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Abstract

In this thesis, we analyze the issues of group formation and design of mech-

anisms immune to group deviation. We focus on two types of allocation

problems, (i) indivisible goods allocation problem, and (ii) queueing prob-

lem. In the first chapter, we state the need for a careful study of these

issues.

In the second chapter, we use the n-agent version of the Rubinstein’s

bargaining game to predict the coalitions/groups that form at a Vickrey

auction. We state the asymptotic results as δ → 1. For single goods, we

show that when the highest valuation agent proposes first, the resultant

bidding ring must be the largest average maximizing coalition. For multiple

identical goods, we focus on coalition structures to account for the inherent

externalities across coalitions, in this setting. In particular, we focus on the

peculiar class of coalition structures; where any one winner generates the

gains from cooperation (by colluding all the losers) while other winners (who

stay alone or form pairs among themselves) free ride and get a good at the

base price. We state the sufficient condition for a member of this class to

form, irrespective of the protocol function.

In the third chapter, we address the issue of mechanism design. We look

to implement fair (no-envy) allocation rules through mechanisms immune to

group deviation/misreporting. We find that there are no such mechanism

that block group deviations where the total group utility increases. To get

a possibility, we weaken our requirement to weak group strategyproofness

and completely characterize the class of fair and weak group strategyproof

i



mechanisms. We also find that the Pivotal mechanism is the only feasible

mechanism in this class satisfying a zero transfer condition.

In the final chapter, we analyze the implementation of decision efficient

and fair allocations using weak group strategyproof mechanisms. Interest-

ingly, in this context, fairness manifests itself as the continuity of the mecha-

nisms, as the latter turns out to be equivalent to “equal treatment of equals”.

We specify a necessary condition for weak group strategyproof mechanisms to

implement fair and decision efficient allocations. We also specify a sufficient

class of mechanisms in this regard.
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Chapter 1

Introduction

Much of noncooperative game theory has focussed on individual incentives.

The seminal concept of Nash Equilibrium, for example, focuses only on uni-

lateral deviations. However, the very concept of equilibrium involves ruling

out the possibility of any kind of departure from the decided behaviour, indi-

vidual or otherwise. Hence, an in-depth study of refinements of equilibrium

concepts with regard to group deviations, is in order.

Now, any group must first decide which members to include; and only

then, can it decide how to deviate and divide the proceeds from the deviation.

Therefore, any group deviation is subsequent to group formation, and so,

a study of group deviation is incomplete without an explicit description of

group formation. In this thesis, we analyze how coalitions or groups form and

how mechanisms immune to such deviations can be designed. We concern

ourselves with implementation of fair and efficient decisions. In particular,

we focus on problems of allocation of indivisible good and positions on a

queue. Our endeavour is to look for incentives, benefits, and barriers to
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group deviation, in such problems.

A group of agents, colluding and playing, as a single unit, is not a novel

concept in game theory. In fact, what we call today cooperative game the-

ory , has always dealt with this issue. The chief tool of studying coalitions

in this literature, is the “characteristic function”, which assigns a particular

worth to each coalition. However, this approach is fraught with two partic-

ular difficulties. One, the worths ascribed by the characteristic function, are

derived under the assumption of the groups playing zero sum game amongst

them. In many settings,1 this assumption turns out to be untrue. Second,

the focus of cooperative game theory is on the allocations which can not be

undermined by any coalition. This subsumes the coalition formation process

and hence, ignores the possibility of certain coalitions never forming.

The former difficulty was alleviated to a certain extent by modifying the

characteristic function to depend on the ambient coalition structure2. The

latter difficulty continued to persist till Chatterjee, Dutta, Ray and Sen-

gupta [6] and Ray and Vohra [39] extended the 2 player Rubinstein’s bar-

gaining game to an n player setting, and specified the coalition that would

form along with the realized payoff distribution. Given a characteristic func-

tion (a “partition function” in Ray and Vohra [39]), they modelled coalition

formation as a complete information dynamic game; and used the notion of

sequential rationality to capture the farsightedness that agents employ while

forming groups.

This thesis starts on the lines of Ray and Vohra [39], with the classic iden-

1For example, the n-person Cournot market.
2See Ray and Vohra [39].
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tical indivisible goods allocation problem where a set of agents report their

valuations for the good, based on which, the seller (or a planner) decides the

recipient of the good. As shown in the seminal paper Vickrey [47], implemen-

tation of the efficient decision (allocating the good to the highest valuation

agent) in dominant strategies requires that the highest valuation agent pay

the second highest valuation to the seller. This translates into the second

price auction, more generally known as, the Vickrey auction. We apply the

analysis of Chatterjee, Dutta, Ray and Sengupta [6], and Ray and Vohra [39]

to the Vickrey auction both for single and multiple identical indivisible goods.

We show how coalitions can be formed to undermine the implementation of

the efficient decision in dominant strategies, and hence, the seller revenue;

even in absence of institutions facilitating binding contract. In particular, we

show what coalitions are formed by farsighted agents; with the intra-group

contract being enforced by sequential rationality itself.

Having delved into the mechanics of coalition formation, the study pro-

gresses to the search for barriers to coalitional deviation. In line with the

second chapter, we take up the issue of indivisible goods allocation in the

third chapter. We look for group strategyproof mechanisms that implement

fair decisions, for single as well as multiple identical goods. We capture

“fairness” by the popular concept of no-envy (introduced by Foley [11] and

Varian [46]). This notion of fairness turns out to imply decision efficiency, in

this setting.

However, we find that there is no mechanism that implements efficient

decision; and ensures a fall in group (total) utility at all possible group de-

viations, for all possible groups. Therefore, to get a possibility result, we
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relax our group strategyproofness requirement a bit. Instead of ruling out

all coalitional deviations in which the group (total) utility increases; we re-

quire the mechanism to rule out only those group deviations that strictly

benefit all its members. This relaxation turns out to be intuitive too; any

collusion at an auction would be deemed illegal and hence, contracts written

by the groups with regard to the division of proceeds are not enforceable

by judiciary. In such an environment, it is only natural for agents to take

part in only those collusive ventures that strictly benefit them; without the

need for any post-deviation redistribution. We call this weak group strate-

gyproofness and; completely characterize the class of no-envy and weak group

strategyproof mechanisms for the single (and multiple identical) indivisible

good(s) allocation problem. This class includes the Vickrey mechanism (up

to a constant).

In the fourth chapter, we take up another type of allocation problem: the

Queueing problem. We consider a situation where there is a set of agents

with identical jobs to process; and a set of machines which can only process

these jobs sequentially (one by one). The machines are non-identical, and

so, consume different amounts of time to complete a job. These machine-

specific speeds, remain constant across jobs. The agents dislike waiting; and

the planner wants to minimize the aggregate disutility that the agents incur

in getting their jobs done. In particular, we look at the problem of assigning

positions on queues for the machines to a set of agents having the same

job but different costs of waiting. Maniquet [28] discusses many interesting

applications of this problem.

We study the queueing problem in the lines of Chapter 3. That is, we
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attempt to characterize the weak group strategyproof and continuous mech-

anisms that implement decision efficiency (in this case, queue-efficiency). We

achieve complete characterization for two players, but fail to do so for the

general case. For the general case, we specify a necessary condition and a

sufficient one. Continuity turns out to be a fairness restriction. This is be-

cause, in this setting, restriction of continuity is equivalent to that of Equal

Treatment of Equals ; which is a famous fairness axiom.
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Chapter 2

Coalition Formation: Vickrey

Auction1

2.1 Introduction

This chapter discusses coalition formation at a Vickrey auction. Such coali-

tions are popularly known as bidding rings. Existence of such a ring is a

prevalent phenomenon and its incidence in second price auctions (Vickrey

auctions with a single good) is well documented. Robinson [40] shows that

collusion among bidders is easier to sustain in a second price auction than

in a first price auction. Milgrom [31] also shows that repeated second price

auction are more vulnerable to bidder collusion than repeated first price

auctions. More recently, Marshall and Marx [29] compare the profitability

and viability of collusion in first and second price auctions. They discuss

two types of arrangements within a coalition: one where the coalition rec-

1Co-authored with Kalyan Chatterjee and Manipushpak Mitra
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ommends bids to its members (the “Bid Coordination Mechanism” (BCM))

and another, where the coalition has power to control their bids (the “Bid

Submission Mechanism” (BSM)). They show that efficient collusion can be

sustained in the first price auction only under the BSM arrangement while

both arrangements are feasible in the second price setting.

Given the difficulty of sustaining bidding rings in a first price auction in

comparison to the second price auction, we revisit the issue of bidding rings

only in a second price auction. In particular we model the formation of a

bidding ring in second price auction. We view bidding rings as an outcome

of a sequential bargaining game with irreversible commitments. This game

is layered by all the bidders and it is assumed that bidders know each other’s

valuation. Before participating in the auction, the bidders play a Rubinstein

[41] bargaining game whose equilibrium outcome constitutes of a coalition

structure and a sharing rule among members within each member coalition of

the coalition structure. Throughout this analysis we assume a non-strategic

seller who simply sets a minimum price for the indivisible object (or identical

indivisible objects) to be sold. We also rule out resale possibilities across

bidders.

Marshall and Marx [29] (and Graham and Marshall [15]) assume that

bidding rings can employ taxes to ensure truthful revelation of agent val-

uations amongst the members of the ring; and then decide on the optimal

bid recommendation (or submission) for each agent. To avoid ascribing such

coercive power to the coalition, we model ring formation as a dynamic game

so that any ring formed in equilibrium is sustained only by the incentive

considerations, that is, all members agree to cooperate because there is no
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credible benefit from any type of deviation.

McAfee and McMillan [30] show that if all the bidders form a cartel

and their private values are drawn from the same distribution, then they can

conduct a simple pre-auction and efficiently designate a winner and divide the

spoils by making appropriate incentive compatible side payments. Graham

and Marshall [15] address similar issues and show that any subset of bidders

can achieve efficient collusion if an external banker is available to achieve

ex-post budget balance (see also Graham, Marshall and Richard (1990)).

