & 0 \end{pmatrix},$$

 $V_{12...n}$ being the $n \times n$ submatrix of V given by its first n rows and columns. Similarly, for each $s \in \mathcal{F}$ the matrix T(s) of order $N \times N$ is defined. Note that T(s) is nonnegative-definite for each s. Then analogously to Silvey (1980, pp. 19-20) one obtains the following theorem which involves the use of directional derivatives.

THEOREM 2. A design $\{p^*(s), s \in \mathcal{F}\}\$ is optimal in the sense of minimizing $1'\Phi^{-1}1$, that is maximizing $-1'\Phi^{-1}1$, in P_n if and only if

$$F(\Phi^*, s) = \lim_{\epsilon \to 0+} c^{-1} [1'(\Phi^*)^{-1} 1 - 1' \{ (1 - \epsilon) \Phi^* + \epsilon T(s) \}^{-1} 1] \le 0$$
 (3.2)

for every $s \in \mathcal{S}$, where $\Phi^* = \Sigma' p^*(s) T(s)$.

Since T(s) is nonnegative-definite for each s, an explicit evaluation of the left-hand side of (3·2) shows that a design $\{p^*(s), s \in \mathcal{S}\}$ is optimal in P_n if and only if

$$F(\Phi^*, s) = 1'(\Phi^*)^{-1}T(s)(\Phi^*)^{-1}1 - 1'(\Phi^*)^{-1}1 \le 0$$
 (3.3)

for every $s \in \mathcal{S}$. If the optimal design can somehow be guessed then (3·3) may be employed for a formal verification. In general, such a guess seems to be extremely difficult. Anyway, one may employ (3·3) to develop algorithms leading to a numerical determination of the optimal design. For example, a version of the W-algorithm (Silvey, 1980, pp. 29-30), as briefly outlined below, will be appropriate in the present context.

Let δ be a pre-assigned positive quantity and $\{c_k\}$ be a real sequence such that $0 \le c_k \le 1$ for each k, $\lim c_k = 0$ and $\sum c_k$ is divergent. At the first stage of iteration one may start with the design

$$p_1(s) = \binom{N}{n}^{-1}$$

for each $s \in \mathcal{S}$. For $k = 1, 2, \ldots$, let $\{p_k(s), s \in \mathcal{S}\}$ be the design at the kth stage of iteration and $\Phi_k = \sum_{s=0}^{n} p_k(s) T(s)$. Let $F(\Phi_k, s)$ be defined as in (3·3). The iteration stops at the kth stage if $\max_{s \in \mathcal{S}} F(\Phi_k, s) \le \delta$. Otherwise, one moves on to the (k+1)th stage of iteration and considers the design

$$p_{k+1}(s) = \begin{cases} (1 - c_{k+1}) \, p_k(s) & (s \neq s_{(k+1)}), \\ (1 - c_{k+1}) \, p_k(s_{(k+1)}) + c_{k+1} & (s = s_{(k+1)}), \end{cases}$$

where $s_{(k+1)}$ maximizes $F(\Phi_k, s)$ over $s \in \mathcal{S}$. Clearly

$$\Phi_{k+1} = (1 - c_{k+1})\Phi_k + c_{k+1}T(s_{(k+1)}),$$

and iteration is continued as before. Exactly as Silvey (1980, pp. 35-6), we can show that the above algorithm necessarily terminates and that if it terminates at the k'th stage then $1'(\Phi_{k'})^{-1}1 < 1'(\Phi^*)^{-1}1 + \delta$, where as before Φ^* corresponds to the optimal design. Thus the algorithm guarantees arbitrary close approach to the minimum possible value of $1'\Phi^{-1}1$.

Example 2. Let N=4, n=2 and suppose the v_{ij} 's are as in Example 1. From intuitive considerations one hopes that for the optimal design $p(1,2) = p(1,3) = p(2,3) = q_1$, say, and $p(1,4) = p(2,4) = p(3,4) = q_2$, say, where $3(q_1+q_2) = 1$. It is easy to see that the choice of q_1 , q_2 that minimizes $\Gamma \Phi^{-1} \Gamma$ is $q_1 = 0.1181$, $q_2 = 0.2152$. Finally, it can be checked that the resulting design satisfies (3.3) and is, therefore, optimal.

