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under a general correlated model
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SUMMARY

Restricting attention to fixed size sampling designs and linear unbiased estimators of
a finite population total, we give meothods for nding estimators with minimum model
expected varlance and the opumal strategy under a general correlated superpopulation
model. Some techniques popular in the theory of oplimal experiments help in the
derivation. Several earlier optimality resulls are deduced as special cases,
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1. TNTROLIUCTION

Let I he a finite popalation of N units labelled i=1,..., N, and y be a real variable
assuming value ¥, on unit { The problem is to estimate the population total ¥ =X Y] on
the hasis of a sample, i.e. a subset 5 of L, drawn according to a sampling design p with
positive inclusion probability w; for every unit i We consider a superpopulation model
consisting of prior distribuilons @ such that

rcr[?rl.}:#'l! ru{{}-: #’r}tY:l -#jr'}}:vl'j:l {11}
where E, and E, denote expectations with respect to @ and p respectively. Let F, denote

the class of designs p wilh fixed sample size n, and let L, denote the class of linear
unbiased estimators

'H_-u':+z|._—; b.\i}ri fl'zl
based on p, where the a, and b,'s ure real constunts satisfyving
Efla )=, ap(si=0, Y ., bip(s)=1 (i=1,...,N), (1:3}

¥, denoting the sum over all 5. Wriling H, as the ¢lass of strategies {p, ¢) with pe P,
and ec L,, we denive the optimal stratcgy in H, under the model (1-1), in the sense of
rendering the model expected variance E_ E,{(e— Y¥)’} a minimum for every a. The
optimal strategy is generally found to depend on g = (g1, .. ., ptn ) and ¥V ={{2)1, which
is assumed to be positive-definite.

Tt may be noted that (1-1) is 4 generalization of the models considered by Godambe
{1955}, Hajek (1959), Cassel, Sirndal & Wretman (1976) and Tam (1984) and that the
carlicr optimality results obtained by these authors cun be deduced as special cases. The
results in this paper also give o method for inding the minimum model expected variance,
under the general model {1-1), and hence may be found useful in studying the robustness
of a strategy 1n H,.
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2. OPTIMALITY RESULTS

Consider {p, el H, and let b, he a nx 1 vector with ils elements b, (i< s); let V. be
a nxn submatrix of V obtained by considering the units iss and 1 be a N %1 vector
with al! elements unity. By (1-3), it is easy to verify that

e 2
E.E{le=~Y)}=% (ﬂ, R b,.-:».-) pls)+Y B V.bpls)—1'V1
¥ i—1 fox €

=3 BIVbp(s)—1VI (2:1)
with equality if and only il
7\: ,
a.? = 'él #’l’ B _l.‘ IIJ:n‘ll""l': fZ'E}

for every s with p(s)>0.
Let ¥7'={(v¥)). Define for i, j=1,..., N,

by =Y.z vy p(s) (2:5]
and @ as the N x N matrix with its elements ¢;. Since «; = 0 for every §, it can be seen
that @ is nonsingular. This is because for any w={w,, ..., wy ), w'dw =0 with equality

if and only if w; = tor all i =3, this being true for every 5 such that pis) = 0; compare
with (31}, Let

A={A, .., An) =0""1, (24}
A, being a n x i subvector of A given by the elements ie s and
BE=V]'A, (2:5)
with its ¢clements b¥% (i ¢ s), From (1-3), {2:3)-(25),
YL EEVEIP() =Y MV Ap(sl=ADa=1"D '], (2-6)
Y B Vb*a() =Y Blapisi=14=1"D "1 {2:7)
In view of {2-1}, (2-2}, (2-6), (2:7), we obtain
F.Eie—Y)VP=Y (b -b*VV.(h,—bH)pis)+10 N —1'VIz=1'Dd '1--1'V] (2-8)

with equality if and only if (2-2) holds and farther
b, = b* {2-9)

for every & with pls) = 0. Note that the choice given by (2-2) and {2-9) is consistent wilh
{1:3) since, by (2-3}-{2-5),

? N
X bipls) = E-{E viap(s)= _L] Ahy=1.
A= K YE 0% i—

Thus for 4 given p, the optimal estimator in L,, under the model {1-1), is given by
(2-2) and {2-9}. The oplimal design can now be obtained by minimiring the right-hand
side of (2-8), or equivalently 1D '1 with respecl to p = P,. This is considered in § 3. The
resulis 50 [ar obtained can be summarized as follows,

THEGREM 1. For o given p ¢ P,, under the superpopulation model (1-1),

EE(e-YY=10""1-1'V1
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for every e ¢ L, with equality if and only if e = ¥, where e* is specified by {2:2) and (2-9),
Further, a strategy (p, e) is eptimal in H, provided ( p, ¢) =( p*, e*), where p* is a sampling
design that minimizes 1'® "1 with respect to pe P,.