Mailath and Zemsky [27] show how the same can be done in a second price

auction, without any external agent, even when the agents are not ex-ante

identical. Hendricks, Porter and Tan [20] derive the necessary and sufficient

condition for an efficient, incentive compatible cartel in a common value

setting.

These papers analyze collusion in an ex-ante sense where, at the beginning

of the ring formation process, the bidders are yet to know the valuations of

their colluding partners. Our analysis adopts an ex-post approach in this

regard where, right from the onset, bidders know the exact valuations of their

potential collusion partners. This, however, does not amount to assuming

complete information because the seller does not know the valuations of the

bidders. Such information structure has been widely used with respect to all-

pay auctions (Baye, Kovenock, De Vries [3]), lobbying (Baye, Kovenock, De

Vries [2]), and can be observed in real life at (repeated) government auctions

of timber contracts and railway sleepers. In any case, our work serves as a

complete information benchmark.

In all the papers mentioned above, only the single unit auction is analyzed,
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that too, with the size of coalition chosen exogenously. We discuss the issue

of collusion in single as well as multi-unit second price auction and focus

on endogenous determination of the equilibrium coalition structure. These

coalition structures are relevant because they capture the externality between

the bidders, especially in the multi-unit auctions. This sort of externality has

not received much attention in the literature.2

We look for stationary subgame perfect equilibria in the pre-auction bar-

gaining game. In the single goods case, we provide the necessary and suffi-

cient conditions for formation of any bidding ring when agents are sufficiently

patient and the highest valuation agent proposes. In the multiple goods case,

we specify the sufficient conditions for formation of an interesting class of

coalition structures where (a) exactly one winner (any one agent out of those

who would win a good in the non-cooperative play) colludes with all the

losers (the agents who would not win any of the goods in non-cooperative

play) and, (b) depending on the protocol, the remaining winners either stay

alone or collude in pairs.

We present the results for the single good and the multiple goods models

separately, because of the qualitative difference that arises due externality in

the latter case. The bargaining game for the single goods case follows Chat-

terjee, Dutta, Ray and Sengupta [6]. The bargaining over the externality

present in the multiple good case, is modelled as in the Ray and Vohra [39]

2Some papers which incorporate this issue are Jehiel and Moldovanu [22], Jehiel,

Moldovanu and Stacchetti [23], Caillaud and Jehiel [5], Fullerton and McAfee [14]. The

paper relevant to our work is Caillaud and Jehiel [5] who show that externality across

bidders tends to make collusion harder.
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paper. However, we study the two cases in the same general unified struc-

ture. This structure has a fundamental difference with respect to Chatterjee,

Dutta, Ray and Sengupta [6], and Ray and Vohra [39]. They assume that

members of a coalition can write binding contracts among themselves but

not across coalitions. In our case, any cooperation is sustained by the payoff

considerations only, without the need for any external institution.

Section 2.2 states the general unified structure under which we analyze

both the single and multiple good case. Sections 2.3.1 and 2.3.2 state the

results for the single and the multiple goods case respectively. Section 2.4

states the conclusion.

2.2 Model

We consider the model of multiple identical indivisible goods auction where

N = {1, . . . , n} is the set of agents and k is the number of objects. Each agent

has need for only one object. Let V = (V1, V2, . . . , Vn) represent the valuation

vector and s be the reservation price of the seller. We assume that V is com-

mon knowledge among the bidders but the seller has no information about it.

Let vl = max{Vl−s, 0}, ∀ l ∈ N . Arrange the v values in a descending order,

and rename the agents so that the first ranked agent in such an order, is now

called 1, the second is called 2 and so on. Further, assume that the players

have non-identical valuations.3 Thus we now have a vector v = (v1, . . . , vn)

such that v1 > v2 > . . . > vn > vn+1 = 0. Let K = {1, . . . , k} denote the

3Allowing identical valuations would only lead to multiplicity of equilibria without

adding to the qualitative analysis.
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set of agents who win a good at the non-cooperative play; henceforth, called

as winners. Similarly, let L = {k + 1, . . . , n} denote the set of agents who

do not win a good at the non-cooperative play; henceforth, called as losers.

Hence, N = K ∪ L with K ∩ L = ∅.

For each non-empty S ⊆ N , define the set of all possible partitions on

S as Π(S). Thus, each πS ∈ Π(S) is a collection of mutually exclusive and

exhaustive subsets of S. Pick any πS ∈ Π(S) and define L(πS) := {T ∈ πS |

T ∩K = ∅} and L̄(πS) := ∪T∈L(πS)T . Therefore L̄(πS) denotes the union of

those members of πS that do not contain any winner. Define the following

partition function which assigns a worth to each S ∈ πN , ∀ πN ∈ Π(N),

w̄(S; πN) =
∑

j∈S∩K

{
vj − max

l∈L̄(πN )
vl

}
. (2.1)

The partition function specifies the maximum payoff that any member coali-

tion S of a partition πN of agent set N , can achieve.

The particular functional form of the partition function in this setting,

follows from the desire of the winners to manipulate the price that they end

up paying for the good. That is, winners want to collude with losers to

persuade them to bid lower than their true valuations; and thereby, ensure

procurement of the good at a lower price, in the auction. The extra pay-

off that accrues to the winner out of this enterprise, is used to compensate

the losers suitably. Hence, any worthwhile collusive venture must involve at

least one winner, while the losers that are not included in any such venture,

cannot benefit by forming coalitions amongst themselves, and so, play non-

cooperatively. So, for any πN ∈ Π(N), members of L̄(πN) bid their true

valuations. Therefore, the going price at the auction, when a coalition struc-
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ture πN has formed, turns out to be max
l∈L̄(πN )

vl. The coalitional worth of each

coalition in πN , then, is simply the sum of the payoffs of the winners in that

coalition. The following example illuminates on this.

Example 2.2.1. Consider N = {1, 2, 3}, k = 2. Therefore, K = {1, 2} and

L = {3}. Then,

w̄({1}; {1}, {2, 3}) = v1 w̄({2, 3}; {1}, {2, 3}) = v2

w̄({1, 2}; {1, 2}, {3}) = v1 + v2 − 2v3 w̄({3}; {1, 2}, {3}) = 0

w̄({1, 3}; {1, 3}, {2}) = v1 w̄({2}; {1, 3}, {2}) = v2

w̄({1, 2, 3}; {1, 2, 3}) = v1 + v2

while the non-cooperatively play payoffs are given as w̄({1}; {1}, {2}, {3}) =

v1 − v3, w̄({2}; {1}, {2}, {3}) = v2 − v3 and w̄({3}; {1}, {2}, {3}) = 0.

With respect to coalition structures πN such that L̄(πN) 6= ∅, we assume

that any coalition S ⊆ N formed at the bargaining game, bids at the auction

according to the following rule;

R: For any S ⊆ N ,

bi =


vi if i ∈ argmax

i′∈S
vi′

0 otherwise

Observe that this bidding rule R guarantees coalition S, the highest possible

worth, no matter what substructure π ∈ Π(N \ S) the remaining agents

organize themselves into. We could have endogenised the bid arrangements

within a coalition, by requiring the proposals in our bargaining game to

specify not only the division of the realized coalitional worth (contingent

12



upon the final coalition structure) but also the bids recommended to each

member of the coalition. However, bidding rule R would always turn out to

be a weakly dominant strategy. Our assumption therefore, simply rules out

multiple SSPE profile of strategies where the outcome coalition structure and

the agent specific payoffs are same, but the bid arrangements are different.

This is in consonance with our primary objective of focussing on the coalition

formation aspect of collusion at (second price) auctions.

In Ray and Vohra [39], the assumption of binding contracts served two

purposes. First, to make irreversible the commitment that an agent makes

by agreeing to be the member of a coalition. Second, to ensure that no

member of any coalition plays differently at the underlying game than the

play agreed upon by the coalition (that is, cheating is ruled out). In our work,

the bidding arrangement takes care of the second purpose by ensuring that

any deviation from the agreed upon strategy of a coalition, gives the same

payoff as that resulting from any non-cooperative strategy. We assume, here,

that the payoffs to the loser members of any collusive venture are paid by the

winner members, before the auction begins. This eliminates the possibility

of the winner members of reneging their commitments, post-auction, after

the gains from cooperation have accrued to the winners.

For all i ∈ K and S ⊆ [L ∪ {i}], define wi(S) to be the maximum worth

that coalition S can attain at a single good second price auction with the

agent set L ∪ {i}. It is easy to see that

wi(S) =


vi − max

l∈L\S
vl if i ∈ S

0 otherwise

13



Using this, we state an obvious property of the partition function given by

(2.1) is the following;

Proposition 2.2.1. For all i ∈ K and non-empty S ⊆ L,

w̄(S ∪ {i};S ∪ {i}, πL\S, πK\{i}) = wi(S ∪ {i}) > 0

for all πL\S ∈ Π(L \ S) and all πK\{i} ∈ Π(K \ {i}).

Proof: It follows from the definition that ∀ πL\S ∈ Π(L \ S) and ∀ πK\{i} ∈

Π(K \ {i}), w̄(S ∪ {i};S ∪ {i}, πL\S, πK\{i}) = vi − max
l∈L\S

vl.

The pre-auction ring formation is captured by a Rubinstein [41] bargain-

ing game G ≡ (N, w̄, p, δ). The function p : 2N 7→ N is the protocol function

which assigns to each set of active agents (agents who are yet to form coali-

tions), a proposer from that set, who carries the game forward. Therefore,

p(T ) ∈ T,∀ T ⊆ N . δ ∈ (0, 1) is the common discount factor, that is, any

agent receiving payoff x in period t gets a utility δt−1x. A stage in G is given

by a substructure (partition defined on a strict subset of N) constituting of

the coalitions who have formed and left the game. The set of all possible

stages is P := ∪S⊂NΠ(S), which is the set of all possible partitions of all pos-

sible strict subsets of N . Define R(π) := N \ {∪T∈πT}, ∀ π ∈ P . Therefore,

R(π) is the set of remaining (active) agents after coalitions in substructure

π have formed and left the game.

