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The problemn of generation of surface waves in aliquid with an incrtial rurface
duc to an imitial axially symmetric surfage disturbance s discussed. The
form of the incrtial rurface i obtained asymptotically for large values of time and
distance.

1. Introduction

The problems of generation of water waves due to an explosion above or within
the water can be formulated as an initial value problem within the framework of
linearized theory af water waves, When the explosion oeeurs above water, we can
issume the imitial condition to be an initial impulsive pressure distnbuted over a
certain reginn of the free surface. However, when the explosion occurs within the
water, the initial condition iz taken as an initizl displacement {elevation or
depression} istrihuted aver a region of the free surface, resuleing from the
explosion. For the case of initial disturbance in the form of an impulse or
dizplacement concentrated at the origin, the potential functions as well as the free
surface elevations were given in [1,2]. The axially symmetric disturbance was
considered n brief by Kranzer and Keller [3] who compared the theory with
experimental results, Choudhuri |4] and Wen [5] considered the case where the
disturbance iz over any arbitrary region of the free surface and the water is of uniform
finite depth by the method of multiple Foutier transforms. In all these cases the
method of stationary phase was applicd to obtain the approximate expression for the
potential function and free surface elevation for large values of time and distance,
Problems of generation of surface waves in a liquid covered by an inertial surface
composed of a thin uniform distribution of non-interacting materials have attracted
the attention of mathematicians recently. Rhodes-Robinson [6], Mandal and Kundu
[7], Mandal {8] considered in a number of papers the generation of water waves due
to different types of sources with time-dependent strength submerged in a liquid
with an inertial surface.

In this paper we consider the peneration of surface waves in a liquid with an
inertial surfoce due to surface disturbances. The liquid is assumed to be incom-
pressible, inviscid and is at rest. The motion starts due to an initial disturbance over
the surface, Since the motion starts from rest, itis irrotational, Within the framework
of linearized theory it can be described by a potential function wheh satisfies an initial
value problem. Taking Laplace transform in time, the transformed potential then
satisfies o houndary value problem. Due to axially symmetric disturbance, Hankel
transform is emploved to solve this boundary value problem. Finally Laplace
inversion produces the potential function in terms of an integral. Hence the
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depression of the inertial surface at any time ¢ is obtained as an integral. For large
time and distance this integral is evaluated asvmptotically. Knewn results are
recovered for the case of initial disturbance (impulse or displacement) concentrated
at the origin in the absence of an inertial surface,

2. Statement and soluton of the problem

We consider a hiquid of volume density p covered by an inertial surface of arca
denzity gpfe =0). e=0 correzponds to a liquid with a free surface.

We choose a cylindrical coordinate system (r, 9, 3 in which the v axis is taken
vertically downwards with the plane y=10 coinciding with the rest position of the
inertisl surface. The motion is generated by an initial disturbanee (impulse o
displacement) distributed over inertial surface. Assuming the motion to be
itrotational, within the framework of linearized theory, the mation is described by a
velocity potential @fr, v, ) which satisfies the Laplace equation
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when an initial axially symmetric impulse F{r) 1s applied per unit zrea of the inertial
surface at a distance r from the origin, or

p—ep,=0 y=0, =0, (2.4h)
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when an initial axially symmetric depression G(r) of the inertial surface at a distance v
from the origin is prescribed.,
Let @ir, 1 #) be the Laplace transform of ofr, 3, £) defined by

i

fﬁ(f;y.P}=J @(r, 3 ) exp (=ptid, p=0. (2.6)
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Then the transformed potential @r, v; p} satisfics the boundary value problem
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rﬂr( ﬂr)+' =0 y=0, £2.7}
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—%F{r} on y=0 (2.84)

PP (g+ep*)@,= < or
2G(r) on y=10, {2.8b)
and
Vip—=0as y—oo,

(2.8a) holds For an initial surface impulse while (2.8b) holds for an initial surface
“splacement.
Let ¥ v; &) be the Hankel Transform of @(r, ¥) given by

Ty k= -I. rplr, W T olbrydr, B0, (2.9
0
hen W osatisfcs
a2y
57 EY=0, y20, (2.10)

—%F{r} on y=0

P —(g+ep")¥, =1 or
gGir) (2.11)
~here F and G denote the Hankel transform of F(r) and G(r) respectively. Then
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Thus,
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gls(k)
For the case of an initial impulse, we obtain
1 [= =
olr, 3, = _P_E,[ PR cosQtexp{ — Ey)J o(kridk (2.14}
i)
where
20, B (2.15)
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Ilence the inertial surface depression is

1] @
(r, 1) =E[ﬁ({p_w’}l= ,

s Im BRI o (Br) sin D¢ dB. {2.16)
PE do

he absence of inertial sucface (£=10), this reduces to the result given in [2] for an
1 al impulse of unit strength concentrated at the origin. T'o obtain the approximate
a2 nof [ for large values of ¢ and r, we adopt the method of stationary phase using

2 n'2
Jolkr) - J. cos (kr cosfl) df.

o
N ¥

o Trf2
fr, )= 5.5 Im J. '{' EF(R)Qexp (i(Qt+ kr cos )
npg o Jo

+exp (1Nt — kr cos B)}dfidk,  (2.17)

T & main contribution to { for large ¢t and r such that ¥ remains finite comes from
t :sccond term. Using the method of stationary phase first we evaluate the f integral
1d then we evaluate the & integral and finally we obtain

ik kit (28 14 2ek,
e — _— Pl AR ;
£, e pr — Fik t,;“ TaAgT 51n{4r e (2.18)
where k; is the real positive root of the bigquadratic equation
z
2t
k(1 +ek)? R {2.19)
In the absence of inertial surface
ho=Kir, =gt f4r? £2.200
and in that case we abtain
at* at?
£ir,t Esflpr“ﬁm s'.m( r) (2.21}

For an impulse concentrated at the origin we can take F{K)=1/2% so that this
coincides with the resule given in [2], p. 166,
For small eK we van approximate &y, as &y~ K{1 —3cK) so that in this case

g’ gt
L, ﬂ_Esﬂ #F{kil—hk}}sm{ (1 _Eﬁ)} (2.22)
For the case of an initial axially symmetric displacement we can similarly obtain

olr, ¥, t}= ré{k}n exp (— ky) sin Q2 1] o (kr) dk (2.23)
o
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&0 t.hat
Ur, )= J.mé[k}k.!“{kr} cosfdidk, (2.24)
[

For large ¢ and » such that #/r remains finite we can similarly obtain

1 g t* 12 9 g? 5 =
((r,;}:zﬁf—aé{i?(l—33%)}(1?5%)“05{%(1—-::%)} (2.25)

For displacement concentrated at the origin
. 1

=

T

go that in this case

1 grz g H:Z gtz g:z
c{rrﬂ:ﬁﬁ-(] '_gﬂﬁ cos E I—EE [2.2&}

In the absence of the inertial surface (2 =07, {2.26} reduces to the known resule for
an initial displacement concentrated at the origin,

3. Discussion

From (2.22) and (2.25) it is apparent that the inertial surface affects both
oecillatory and non-oscillatory factors of {(r, £) in both cascs (for an initial impulse
and for an initial displacernent). When &(gt®{4r?} is small, at a fixed point the
amplitude increases as 2 in case of an initial impulse concentrated at the origin and £
in case of initial displacement concentrated at the origin while for a fixed time the
amplitude increases as »~* and =¥ respectively. For known F(r) and G{r) similar
types of conclusion might be arrived at, Also for finite uniform depth of water, a
similar type of asymptotic method can be followed to obrain the form of the inertial
surface.
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