Consider naw a special case of {1-1) where, for 1=i+j=N, v.-jzp{u,-z-bi,-]i with the
constant g free from § and j, —1/{N--1}<p=1. By {2:3),
dy=gitu'm (1=i=N}  dy=gl Upﬂ;f}ml‘frﬁ (l=sifj=N).
Here
TR L L ) TP —p
(1-p{l+(n-Dpl =7 U-p)1+(n-Lpp)
and ar; is the joint inclusion probability of units { and j. Define I=(,. ... 8.

Observe that, by well-known relations on ;" and 7;'s, Dl =g,n+g,n{n 1) and that,

by the Cauchy-Schwarz inequality, 1'® 1 = (1'1}?/(F'®I). Hence

N hd N
I'e ]l—erlPﬁ{l—p}{ﬂ '(E -ufj) = ¥ v.-:}
i—1

&,

with equality il and only il P is proportional to 1 or equivalently

m = nb‘i-/(:i ‘Li?;') =T

say for every i (f=1,..., N). Further, for any p with m; =@, (i=1,..., N], it is easy
to verify that b% = 75 . We thus have the following result.

COROLLARY 1. Under the superpopulation model (1-1) with v, = p(vyp,)* (1= i % j= N),
a strategy ( p, e} is optimal in H, if and only if 7, = m forevery i (i=1,... ,N)and e is
given by the generalized difference estimator

N
e=z (Yi— )/ mint Z Hi
-1

igs
far every 5 with ps) =0,

The earlier optimality resulls oblained by Godambe (1955), Hajek (1959}, Cassel,
Sirndal & Wretman (1976} and Tam (1984} {ollow immediately from Corallary 1. Note,
however, that in general the oplimal estimator, as specificd by (2-2) and (2.9}, will not
be a generalized difference estimator since the optimal coefficients &%, may depend on .
The following example serves as an illustration,

Example | La N=4, n=2, v,=0c° {i=1,.. ., 8, 0,=05¢" (I=i+j=3)andp,=0
otherwise. As shown in Example 2 in § 3 then the optimal design is given by p*, where
L2 =p*1,3) =p"(2, 3 =0-1181, p*(1,4)=p*(2,4)=p*{3,4)=0-2152. Hence by
(221, (2+9}, the optimal strategy in H, is ( p*, e*), where

4
]'TEEQE(I’;—}Lijﬁ'.Z [Iy 1f3:{;h”’[‘-':;{j£3’
E’*{.'E)“ = i=1 .
2683 Y, — ) +1-5489( Yo —p )+ Y pe iCs=(id),1=i=3
=1

Mote that £* is different from e,, the gencralized difference cstimator under the desipn
p*. Tt can be checked that E,E«{(e* — ¥)7} = 2-39807, while E,E,«{{e,— ¥)*} =2-932¢",



792 Ranun. MUKERIERE ANT? 5. SENGUPTA

s that the use of ¢* rather than e, ensures a gain of over 10% in efficiency. Similarly,
if one considers simple random sampling without replacement, say g, then by (2-2), (2:9)
it can be seen that & the corresponding optimal estimator, is different from e,, the
corresponding generalized difference estimator. Furthermore, E, E,{{#— Y )} = 2.71do”,
E.E{(e;— Y} =360, so that the gain in efficiency through the use of # rather than of
€; 1s again ahout 10%,

3. OPFTIMAL SAMPLING DESIGN
Az noted in § 2, the derivation of the optimal design requires the minimization of
1" "1 with respect to p= P,. Although in general an analytic solution (o this nonlinear
programming problem is not available, the algorithms popular in the theory of oplimal
experiments (Fedeorov, 1972; Silvey, 1980} are uselul,
Since we are considering unordered cstimalors, 4 design p in P, may be conveniently
represented by nonnegative gquantities { pis), s € #}, where

Pl vk LS pS el B EENY

Clearly, X'pls} =1, wherce ¥ represents summalion over & Then by {2-3),

@ =YY" p(s)T(s), (317
where, [or cxample with s={1,..., n}, the N x N matrix T(1,..., n}is defined as
Vizl n D)
Tfl,___,ﬂ= - L]
oo [

Vi2_. being the n x a submatrix of V given by iis frst n rows and columns. Similarly,
for each s ¥ the matrix Tis) of order N = N is defined. Note that T(5) is nonnegative-
definite for cach 5. Then analogously o Silvey (1980, pp. 19-20) one obtains the following
theorem which involves the wse of directional derivalives.

THEOREM 2, A design { p*(s5), s < F} is optimal in the sense of minimizing 1'® "1, that
is maximizing —1"07"'1, in P, if and only if
E{d*, s)= lim ¢ '[1{P") "1 191 —e)d* + cT(51}7'1]=0 (32

¢ o0+
for epery 52 5, where ©F =X p¥(}T{s).