We assume that agents follow stationary Markovian strategies which de-

pend on a small set of state variables in a way that is insensitive to past

history. In particular, they depend on current set of active agents, coalition

(sub)structure that has already formed and, in case of response, the on-going

proposal.
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At any stage π ∈ P , an agent j must choose (i) a pair (T, z) with T ⊆

R(π), j ∈ T and z ∈ <|T |+ ; and (ii) an aj(π) ∈ <+. The choice of (i) signifies

the proposal decision of j at stage π; where j proposes some subset T of the

current set of active agents R(π) containing j and offers the members of T

a payoff z.4 The choice (ii) signifies the response decision of j at stage π;

where j accepts any proposal (T ′, z′) with j ∈ T ′ only if z′j ≥ aj(π). At any

stage, if a proposal gets rejected then all active agents at that stage incur

a utility loss due to delay of one period which is captured by the common

discount factor δ ∈ (0, 1). We make the following assumptions.

Assumption 2.2.1. Any group of agents agree to cooperate only if the

payoff from cooperation exceeds that by staying alone.

Assumption 2.2.2. All agents get 0 utility in case of perpetual disagree-

ment.

At any stage in G, we call a proposal acceptable if all the members of the

coalition proposed, are offered a payoff no less than their respective accep-

tance thresholds of that stage. It, then, follows that the coalition mentioned

in any acceptable proposal will form and leave the game. If an unacceptable

proposal is made, it will be rejected by any one of the members at whom the

proposal is directed. As mentioned before, this will cause a period of delay

to all the agents. In the next period, the rejector will propose.

Define S(L) := {Sk(m)}m=n
m=k+1 where Sk(k + 1) := {k + 1} and Sk(r) :=

{k + 1, . . . , r} for all integers r = k + 2, . . . n. We call the partition of N

4In equilibrium, this payoff division z must exhaust the coalitional worth of T , no

matter what the finally realized coalition structure is.
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having all singleton members, π.

2.3 Results

2.3.1 Single Good

There is now single winner, and so, K = {1} and L = N \ {1}. Note that

the worth of partition function, now, reduces to w1(.), that is,

w̄(S;S, πN\S) = w1(S) =


v1 − max

l∈N\S
vl if 1 ∈ S

0 otherwise

∀ S ⊆ N,∀ πN\S ∈ Π(N \ S). This occurs because the worth of a coalition S

no longer depends on the coalition structure.

Proposition 2.3.1. For any G = (N,w1, p, δ), if the SSPE outcome π∗ is

such that π∗ 6= π, then

(i) ∃ S1(m) ∈ S(L) such that {S1(m) ∪ {1}} ∈ π∗, and

(ii) ∀ l ∈ L \ Sk(m), {l} ∈ π∗N

Proof: Suppose that the equilibrium coalition structure π∗ is such that there

exists X ∈ π∗ with the property that 1 ∈ X and X \{1} 6∈ S(L). Then there

must exist an m′ > 2 such that m′ ∈ X with X \ {1} ⊂ S1(m′). Therefore,

w1(X) = w1(X \ {m′}), that is, the marginal contribution of agent m′ to the

coalition X is zero. But, given Assumption 2.2.1, X ∈ π∗ implies that in

equilibrium m′ gets a positive payoff. This is clearly suboptimal and hence,

contradiction. So any such X will never be formed in equilibrium. Thus (i)
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follows. Finally, (ii) follows from Assumption 2.2.1 that all other losers form

singleton coalitions.

It is important to observe that at any stage of the game G = (N,w1, p, δ),

no active agent makes an unacceptable proposal. The reason is provided in

the next two paragraphs.

The w1(.) function implies that a coalition S generates positive payoff only

if S 3 1. Therefore at any stage where 1 is not active then, from Assumption

2.2.1, all the active agents stay alone. Consider any stage where 1 is active

and the proposal power is with some l ∈ L. Agent l will never make an

unacceptable proposal because any such proposal, given stationarity, does

not change the stage of the game. It simply passes the power of proposal to

some other active agent (because rejector proposes in our bargaining game).

This rejector can either make an acceptable proposal (which must contain 1

to have a positive worth) and leave the game; or propose unacceptably, in

which case, the stage of the game remains unchanged even after two periods

of delay. The latter possibility is undesirable to l as it causes delay without

changing the stage of the game. The former possibility gives l zero payoff if

l is not one of the members to whom acceptable proposal is made. Even if

l is a member of the said coalition, he always could have proposed the same

thereby saving the cost of delay.

Now, consider the stage where 1 has the proposal power. Suppose agent 1

can get a payoff of x by making an acceptable proposal. As before, 1 observes

that given stationarity, an unacceptable proposal will not change the stage of

the game and will only pass the proposal power to some l ∈ L in the present

stage. By previous argument l will never propose unacceptably. Moreover l
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will never leave the game alone (as it will give 0 payoff). So l must propose a

coalition containing 1 acceptably. This can be done by offering at least δx to

1. Therefore, we see that an unacceptable proposal by 1 gives δ2x < x. Hence

making acceptable proposal strictly dominates any unacceptable proposal.

Therefore, at any SSPE outcome, for any G = (N,w1, p, δ), there is no

delay .

Define AV (i, l) = vi−vl
l−k where i = 1, 2, . . . , k and l = k + 1, k + 2, . . . , n.

Observe that for single good game G = (N,w1, p, δ), w1({1} ∪ S1(m)) =

mAV (1,m+1) for all m = 2, . . . , n. We refer to a coalition {1, 2, . . . , r−1, r}

as an r-ring, for every r ∈ N . For any T ⊆ N , let 2T := {T ′ : T ′ ⊆ T}.

Proposition 2.3.2. For any G = (N,w1, p, δ) with p(N) = 1, ∃ δ′ ∈ (0, 1)

such that ∀ δ ∈ (δ′, 1) the SSPE outcome is an r-ring without any delay, if

and only if

1. AV (1, r + 1) ≥ AV (1, t+ 1), ∀ t ∈ {1, 2, . . . , r − 1} and

2. AV (1, r + 1) > AV (1, t+ 1), ∀ t ∈ {r + 1, r + 2, . . . , n}.

Proof:

Only If : Consider a stage π in the game such that 1 ∈ R(π). Since there

can be no delay in equilibrium (since no active agent at any stage proposes

unacceptably), the equilibrium acceptance threshold of any i ∈ R(π) must be

the one period discounted payoff that i can generate by making the equilib-

rium proposal, at the stage π itself. Therefore, for a given δ; from Proposition

2.3.1 it follows that the equilibrium acceptance thresholds {aδi (π)}i∈R(π) must
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satisfy the following equality5

aδi (π)

δ
= max

T∈[2R(π)∩S(L)],i∈T

w({1} ∪ T )−
∑

j∈[{1}∪T ]\{i}

aδj(π)


∀ i 6= 1 and,

aδ1(π)

δ
= max

T∈[2R(π)∩S(L)]

{
w({1} ∪ T )−

∑
j∈T

aδj(π)

}

From Chatterjee, Dutta, Ray and Sengupta [6], it follows that ∀ π ∈ P

with 1 ∈ R(π); the acceptance thresholds are obtained by the following

recursion;

(i) aδ1(π) = max
T∈[2R(π)∩S(L)]

δw1({1}∪T )
1+δ|T | and aδi (π) = aδ1(π) for all i ∈ H̄δ

1(π)

where H̄δ
1(π) :=

[
∪T∈Hδ

1 (π)T
]

with Hδ
1(π) := argmax

T∈[2R(π)∩S(L)]

δw1({1}∪T )
1+δ|T | .

(ii) Suppose (H̄δ
1 , H̄

δ
2 , . . . , H̄

δ
q ) is well defined. If R(π) \ [{1} ∪ H̄δ

q (π)] 6= ∅,

then define

Hδ
q+1(π) := argmax

T∈[2R(π)∩S(L)],H̄δ
q (π)⊂T

δ

{
w1({1} ∪ T )−

∑
j∈H̄δ

q (π)

aδj(π)− aδ1(π)

}
1 + δ(|T | − |H̄δ

q (π)| − 1)

As before, H̄δ
q+1(π) :=

[
∪T∈Hδ

q+1(π)T
]
. For all i ∈ H̄δ

q+1(π), aδi (π) is the

maximized value in the definition of Hδ
q+1(π).

Note that H̄δ
q (π) ⊂ Hδ

q (π), ∀ q in the recursion above. This follows from

the particular structure of the problem reflected in Proposition 2.3.1. The

proposal decision at any stage π with 1 ∈ R(π) is as follows. Each i ∈ R(π)

5In case the feasible set of maximizers in the following optimization problem is empty,

aδi (π) := 0.
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must belong to some H̄δ
q (π) and therefore proposes any Mi ∪ {1} such that

Mi ∈ Hδ
q (π) with i ∈Mi.

Now, recall that any coalition not containing agent 1 has a zero worth.

Therefore, at all other stages π′ with 1 6∈ R(π′), all proposers propose single-

ton coalitions of themselves and aδi (π
′) = 0, ∀ i ∈ R(π′).

Claim (a): ∃ δ̄ ∈ (0, 1) such that ∀ δ ∈ (δ̄, 1), Hδ
1(π) contains only the

largest member of

argmax
T∈[2R(π)∩S(L)]

AV (1, |T |+ 2)

for all π ∈ P with 1 ∈ R(π).