Example 3. Let N=4, n=2, $v_{11}=1\cdot 0$, $v_{22}=4\cdot 0$, $v_{33}=9\cdot 0$, $v_{44}=16\cdot 0$, $v_{12}=v_{21}=0\cdot 4$, $v_{23}=v_{32}=1\cdot 2$, $v_{34}=v_{43}=2\cdot 4$, and $v_{ij}=0$ otherwise. It is easy to obtain T(s), for $s\in \mathcal{S}$. For example T(1,3) will be a 4×4 matrix, with 1 and $\frac{1}{9}$ in its (1,1)th and (3,3)th positions respectively, and zeros elsewhere. Here it is difficult to guess the optimal design but an application of the W-algorithm yields the optimal design p^* as $p^*(1,3)=0\cdot 2213$, $p^*(2,4)=0\cdot 4220$, $p^*(3,4)=0\cdot 3567$, $p^*(1,2)=p^*(1,4)=p^*(2,3)=0$.

The optimal strategy discussed here generally involves the model parameters which may be unknown. In order to tackle this problem, asymptotic studies, along the lines of Särndal (1980) and Isaki & Fuller (1982) among others, may be appropriate. Consider a sequence of populations $\{U_i\}$ (i = 1, 2, ...) such that U_i contains N_i units, where $N_t \to \infty$ as $t \to \infty$. Let $\mu_{(t)}$ and $V_{(t)}$ denote respectively the model mean vector and the model covariance matrix corresponding to U_t . Furthermore, as happens in many practical situations, let there exist a parameterization of $\mu_{(t)}$, $V_{(t)}$ as $\mu_{(t)} = X_t \gamma$, $V_{(t)} = V_{(t)}(\theta)$, where X_t is a $N_t \times h_t$ known matrix of values of regressor variables, the functional form $V_{(t)}(.)$ is known, γ and θ are $h_1 \times 1$ and $h_2 \times 1$ vectors of unknown parameters, and h_1 , h_2 are known positive integers free from t. Let $Y_{(t)}$ be the population total, corresponding to U_t , of the variable of interest y. For $t=1,2,\ldots$, a sample s, of n_t distinct units is considered from U_t , where $n_t \to \infty$ as $t \to \infty$. For t = 1, a sample s_1 is drawn from U_1 by simple random sampling without replacement and on the basis of the y-values ascertained from s_1 , estimates $\hat{\gamma}_1$ and θ_1 of γ and θ may be obtained employing, for example, the method of two-stage least-squares; compare Malinvaud (1980, pp. 282-3). For $t = 2, 3, \ldots$, with reference to the population U_t , one may consider the strategy $(\hat{p}_t^*, \hat{e}_t^*)$ which is the optimal strategy corresponding to $\mu_{(t)} = X_i \hat{\gamma}_{t-1}$, $V_{(t)} = V_{(t)}(\bar{\theta}_{t-1})$, where $\hat{\gamma}_{t-1}$ and $\bar{\theta}_{t-1}$ are estimates of γ and θ obtained from s_{t-1} using two-stage least-squares. The results presented earlier may be employed to find $(\hat{p}_t^*, \hat{e}_t^*)$. Let (p_t^*, e_t^*) be the optimal strategy, with reference to U_t , when the model parameters γ and θ are known. Then under appropriate assumptions it is believed that for large t, the strategy $(\hat{p}_t^*, \hat{e}_t^*)$ should serve as a good approximation to (p_t^*, e_t^*) in the sense that the difference

$$n_t \{E_{\alpha} E_{p_t^*} (\hat{e}_t^* - Y_{(t)})^2 - E_{\alpha} E_{p_t^*} (e_t^* - Y_{(t)})^2\} / N_t^2$$

should tend to zero as $t \to \infty$.

ACKNOWLEDGEMENT

The authors are grateful to the referees for their very constructive suggestions.

REFERENCES

CASSEL, C. M., SÄRNDAL, C. E. & WRETMAN, J. H. (1976). Some results on generalized difference estimation and generalized regression estimation for finite populations. *Biometrika* 63, 615-20.

FEDOROV, V. V. (1972). Theory of Optimal Experiments. New York: Academic Press.

GODAMBE, V. P. (1955). A unified theory of sampling from finite populations. J. R. Statist. Soc. B 17, 269-78.
HAJEK, J. (1959). Optimum strategy and other problems in probability sampling. Casopis Pro Pestovani Matematiky, Univ. Prague 84, 387-423.

ISAKI, C. T. & FULLER, W. A. (1982). Survey design under the regression superpopulation model. J. Am. Statist. Assoc. 77, 89-96.

MALINVAUD, E. (1980). Statistical Methods of Econometrics. Amsterdam: North-Holland.

SÄRNDAL, C. E. (1980). On π-inverse weighting versus best linear weighting in probability sampling. *Biometrika* 67, 639-50.

SILVEY, S. D. (1980). Optimal Design. London: Chapman and Hall.

TAM, S. M. (1984). Optimal estimation in survey sampling under a regression superpopulation model. Biometrika 71, 645-7.

[Received September 1988, Revised February 1989]