Since T{s) is nonnegative-definite for cach s, an explicit evaluation of the lefl-hand

side of (3:2) shows that a design {p*(s), s 2 7} is optimal in P, if and anly if
Fi@* sh=17D*) " 15D "1 —-17{d*) "1 =0 {3-3)

lor every s £ 7 IMNhe optimal design can somehow be guessed then (3-3) may be employed
for a formal verification, Tn general, such a guess seems 1o be extremely difficult. Anyway,
one may employ (3-3) to develop algorithms leading to a numerical determination of the
optimal design. For example, a version of the W-algorithm {Silvey, 19580, pp. 29-30}, as
briefly outlined below, will be appropriale in the present context.

Let 3 be a pre-assigned positive quantity and {«g} be a real sequence such that 0 ¢, = 1
far each k, lim ¢, =0 and X ¢, is divergent. At the first stage ol iteration on¢ may start
with the design
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foreachse . Fork =1,2,...,let{ p,is), 5 ¢ #} be the design at the &ih stage ol iteration
and &, =X p. (5} T(s). Let F{@,, &) be defined as in (3-3). The iteration stops at the kth
stuge if max,, . F{D,, +) <8 Otherwise, one moves on to the (k+11h stage of iteration
and considers the design

g _fI:+1JFk{S::I [-'5'4:-5'|'J:+l}}:
= l'}IFk{"'-[.l: |1]:|"" gy (¥ =311k

Pi.-+][;5::'_{

where s, ; maximizes F{d, 5] over s € F. Clearly
¢L-+] = {1 = C.'r+1}¢'.'r (R o T{Sl.'.-—IJL

and iteration is continued as before. Exactly as Silvey (1980, pp. 33-6), we can show thal
the above algorithm necessarily terminates and that if it terminates at the k'th stage then
1} 1 < 1@}~ + 8, where as before ®* corresponds to the optimal design. Thus
the algorithm guarantees arbitrary close approach to the minimum possible value of
' 1.

Example 2. Let N =4, n =2 and suppose the v;’s are as in Example 1. From intuitive
considerations one hopes thal for the oplimal design p(1, 2Y=p(1,3}=p{(2, 31 =g, say,
and p{l.4)=p{2,4)=p(3,.4) =g, say, where 3(g, +g.)=1. It is easy 10 see¢ that the
choice of g,, ¢, that minimizes 1'd '1is g, =0-1181, g, =0-2152. Finally, it can be checked
that the resulting design satisfies {3-3) and is, therefore, optimal.

Example 3. Let N=4, n=2, v, =10, 15.=4-0, t,=9-0, 11, =160, .= 1, =0-4,
Uaz = b= 12, vy = ti; = 2-4, and p; =0 otherwise. Tt is easy to obtain T(s}, for s 2
For example T{1, 3} will be a 4 x 4 matrix, with 1 and § in its {1, 1)th and (3, 3)th positions
respectively, and zeros elsewhere. Here it is difficult to guess the optimal design but an
application of the W-algorithm vields the optimal design p* as p*(1,31=0-2213,
P2, ) =0-4220, p*{3, 4} — 03567, L D =p%(1, 4 =p%(2,3) =0

The optimal sirategy discussed here generally involves the model paramerers which
may be unknown. In order to tackle this problem, asymptolic studies, along the lines of
Sarmndal (1980% and Tsaki & Fuller (1982} amang others, may be appropriate. Consider
a sequence of populations {fS} (r=1,2,...) such that L/ contains N, units, where
N,—=or as t >0 Let g, and V), denote respectively the model mean vector and the
model covariance matrix corresponding to L7, Furthermore, as happens in many practical
situations, let there exist a parameterization of ., Vi, as g = X, Vi, = V,,(0), where
X, is a N, % A, known matix of vialues of regressor vanables, the functional form ¥, ()
is known, ¥ and # are F; %1 and A- = 1 vectors of unknown parameters, and by, b, are
known positive integers free from & Let Y, be the population total, corresponding to
{7, of the variable of interest v. For r=1,2,..., a sample 5, of n, distinct units is
considered from L', where n, -2 as t =2 For ¢+ =1, a sumple 5, is drawn from L, by
simple random sampling without replacement and on the busis of the y-values ascertained
from s,. estimates %, und @, of ¥ and & may be obtained employing, for example, the
method of two-stage least-squares; compare Malinvaud (1980, pp. 282-3). Fort=2,3,...,
with reference to the population L, one may consider the strategy (pT. ef} which is the
optimal strategy corresponding to g, = X, %—,. ¥,,— ¥, (#,_}, where %_, and 8,_, are
estimates of ¥ und & obtained [rom s5,_, using lwo-slage leasl-squares. The results presented
earlier may be employed to find (g%, &7} Let {p7, ¢¥) be the optimal strategy, with
reference to L/, when the model parameters ¥ and 8 are known. Then under appropriate
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assumptions it is believed that for large ¢, the strategy [ f7, £¥) should serve as a good
approximation to { p7, €¥) in the sense that the difference

miE, Easlef — ‘Y\-\,]:Il2 —E.E,«{ef — }’[,}]1};' NG

should tend to zero as = oo,
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