Proof: DefineH1(π) := argmax
T∈[2R(π)∩S(L)]

AV (1, |T |+2). Note that lim
δ→1

δw1({1}∪T )
1+δ|T | =

AV (1, |T |+ 2). Therefore, it trivially follows that for values of δ sufficiently

close to 1, Hδ
1(π) ⊆ H1(π). Now suppose ∃ T, T ′ ∈ H1(π). Therefore

(A) w1({1}∪T )
1+δ|T | −

w1({1}∪T ′)
1+δ|T ′| = 0 with δ value fixed at 1. Given the struc-

ture of the game, it must be that |T | 6= |T ′|; say |T | > |T ′|. From (A),

|T | > |T ′| implies that w1({1} ∪ T ) > w1({1} ∪ T ′) (because we use non-

identical valuations). Also, for a “slight” fall in δ value; in the left hand side

of (A), the denominator of the first term decreases by more than the second

term (since |T | > |T ′|). Hence, the ‘equals to’ sign in (A), changes to ‘greater

than’ for δ values sufficiently close to 1. Therefore, proposal choice of the

largest coalition in H1(π) dominates that of the other members of H1(π), for

δ sufficiently close to 1. Hence, proved.

Since p(N) = 1, an r-ring is formed only if agent 1 proposes {1, 2, . . . , r}

acceptably on the SSPE path. This will happen only if S1(r) ∪ {1} is the

largest coalition in Hδ
1(∅), that is, S1(r) ∪ {1} is the largest average worth
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maximizing coalition. This implies that AV (1, r + 1) ≥ AV (1, t+ 1),∀ t < r

and AV (1, r+ 1) > AV (1, t+ 1),∀ t > r. These two conditions imply results

(1) and (2) respectively.

If : Define the following strategy Σ in game G:

• At any stage π with 1 6∈ R(π), all proposers choose to stay alone, and

set an acceptance threshold of 0.

• Recall that for any stage π with 1 ∈ R(π), H1(π) := argmax
T∈[2R(π)∩S(L)]

AV (1, |T |+

2). For all such π, let H̄1(π) be the largest coalition in H1(π). Then, at

any stage π with 1 ∈ R(π), all i ∈ [H̄1(π) ∪ {1}] propose [H̄1(π) ∪ {1}]

and set their acceptance thresholds to be δw1(H̄1(π)∪{1})
1+δ|H̄1(π)| . If the sequence

(H̄1, H̄2, . . . , H̄q) is well defined and R(π) \ [H̄q(π) ∪ {1}] 6= ∅; then

Hq+1(π) := argmax
T∈[2R(π)∩S(L)],H̄q(π)⊂T

w1({1} ∪ T )− w1({1} ∪ H̄q(π))

|T | − |H̄q(π)|

with H̄q+1(π) is defined as before to be the largest coalition in Hq+1(π).

Then all j ∈ [H̄q+1(π) ∪ {1}] propose [H̄q+1(π) ∪ {1}] and set their

acceptance thresholds to be

δw1(H̄q+1(π) ∪ {1})− δw1(H̄q(π) ∪ {1})
1 + δ(|H̄q+1(π)| − |H̄q(π)| − 1)

It can easily be seen that the recursion in strategy Σ is simply the limit

version of the recursion given by (i) and (ii) in the proof of necessity. Then,

arguing as in Claim (a), for each round q of this recursion; we see that for

δ values very close to 1, Σ is SSPE. So we can find a δ′ ∈ (δ̄, 1) such that

∀δ ∈ (δ′, 1), Σ is SSPE. Then from conditions (1) and (2) in the statement of
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the theorem it follows that; when p(N) = 1, strategy Σ will lead to formation

of an r-ring. Thus, the sufficiency is established.

In Proposition 2.3.2 we assumed a specific protocol function where p(N) =

1. What happens if p(N) 6= 1 is explained informally using the following

example.

Example 2.3.1. Suppose N = {1, 2, 3} and K = {1} where v ≡ (v1 =

70, v2 = 65, v3 = 20). Note that AV (1, 2) < AV (1, 3) > AV (1, 4). Invoking

the strategy Σ in the sufficiency proof of the Proposition 2.3.2, at the stage

∅ (that is, at the beginning of the game), we see that H̄1(∅) = H̄2(∅) = {2}

and H̄3(∅) = {2, 3}. It can be shown that ∀δ ∈
(

2
3
, 1
)
, agents 1 and 2 propose

{1, 2}, while agent 3 proposes {1, 2, 3} at stage ∅. Therefore,

• if p(N) ∈ {1, 2} then the outcome coalition structure is {{1, 2}, {3}},

that is, the 2-ring forms.

• if p(N) = 3 then the outcome coalition structure is {{1, 2, 3}}, that is,

the 3-ring forms.

2.3.2 Multiple Goods

Consider the subgames with the set of active agents as T such that L ⊆

T . For all such subgames, the substructure formed by the departed agents

(who have formed coalitions and left the game) does not affect the worth

of any coalitions that remaining agents may form in future. That is, at

such a stage with active player set T with L ⊆ T ; w̄(S; πN\T , S, π̂T\S) =

w̄(S; π′N\T , S, π̂T\S), ∀ πN\T , π′N\T ∈ Π(N \ T ), ∀ S ⊆ T , ∀ π̂T\S ∈ Π(T \ S).
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At these subgames, we refer to the stage in the game by the set of active

agents, instead of the substructure consisting of coalitions who have (formed

and) left the game.

At any such stage T (with L ⊆ T ), define Cδ
i (T ) to be the set of best

acceptable proposals (only the coalitions) that agent i can make at that stage.

Also define T k := {k} ∪ L, ∀ k ∈ K.

Proposition 2.3.3. For any i, j ∈ K such that vi > vj, ∃ δ′ ∈ (0, 1) such that

∀δ ∈ (δ′, 1); if Sk(m)∪{i} ∈ Cδ
i (T

i) then ∃ m′ ≥ m such that Sk(m
′)∪{j} ∈

Cδ
j (T

j).

Proof: Note that at any stage T i, the subgame becomes equivalent to a single

good auction where the only winner is agent i. This is because the worth of

any subset of T i, irrespective of the substructure formed amongst the agents

who have departed from the game, is given by the wi(.) function. Hence, we

can invoke the Proposition 2.3.1(i) and infer that ∀ i ∈ K, if X ∈ Cδ
i (T

i) and

X 6= {i} then X \ {i} ∈ S(L), ∀ δ ∈ (0, 1).

Now, from the continuity of the objective functions in the maximization

programs of (i) and (ii) in the necessity proof of Proposition 2.3.2, it follows

that for δ sufficiently close to 1, any agent i ∈ K proposes acceptably the

average worth maximizing coalition (containing i) at stage T i. So, for δ

sufficiently close to 1, Sk(m) ∪ {i} ∈ Cδ
i (T

i) implies that Sk(m) ∪ {i} is

the average worth maximizing coalition among all subsets of T i. Therefore,

vi−vm+1

|Sk(m)|+1
≥ vi−vm−l+1

|Sk(m−l)|+1
for all l = 0, 1, . . . ,m−k−1. It is easy to check that this

in turn implies that
vj−vm+1

|Sk(m)|+1
≥ vj−vm−l+1

|Sk(m−l)|+1
for all l = 0, 1, . . . ,m−k−1 when

vj < vi. Now, for suitably high δ, any j ∈ {i+ 1, . . . , k} must also choose the
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average worth maximizing coalition containing j among the subsets of T j.

Hence, it follows that; for a sufficiently high δ (that is, ∃ some δ′ ∈ (0, 1) such

that ∀ δ ∈ (δ′, 1)), there exists an m′ ≥ m with Sk(m
′) ∪ {j} ∈ Cδ

j (T
j).

Proposition 2.3.3 states that when δ is sufficiently high; if winners i and

j separately find themselves at a stage where the remaining set of agents are

T i and T j respectively and if i picks a set Sk(m) ∪ {i} as a best acceptable

proposal then there exists an m′ ∈ {m, . . . , n} such that Sk(m
′) ∪ {j} is a

best acceptable proposal for j, whenever vi > vj.

Remark 2.3.2. It also follows from Proposition 2.3.3 that at the stage T k

(for any k ∈ K); the game G = (N, w̄, p, δ) reduces to a single good/single

winner bargaining game Gk = (T k, wk, pk, δ) where pk(.) is the restriction of

the original protocol function p(.) to the set 2T
k
. As mentioned earlier, in the

bargaining game with single winner, at any stage, no active agent makes an

unacceptable proposal. Therefore, Cδ
i (T

k) is the set of coalitions that agent

i proposes in equilibrium at stage T k, in game G; ∀ i ∈ T k, ∀ k ∈ K.

Define C∗i (T k) to be the set of coalitions that any i ∈ T k proposes in

equilibrium at any stage T k, k ∈ K; as δ goes to 1 in limit . From the

arguments in proof of Proposition 2.3.3, we see that at any single winner stage

T k, in limit, the winner k chooses the average worth maximizing coalition

containing itself. That is, C∗k(T k) = argmax
S∈S(L)

wk(S∪{k})
1+|S| ,∀ k ∈ K.

The following proposition states that if the winner 1 finds it optimal to

collude with all the losers at stage T 1 in limit (that is, T 1 ∈ C∗1(T 1)); then,

irrespective of the value of δ, the optimal proposal of all winners i other than

1, at stage T i, can only be T i itself (that is, Cδ
i (T

i) = {T i}).
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Proposition 2.3.4. If Sk(n) ∈ argmax
S∈S(L)

w1(S∪{1})
|S|+1

then Sk(n) = argmax
S∈S(L)

wi(S∪{i})
δ|S|+1

,

for all δ ∈ (0, 1) and all i ∈ K.

Proof: Since [Sk(n) ∪ {1}] = T 1 ∈ C∗1(T 1) and vi < v1, ∀ i ∈ K \ {1}; as

in the previous proposition we can say that wi(Sk(n)∪{i})
|Sk(n)|+1

≥ wi(Sk(m)∪{i})
|Sk(m)|+1

for all

Sk(m) ∈ S(L) and for all i ∈ K. For any Sk(m) ∈ S(L) \ {Sk(n)}, ∀ i ∈ K,

define the function di(Sk(m), δ) = wi(Sk(n)∪{i})
δ|Sk(n)|+1

− wi(Sk(m)∪{i})
δ|Sk(m)|+1

. By applying

proof by contradiction it is easy to prove that di(Sk(m), δ) > 0 for all δ ∈

(0, 1); ∀m 6= n and ∀ i ∈ K. Hence it follows that Sk(n) = argmax
S∈S(L)

wi(S∪{i})
δ|S|+1

,

for all i ∈ K. This proves our result.

We, now, design a recursion that will be used in the theorem to follow. For

this we call the agent with the highest (the lowest) valuation in any set T ⊆ N

as m̄T (as mT ).6 This recursion is used to optimize the proposal decision of

any loser at any stage T ∪ L such that T ⊆ K. The recursion, essentially,

generates the final coalition structure (for a given protocol function) subject

to the choice of a set of winners (one winner from each possible stage T ′ ∪L

where T ′ ⊆ T ⊆ K). This choice is done under the assumption that at each

such stage T ′ ∪ L; if any winner j ∈ T ′ gets to propose, he must propose

{m̄T ′} if j = m̄T ′ and {m̄T ′ , j} otherwise.

Recursion (*): For any T ⊆ K, define b(T ; p(.)) ≡ {b(T ′; p(.))}T ′⊆T to be

a sequence of members of T such that (i) b(T ′; p(.)) = mT ′ if |T ′| = 2 and (ii)

b(T ′; p(.)) ∈ T ′ if |T ′| 6= 2. To simplify the notations, henceforth we ignore

the argument for the protocol function when writing the b(.) expression. For

any such b(T ; p) define the sequence of sets {Bt}ht=1 such that

6Given the non-identical valuations, for any set T , the agents m̄T and mT are well

defined.
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• {Bt}ht=1 is a partition of T ∪ L.

• B1 =

 {m̄
T} if b(T ; p) = m̄T

{m̄T , b(T ; p))} otherwise

• Suppose the sequence of sets (B1, B2, . . . , Bq−1) is well defined. Then,

define D1 := T ∪ L and Dq := [T ∪ L] \ [∪q−1
t=1Bt], ∀ q > 1.

Bq =



Dq if |Dq ∩K| = 1

{mDq} if p(Dq) 6= m̄Dq∩K

{m̄Dq∩K} otherwise
if |Dq ∩K| = 2

{m̄Dq∩K} if p(Dq) = m̄Dq∩K

{m̄Dq∩K} if p(Dq) ∈ L and b(Dq ∩K) = m̄Dq∩K

{m̄Dq∩K , b(Dq ∩K; p)} if p(Dq) ∈ L and b(Dq ∩K; p) 6= m̄Dq∩K

{m̄Dq∩K , p(Dq)} otherwise

if |Dq ∩K| > 2

• Bh = T j(b(T ;p)) for some j(b(T ; p)) ∈ T .

The last term of the recursion Bh should be a set of all the losers and any

one winner j from T . The identity of this winner would depend on the

choice of the sequence b(T ; p). That is, for any choice of sequence b(T ; p)

we would get a jb(T ;p) ∈ T such that Bh = T j(b(T ;p). Define b∗(T ; p) to be

that sequence of winners that maximizes the (valuation of) agent jb(T ;p) and

let k∗(T ; p) := b∗(T ; p).7

Theorem 2.3.3. For any G = (N, w̄, p, δ) if T 1 ∈ C∗1(T 1) then there exists

δ′ ∈ (0, 1) such that for all δ ∈ (δ′, 1), the SSPE strategies of G are such that

7It may so happen that we have multiple k∗(T ; .) for a given protocol function. In that

case, we choose any one.
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∀ T ⊆ K we have the following:

1. if |T | = 1 then Cδ
t (T ∪ L) = T ∪ L for all t ∈ T ∪ L,

2. if |T | = 2 then Cδ
t (T ∪ L) = {t} if t ∈ T and any loser t ∈ L proposes

unacceptably to mT where mT = argmin
j∈T

vj, and

3. if |T | > 2 then

Cδ
t (T ∪ L) =

 {m
T , t} if t ∈ T \ {mT}

{t} if t = mT

wheremT = argmax
j∈T

vj and any t ∈ L proposes unacceptably to k∗(T ; p)

where k∗(T ; p) follows from Recursion (*).

Proof: Pick any i ∈ K and consider the stage T i. At this stage the only

winner i and all the losers are active. From Propositions 2.3.2 and 2.3.4 it

follows that if T 1 ∈ C∗1(T 1) then ∃ δ(i) ∈ (0, 1) such that ∀ δ ∈ (δ(i), 1);

Cδ
l (T

i) = {T i}, ∀ l ∈ T i. Define δ(1) := max{δ(i)}i∈K . Therefore, ∀ δ ∈

(δ(1), 1), Cδ
l (T

i) = {T i}, ∀ l ∈ T i, ∀ i ∈ K; and thus result (1) follows.

Consider any stage T ′ = {i, j}∪L, for any i, j ∈ K. Pick any δ ∈ (δ(1), 1).

Then Cδ
t (T

j) = {T j}, ∀ t ∈ T jand Cδ
t (T

i) = {T i}, ∀ t ∈ T i. W.l.o.g.

assume vi > vj. If i has the proposal power then the first possibility is

that he chooses to stay alone, so that in the next stage with T j agents,

the coalition T j forms (since Cδ
l (T

j) = {T j} for all l ∈ T j) and i gets a

payoff of vi. The remaining possibilities do not give agent i any more than

vi+vj
1+δ

.8 For all δ ∈
(
vj
vi
, 1
)

, vi >
vi+vj
1+δ

and so agent i will find it optimal

8Note that this payoff is the outcome of two member bargaining over vi + vj . Such a
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to stay alone. Hence ∀ δ ∈
(

max
{
δ(1),

vj
vi

}
, 1
)

, agent i stays alone (that

is, Cδ
i (T

′) = {{i}}). Pick any δ ∈
(

max
{
δ(1),

vj
vi

}
, 1
)

. As before, if j has

the proposal power and he chooses to stay alone then he gets vj. Otherwise,

knowing that winner i can reject any proposal and get a payoff of δvi, the best

agent j can achieve, by proposing some coalition that includes i, is no more

than
vj+(1−δ)vi

1+δ
. Also any non-singleton coalition excluding i gives j less than

vj+(1−δ)vi
1+δ

. There is also the possibility that agent j proposes {i, j} acceptably

to get (1− δ)vi + vj − 2vk+1. Note that if vj ≤ 4vk+1 then ∃ ¯̄δ ∈ (0, 1) such

that ∀ δ ∈ (¯̄δ, 1),
vj+(1−δ)vi

1+δ
> (1 − δ)vi + vj − 2vk+1. If vj > 4vk+1 then

∃ δ ∈ (0, 1) such that ∀ δ ∈ (δ, 1),
vj+(1−δ)vi

1+δ
< (1 − δ)vi + vj − 2vk+1. Let

˜̃δ := max
{
δ(1), ¯̄δ, δ, vi−2vk+1

vi
,
vj
vi
, vi
vi+vj

}
. Therefore ∀ δ ∈

(
˜̃δ, 1
)

, Ct(T
′) =

{{t}}, ∀ t = i, j.

We now consider the possible proposals of any loser for δ ∈
(

˜̃δ, 1
)

. If any

loser l ∈ L has the proposal power, then he has two choices, (i) to make an

acceptable proposal and (ii) to make an unacceptable proposal. If he chooses

the former, then Cδ
l (T

′) ⊂ {{i, j} ∪ Sk(t)}nt=l because, given Sk(t), it is better

to take both winners instead of one. For each t ∈ {l, l+1, . . . , n}, the loser can

attain a payoff of
(1−δ)(vi+vj)−2vt+1

1+δ(t−k−1)
. If δ ∈

(
1− 2vn

vi+vj
, 1
)

then the maximum

attainable payoff is
(1−δ)(vi+vj)
1+δ(n−k−1)

, resulting from a proposal T ′ = {i, j} ∪ L. If

agent l makes an unacceptable proposal, it may either be directed at a winner

or a loser. If it is directed at a winner, the winner (say i) would get the

proposer power in the next period and given our restriction on δ, would stay

payoff will never materialize if both winners form a coalition and exit the game (because

the losers have not colluded with any winner and so will bid their true valuations leading

to a price equal to the third highest valuation).
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alone and exit the game. This would drive the game to the stage T j where,

as mentioned above, the coalition T j would form giving l a payoff
δvj

1+δ(n−k)
in

the next period. Observe that given vi > vj, the loser will never unacceptably

propose to i, because he could do better by unacceptably proposing to j and

getting a payoff δvi
1+δ(n−k)

in the next period. If the unacceptable proposal is

directed at a loser l′, the stage of the game would not change, there would

be a period of delay, and in the next period the proposal power would be

with loser l′ who faces the same options as l with one period delay. Thus

unacceptable proposal directed to a loser is suboptimal. Thus given δ ∈(
1− 2vn

vi+vj
, 1
)

, loser l has two options. Either propose T ′ acceptably and

get a payoff
(1−δ)(vi+vj)
1+δ(n−k−1)

or propose unacceptably to j and get one-period

discounted payoff δ2vi
1+δ(n−k)

. Define F (δ) := δ2vi
1+δ(n−k)

− (1−δ)(vi+vj)
1+δ(n−k−1)

. Note that

F (δ) is strictly increasing and continuous in δ and limδ→1 F (δ) = vi
n−k+1

> 0.

Therefore ∃ δ̄ ∈ (0, 1) such that ∀ δ ∈ (δ̄, 1); F (δ) > 0, and so, given the

restriction on δ, making unacceptable proposal strictly dominates making

acceptable proposal for the loser l. Define δ(i, j) := max
{

˜̃δ, 1− 2vn
vi+vj

, δ̄
}

.

So ∀ δ ∈ (δ(i, j), 1), Cδ
t (T

′) = {{t}}, ∀ t = i, j and any loser proposing at

stage T ′ unacceptably proposes to j (the lower valuation winner). Hence, for

all δ ∈ (δ(2), 1) result(2) follows where δ(2) := max{δ(i, j)}i,j∈N,i6=j.

Suppose that at the stage T ′′∪L with T ′′ ⊂ K and 2 ≤ |T ′′| ≤ m−1 result

(3) holds ∀ δ ∈ (δm−1, 1). Then consider the stage T ∪ L where |T | = m.

Define the winners {jt}mt=1 in T , where j1 = m̄T and jt = m̄T\{j1,j2,...,jt−1}.

Fix a δ ∈ (max{δ(2), δm−1}, 1). The following STEPS 1 and 2 describe the

proposal choice of j1 and the winners other than j1, respectively; when they

propose acceptably at stage T ∪ L. STEP 3 establishes that no winner in T
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proposes unacceptably at stage T ∪L. Finally, STEP 4 describes the proposal

choice of the losers at stage T ∪ L.

STEP 1: Pick the agent j1 ∈ T (j1 = m̄T ). Strict inequality guarantees

that j1 is well defined. Now, by staying alone j1 can get at least δm−2vj1 .

This is because, from our hypothesis (and the specified range of δ) it follows

that at all the later stages (consequent to j1 staying alone) other than the

single winner stage; only the winners make acceptable proposals, and all

these acceptable proposals are either directed at themselves (that is, they

stay alone) or at exactly one active winner (that is, forming a two agent

coalition). This implies that after j1 has stayed alone, the game must arrive

at a single winner stage. From Proposition 2.3.2, 2.3.3 and 2.3.4; it follows

that given T 1 ∈ C∗1(T 1), all the active agents in this single winner stage

collude amongst themselves (irrespective of the identity of that single winner)

and the game ends. Therefore, the final coalition structure yields j1 a payoff

of vj1
9. Given our hypothesis, delay can occur along this path if (and only

if) at some intermediate stage, an active loser gets to propose. There can be

at most m− 2 such stages; and so staying alone yields j1 at least δm−2vj1 .

The maximum that j1 can get by colluding with any other active agent

is given by max
{
vj1+vj2

1+δ
, . . . ,

∑m−1
t=1 vjt

1+(m−2)δ

}
10. For any t′ = 2, . . . ,m − 1, the

9This follows from our worth of partition function; where any singleton (winner) mem-

ber of a partition gets his valuation as payoff, if that partition contains another member

set where all the losers collude with one or more winners.
10Agent j1 attains the payoff of

vj1+...+vjt
1+(t−1)δ , for any t < m; when j1 acceptably proposes

{j1, j2, . . . , jt} at this stage and the remaining winners (or winner) colludes with all the

losers in the next stage.
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difference

[
δm−2vj1 −

∑t′
t=1 vjt

1+(t′−1)δ

]
is continuous and strictly increasing in δ with

the δ → 1 limit being positive. Therefore, for δ sufficiently close to 1, this

difference is positive. Thus, ∃ δ1 ∈ (max{δ(2), δm−1}, 1) such that δm−2vj1 >

max

{ ∑t′
t=1 vjt

1+(t′−1)δ

}m−1

t′=2

∀ δ ∈ (δ1, 1). Therefore Cδ
j1

(T ∪ L) ≡ Cδ
m̄T (T ∪ L) =

{{j1}}, ∀ δ ∈ (δ1, 1).

STEP 2: Fix a δ ∈ (δ1, 1) and consider the agent j2. For such a δ, our

hypothesis implies that if j2 stays alone, the maximum payoff (attained if

no delay occurs in the intermediate stages) he can get is vj2 and the min-

imum payoff (attained if there is delay at each of the intermediate stages)

that he can get is δm−3vj2 . If j2 acceptably proposes {j1, j2}, he gets at least,

δm−3 [vj2 + (1− δ)vj1 ]. Any other collusive venture gives j2 a maximum pos-

sible payoff of

max

{
(1− δ)vj1 +

∑t′

t=2 vjt
1 + (t′ − 2)δ

}m−1

t′=3

Like in the previous case, there exists a δ̄2 ∈ (δ1, 1) such that ∀ δ ∈ (δ̄2, 1),

δm−3 [vj2 + (1− δ)vj1 ] > max

{
vj2 ,max

{
(1−δ)vj1+

∑t′
t=2 vjt

1+(t′−2)δ

}m−1

t′=3

}
.11 That is,

11For any t′ = 3, . . . ,m − 1, the difference δm−3vj2 −
(1−δ)vj1+

∑t′
t=2 vjt

1+(t′−2)δ is continuous

and strictly increasing in δ with a positive value in the limit (tends to 1). Therefore for

δ sufficiently close to 1, the difference is always positive. Hence for δ sufficiently close

to 1, the difference

[
δm−3vj2 −max

{
(1−δ)vj1

∑t′
t=2 vjt

1+(t′−2)δ

}m−1

t′=3

]
is positive and so staying

alone strictly dominates formation of any coalition other than {j1, j2}. However, the

difference δm−3[vj2 + (1− δ)vj1 ]− vj2 = (1− δ)
[
δm−3vj1 −

(
1 + δ + δ2 + . . .+ δm−4

)
vj2
]

is positive iff H(δ) >
vj2
vj1

where H(δ) := δm−3

1+δ+δ2+...+δm−4 . Since
vj2
vj1
∈ (0, 1) and H(δ)

is a strictly increasing function of δ, once again the for sufficiently high δ, the difference

δm−3[vj2 + (1− δ)vj1 ]− vj2 is positive. Thus a δ̄2 can indeed be found.
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Cδ
j2

(T ∪ L) = {{j1, j2}}, and aj2(T ∪ L) ≥ δm−2[vj2 + (1− δ)vj1 ].12

Note that we can also find a δ2 ∈ (δ̄2, 1) such that ∀δ ∈ (δ2, 1), δm−2[vj2 +

(1 − δ)vj1 ] > vj2 . This means that for this range of discount factor; any

acceptable proposal directed at j2 must give him at least a payoff greater than

vj2 (which is the maximum possible marginal contribution that j2 can make to

any coalition containing it). This is always suboptimal and therefore, for this

range of δ, no acceptable proposal directed at j2 is ever made in equilibrium.

In this manner we can generate a sequence {δt}mt=3 such that δ3 ∈ (δ2, 1) and

δt+1 ∈ (δt, 1), ∀ t with the property that (i) Cδ
t (T ∪L) = {j1, jt}, ∀ δ ∈ (δt, 1),

∀ t ≥ 3; and (ii) no acceptable proposal containing any of the members in

{j2, . . . , jt} will be made in the equilibrium if the discount factor exceeds

δ̄2.13

STEP 3: Fix a δ ∈ (δm, 1). Consider any j ∈ T \ {j1} and suppose that

j makes an unacceptable proposal. This is optimal only if, this leads to

transfer of proposal power to some other active player j′ ∈ T who makes an

acceptable proposal Sj
′

excluding j.

If j′ ∈ L, then from (ii) in STEP 2, Sj
′ ∈ {{j1} ∪ Sk(t)}nt=l. For any

t ∈ {l, . . . , n}, the acceptable proposal [{j1} ∪ Sk(t)] gives l a maximum

possible payoff
(1−δ)vj1−vt+1

1+(t−k−1)δ
. Observe that if δ >

vj1−vn
vj1

, then only acceptable

proposal giving l a positive (maximum possible) payoff
(1−δ)vj1

1+(n−k−1)δ
is [{j1} ∪

Sk(n)]. Then ∀ δ ∈
(

max
{
δm,

vj1−vn
vj1

}
, 1
)

, Cδ
l (T ∪ L) = [{j1} ∪ Sk(n)].

But then, the game goes to stage T \ {j1}, where the maximum possible

12Recall that j2 can always reject a proposal, incur a period of delay, and then acceptably

propose {j1, j2}.
13This is because the expression δm−2[x+ (1− δ)vj1 ]− x is decreasing in x.
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payoff that j can get is δ[vj + (1 − δ)vm̄T\{j1} ]
14 It can be easily seen that

∃ δ′m ∈
(

max
{
δm,

vj1−vn
vj1

}
, 1
)

such that ∀δ ∈ (δ′m, 1), δm−2[vj2 +(1−δ)vj1 ] >

δ[vj + (1 − δ)vm̄T\{j1} ] (since vj1 > m̄T\{j1}) and so making an acceptable

proposal dominates making an unacceptable proposal.

Fix any δ ∈ (δ′m, 1). If j′ ∈ T \ {j}, then either j′ = j1 or j′ 6= j1.

If j′ = j1, then from STEP 1, Cj1(T ∪ L) = {j1}, and so the game goes

to the stage [T \ {j1}] ∪ L with m − 1 winners. Then from the induction

hypothesis, we get that Cj([T \ {j1}] ∪ L) =
{
m̄T\{j1}, j

}
. Given the range

of δ, from STEP 2, Cj(T ∪ L) = {j1, j}; and so, payoff to j from proposing

{j1, j} acceptably at stage T ∪ L exceeds that from proposing
{
m̄T\{j1}, j

}
acceptably, at stage T ∪ L (which, in turn, is weakly greater than doing the

same at stage [T \ {j1}] ∪ L). Therefore, proposing acceptably dominates

doing otherwise. When j′ 6= j1, from STEP 2, agent j′ acceptably proposes

{j1, j
′} (since Cj′(T ∪ L) = {j1, j

′}); and so, the game proceeds to the next

stage [T \ {j1, j
′}]∪L with m− 2 winners. Then, from induction hypothesis,

Cj([T \ {j1, j
′}] ∪ L) =

{
m̄T\{j1,j′}]∪L, j

}
. Given the range of δ, from STEP

2, Cj(T ∪ L) = {j1, j}; and so, arguing as before, proposing acceptably

dominates doing otherwise.

Finally, consider the possibility that j = j1. Then, j′ 6= j1. Therefore,

∀ δ ∈ (δ′m, 1), as mentioned before, j′ ∈ L⇒Cδ
l (T ∪ L) = [{j1} ∪ Sk(n)] and

j′ ∈ T \ {j1} ⇒Cj′(T ∪ l) = {j1, j
′}. But for both these cases, j1 could have

proposed the same coalition acceptably, in the first place; thereby saving a

period of delay (and getting the (higher) proposer’s share out of the worth of

14As in STEP 2, we can show that it is suboptimal for j to acceptably propose to any

other winner in T \
{
j1, m̄

T\{j1}
}

, at stage T \ {j1}.
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[{j1} ∪ Sk(n)], in case of j′ ∈ L). Hence, proposing unacceptably turns out

to be sub-optimal for j1 at stage T ∪ L. Therefore, ∀ δ ∈ (δ′m, 1), no winner

in T makes an unacceptable proposal at stage T ∪ L.

STEP 4: If any loser l proposes acceptably at stage T ∪L, then, from STEP

3, ∀ δ ∈ (δ′m, 1), Cδ
l (T ∪ L) = [{j1} ∪ Sk(n)] and l gets a maximum possible

payoff of
(1−δ)vj1

1+(n−k−1)δ
is [{j1} ∪ Sk(n)]. On the other hand, like in the two

winner stage {i, j} ∪ L, given the specified range of δ and our hypothesis,

an unacceptable proposal by l to some winner, yields at least
δvj1

1+(n−k)δ
in the

final single winner stage, at most m − 1 periods later. That is, the least l

gets by making an unacceptable proposal when δ ∈ (δ′m, 1) is
δmvj1

1+(n−k)δ
. The

difference
δmvj1

1+(n−k)δ
− (1−δ)vj1

1+(n−k−1)δ
is continuous and strictly increasing in δ and

this difference is positive in the limit. Therefore, ∃ δ ∈ (δ′m, 1) such that for

all δ ∈ (δ, 1) the difference is positive, that is, making unacceptable proposal

is the optimal action. The particular identity of the winner in T to whom

any l must unacceptably propose is given Recursion (*).

Define δm := max
{
δ′m,

vj1−vn
vj1

, δ
}

. Then, ∀ δ ∈ (δm, 1); at the stage T ∪L

such that |T | = m, all losers make an unacceptable proposal at some active

winner and Cδ
t (T ∪L) = {j1, t} = {m̄T , t}, ∀ t 6= j1 = m̄T with Cδ

m̄T (T ∪L) =

{m̄T}. We can continue such a recursion to get a sequence of {δm}nm=3 such

that result (3) follows by simply choosing δ′ := max{δm}nm=3.

An obvious consequence of Theorem 2.3.3 is the resulting coalition struc-

ture contingent on the protocol function. This is summarized in the next

corollary using the δ′ obtained in Theorem 2.3.3.

Corollary 2.3.4. For any G = (N, w̄, p, δ) if T 1 ∈ C∗1(T 1) and δ ∈ (δ′, 1),

then for any given p(.), the SSPE coalition structure is a protocol contingent
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partition (E1, . . . , Es) of the agent set N such that

E1 =


{1} if {p(N) = 1} or {p(N) ∈ L and k∗(K; p) = 1}

{p(N), 1} if p(N) ∈ K \ {1}

{k∗(K; p), 1} if p(N) ∈ L and k∗(K; p) 6= 1

Suppose the sequence is {E1 ∪ . . . ∪ Eq} well defined and Rq := N \ {E1 ∪
. . . ∪ Eq} 6= ∅. Then

Eq+1 =



T i if Rq ∩K = {i}

{p(Rq)} if {p(Rq) = mRq} or if
{
p(Rq) ∈ K \ {mRq} and |Rq ∩K| = 2

}
{
p(Rq),m

Rq
}

if p(Rq) ∈ K \ {mRq} and |Rq ∩K| > 2{
m[Rq∩K]

}
if p(Rq) ∈ L and |Rq ∩K| = 2{

k∗(Rq ∩K; p),mRq
}

if p(Rq) ∈ L and |Rq ∩K| > 2

Example 2.3.5. Suppose N = {1, 2, 3, 4, 5}, K = {1, 2, 3}. Let the protocol

function p(S) := max
j∈S
{�}, ∀S ⊆ N for some linear order “�” defined on the

agent set N . For δ sufficiently close to 1, if

1. 1 � 2 � 3 � 4 � 5 then final coalition structure is {{1}, {2}, {3, 4, 5}}.

2. 3 � 2 � 5 � 4 � 1 then final coalition structure is {{1, 3}, {2, 4, 5}}.

3. 4 � 1 � 5 � 2 � 3 then final coalition structure can either be

{{1, 3}, {2, 4, 5}} or it can be {{1}, {3}, {2, 4, 5}}.

Note that two possibilities arise for the coalition structure in the third case.

That is because a loser (agent 4) gets to propose at a stage with more than

2 winners. Recall that the Recursion (*) did not guarantee a unique k∗(.);

which is why k∗(N ; p) ∈ {1, 3}, thereby leading to two possible coalition

structures.
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An interesting coalition structure is the one where the lowest valuation

winner k colludes with all the losers in L while all other winners stay alone.

This is interesting because the coalition T k = {k} ∪ L ensures that all the

losers bid zero at the auction, thereby reducing the (k + 1)th price to zero.

Thus the other winners {1, . . . , k − 1} get their own valuations as the equi-

librium payoff in the limit as δ tends to 1. Agent k, however, gets only vk
n−k+1

in the limit. In other words, winner k generates the gains from coopera-

tion while the other winners free ride. The following proposition provides

the restriction on the protocol function that characterizes formation of this

coalition structure in equilibrium.

Proposition 2.3.5. For any G = (N, p, w̄, δ), if T 1 ∈ C∗1(T 1) then ∀ δ ∈

(δ′, 1)15; the SSPE outcome is {{1}, . . . , {k − 1}, {k, k + 1, . . . , n}} if and

only if the p(.) satisfies the property

p(N) = 1, p (N \ {1, . . . , i}) = i+ 1,∀ i ∈ K \ {k − 1, k} (2.2)

Proof: The sufficiency of condition 2.2 follows from Corollary 2.3.4. To

establish the necessity, consider the member T k = {k, k + 1, . . . , n}. For T k

to have formed; on the equilibrium path, at some stage T̂ (such that T k ⊆ T̂ ),

some member i ∈ T k must have acceptably proposed T k. Now if |T̂ ∩K| ≥ 2

then, given the specified range of δ, irrespective of whether i = k or i ∈ L,

we get a contradiction to the equilibrium strategies defined in Theorem 2.3.3.

Hence T̂ = T k.

Now consider the singleton coalition {k− 1}. Since T k must have formed

at the stage T k itself, {k − 1} must have formed at a stage T̄ such that

15The δ′ is taken from Theorem 2.3.3.
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{{k−1}∪T k} ⊆ T̄ . Given the range of δ, the only possibility where agent k−1

would choose to stay alone without contradicting our findings in Theorem

2.3.3; is when T̄ = {{k−1}∪T k}. Now if p(T̄ ) ∈ L, then it must unacceptably

propose to the lower value winner k, who would then stay alone. If p(T̄ ) = k

then it is optimal for k to stay alone so that T k−1 forms in the next stage.

Therefore in either case we have a contradiction. Therefore, p({k−1}∪T k) =

k−1⇒ p(N \{1, . . . , k−2}) = k−2+1 = k−1. Continuing in this manner,

for the rest of the singleton coalitions, {k − 2}, {k − 3}, . . . , {1}; the result

follows.16

In fact, the strategies in Theorem 2.3.3 generate a class of coalition struc-

tures where any one winner colludes with all the losers on the equilibrium

path as δ approaches 1 irrespective of the protocol function. This is presented

formally in the following corollary.

Corollary 2.3.6. For any G = (N, w̄, p, δ), if T 1 ∈ C∗1(T 1) then ∀ δ ∈ (δ′, 1),

the SSPE outcome belongs to the class of coalition structures P̄ ⊂ Π(N)

such that ∀ π ∈ P̄ ,

1. ∃ j(π) ∈ K such that T j(π) ∈ π.17

2. if S ∈ π \
{
T j(π)

}
then |S| ∈ {1, 2}.

3. |{j ∈ K : {j} ∈ π, vj < vj(π)}| ∈ {0, 1}.

Proof: (1) and (2) follow from the Theorem 2.3.3. To prove (3), suppose

the contrary holds. That is, there exists a π ∈ P and a pair of winners

16Note that p(T k) = p(N \ {1, . . . , k− 1}) is free from any restriction because any agent

in T k proposes T k optimally.
17If |N | > 2 then j(π) ∈ K \ {1}, ∀ π ∈ P.
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j , j′ ∈ K such that vj < vj′ < vj(π) and {j}, {j′} ∈ π.18 Now, from Theorem

2.3.3 it follows that coalition T j(π) forms at stage T j(π), that is, the single

winner stage (after which the game ends). This means either {j} or {j′}

must have formed at some stage T ′ such that
{
{j} ∪ {j′} ∪ T j(π)

}
⊆ T ′. In

either case, this is in contradiction to the equilibrium proposal decisions in

Theorem 2.3.3 for the specified range of δ. Hence the result (3) follows.

Example 2.3.7. Take the simplest multiple goods case where there are two

goods, that is, N = {1, 2, 3, 4, 5, 6} and K = {1, 2}. Fix the δ value suf-

ficiently high so that the comparison amongst the average worths gives us

the ranking between different coalitions according to their profitability as

collusive ventures. Assume that (a) vi−v5
3

> max
{
vi − v3,

vi−v4
2
, vi−v6

4
, vi

5

}
,

∀ i = 1, 2; that is, Cδ
i ({i, 3, 4, 5, 6}) = {i} ∪ {3, 4}, ∀ i = 1, 2.

Suppose p(N) = 1 and p(N \{1}) = 2. Therefore, if agent 1 stays alone at

the stage N , then at the next stage 2 acceptably proposes {2, 3, 4} leading to

the coalition structure {{1}, {2, 3, 4}, {5}, {6}} which gives agent 1 a payoff

of v1 − v5. However, if 1 forms {1, 6} at stage N , then the payoff is

v1−v3
2

if 2 stays alone at the next stage {2, 3, 4, 5}
v1−v4

2
if 2 forms {2, 3} at the next stage {2, 3, 4, 5}

v1−v5
2

if 2 forms {2, 3, 4} at the next stage {2, 3, 4, 5}
v1
2

if 2 forms {2, 3, 4, 5} at the next stage {2, 3, 4, 5}

Therefore, for 1 to make the optimal proposal choice at stage N (that is,

to evaluate the proposal {1, 6} at stage N), it needs to know the proposal

choice of agent 2 at stage {2, 3, 4, 5}. Note that our assumption (a) puts no

18This means |{j ∈ K : {j} ∈ π, vj < vj(π)}| = 2.
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restriction on the ranking of average worths of subsets of {2, 3, 4, 5}, that

agent 2 can propose acceptably (keeping in mind that agent 6 has already

colluded with agent 1 and so will bid zero at the auction) at stage {2, 3, 4, 5}.

That is, (a) does not impart any ranking of the numbers v2− v3,
v2−v4

2
, v2−v5

3

(payoffs from forming {2}, {2, 3} and {2, 3, 4} respectively) with respect to

v2
4

(payoff from forming {2, 3, 4, 5}). Hence the problem becomes fairly in-

tractable, even with two goods case, once we allow Cδ
i (T

i) to be strict subset

of T i for all (or some) i ∈ K.

Also in such a case the final coalition structure may or may not have one

winner colluding with all the losers, depending upon the protocol function.

That is, if we use the protocol function p(N) = 1, p(N \ {1}) = 6; then it

is optimal for agent 1 to stay alone at stage N since, in the next stage, the

loser 6 proposes (who has no choice but to acceptably propose) {2, 3, 4, 5, 6}

leading to formation of the coalition structure {{1}, {2, 3, 4, 5, 6}} giving 1 a

payoff of v1 (which is the best that agent 1 can get).

2.4 Conclusion

In this chapter, we analyze coalition formation at Vickrey auction with single

as well as multiple identical indivisible identical goods; with unit demand and

complete information. The assumption of complete information is restrictive

but it turns out that this case is already quite rich. We provide, for suffi-

ciently patient bidders, the necessary and sufficient conditions for formation

of bidding ring at the single good auction, when the highest valuation agent

is the first proposer. In the multiple goods case, we specify the sufficient con-
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ditions for formation of the class of coalition structures, where exactly one

winner colludes with all the losers irrespective of the protocol function. Our

work, therefore, turns out to be the complete information benchmark with

regard to collusion at such auctions. Of course, further research needs to be

done to extend this line of coalition formation to the incomplete information

case.
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Chapter 3

Group Strategyproof

Indivisible Good Allocation

3.1 Introduction

In this chapter, we consider the problem of allocation of a set of indivisible

identical goods with monetary transfers. This problem has many practical

applications. The set of indivisible identical goods may consist of houses,

jobs, locations, frequencies, etc. The agents are assumed to have unit demand

and quasi-linear preferences over goods and money. In particular, each agent

is identified with a non-negative valuation for the good and has utility as a

linear function of money.

This valuation is private information, and so, irrespective of the alloca-

tion rule employed by the planner; agents have incentive to misreport their

valuations. The planner, therefore, needs to design a mechanism to ensure

truthful revelation of valuations. A mechanism in this context, is a pair con-
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sisting of an assignment function which determines which agents get goods

and a vector of monetary transfers.

The popular notion of robustness of mechanisms with respect to mis-

representation of valuations, in the mechanism design literature, has been

strategyproofness . A mechanism is said to be strategyproof if truth-telling

is a weakly dominant strategy for all agents in the direct revelation game

induced by it. Holmström’s [21] general result implies that in this context

the Vickrey-Clarke-Groves mechanisms (Vickrey [47]; Clarke [9]; Groves [16])

are the only decision efficient and strategyproof mechanisms.

It would seem desirable from ethical as well as practical perspective; that

such a mechanism, conform to certain fairness criteria. In this chapter, we

use two notions of fairness; one, the popular concept of no-envy introduced

by Foley [11] and Varian [46], and two, the concept of anonymity in welfare

used by Hashimoto and Saitoh [18] and many others. A mechanism is said to

satisfy no-envy, if each agent prefers his bundle of good and money, to that

of others. A mechanism is said to satisfy anonymity in welfare if utility levels

of any two agents get interchanged when their valuations are interchanged.

Tadenuma and Thomson [44] mention that no-envy is an appealing concept

because of its normative feature as well as compatibility with decision effi-

ciency - in this setting, no-envy implies efficiency. This notion of fairness has

been widely used to study the problem of indivisible good allocation with

monetary transfers.1

We completely characterize the class of fair mechanisms which are im-

1Ohseto [36], Tadenuma and Thomson [44],[45], Fujinaka and Sakai [13],[12], Svensson

and Larsson [43], Pápai [37].
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mune to strategic misrepresentation of valuations by any group of agents.

For this we extend the notion of strategyproofness to group strategyproof-

ness. In doing this, we could think of coalitional deviations of the kind

discussed in Chapter 2 where the deviating group seeks to increase the sum

of the utilities of all members. We could also think of coalitional deviations

where at least one member of the deviating group is strictly better off with

no other members being strictly worse off. We show that there exist no fair

mechanisms which are immune to the coalitional deviation of the latter kind.

Since, the latter kind of deviations are essentially a subset of the former

kind, we get the non-existence of fair mechanisms which are immune to the

coalitional deviation of the former kind.

We, therefore, water down our restriction on the mechanisms by consider-

ing only those coalitional deviations that make all the participating members

strictly better off. These coalitional deviations are the ones, most relevant in

present setting of incomplete information, where binding contracts are dif-

ficult to write. This is because there is no incentive for the post-deviation

redistribution of payoffs necessary to compensate any member who may have

become worse off. In other words, colluding members may end up cheating

each other, and so, it makes sense for the members of group to agree to

a coalitional deviation only if each member is strictly better off. We call

mechanisms immune to these kinds of coalitional misreporting; weak group

strategyproof mechanisms. In this chapter, we specify the class fair mech-

anisms that satisfy weak group strategyproofness.2 We find that the two

2This notion of group strategyproofness has also been used in different contexts by Bo-

gomolnaia and Moulin [4], Barbera, Berga and Moreno [1] and Hatsumi and Serizawa [19].
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notions of fairness, no-envy and anonymity in welfare, are equivalent in the

sense that both criteria yield the same class of weak group strategyproof

mechanisms.

The problem of indivisible good allocation with monetary transfers is a

well-studied one. Tadenuma and Thomson [44] show that no proper sub-

solution of the no-envy solution satisfies consistency. Ohseto [36] shows that

there is no strategyproof, decision efficient and budget balanced mechanism

on restricted preference domains which are sufficiently large. Svensson and

Larsson [43] study the strategyproof and non-bossy allocations, and show

that any neutral allocation rule satisfying these properties must be serially

dictatorial. Fujinaka and Sakai [12] and Tadenuma and Thomson [45] discuss

no-envy multi-valued solutions in this context.

The study closest to the research program in this chapter, is by Fujinaka

and Sakai [22]. They focus on no-envy and fully efficient mechanisms immune

to unilateral strategic misreporting of preferences in a direct revelation game.

In particular, they look for ε-Nash Implementable mechanisms which satisfy

full efficiency, no-envy and other normative properties. In this chapter, we

relax full efficiency to feasibility and decision efficiency; and extend the notion

of truth-telling from Nash equilibrium to group strategyproofness. We find

that the Pivotal mechanism adjusted for a (suitably chosen) constant is the

only feasible no-envy mechanism satisfying weak group strategyproofness.

Using a zero transfer condition, we then obtain a new characterization of

Pivotal mechanism.

Section 3.2 states the model and required definitions. Section 3.3 and 3.4

contain the results and conclusion. Section 3.5 is the appendix containing
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the proofs.

3.2 Model

Consider a set of agents {1, . . . , n} with n ≥ 2 and a set of indivisible identical

goods {1, . . . , k} with n > k ≥ 1. Each agent has a demand for only one

good; bi ∈ <+ denotes the private valuation of agent i, for the good. A

mechanism is a tuple (d, τ) such that at any reported profile of valuations

b ∈ <n+, each agent i is allocated a transfer τi(b) ∈ < and a di(b) ∈ {0, 1}.

di(b) = 1 implies that agent i gets a good, while di(b) = 0 stands for i not

getting the good.

The utility to agent i with a true valuation of bi at any profile b′ ∈ <n+,

from the mechanism (d, τ) is given by ui((di(b
′), τi(b

′)); bi) = bidi(b
′) + τi(b

′).

Also define the function li(b, b
′) := ui((di(b), τi(b)); bi)− ui((di(b′), τi(b′)); bi),

∀ i ∈ N and ∀ b, b′ ∈ <n+. Therefore, li(b, b
′) denotes the change in utility

to agent i when the (announced) profile changes from b to b′ and the true

valuation of i is bi. Let b−i := (b1, . . . , bi−1, bi+1, . . . , bn), ∀ i ∈ N , b−S :=

(bi)i∈N\S and bS := (bi)i∈S, ∀ S ⊆ N , ∀ b ∈ <n+. Define M(x) := max{xt} for

all x ∈ <p+, ∀ p ∈ N. Therefore, M(x) is the largest element of any vector

x, in the non-negative orthant of Euclidean space of any dimension. Also

define b(r) to be the rth ranked valuation in a non-increasing arrangement

of components of any b ∈ <+
n for all r = 1, 2 . . . , n. In case of ties, w.l.o.g. we

use the tie-breaking rule 1 � . . . � n. Therefore b(1) = M(b) for all b ∈ <n+.

Definition 3.2.1. A mechanism (de, t) is decision efficient (EFF) if ∀b ∈ <n+,
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∀ i ∈ N ,

[dei (b) = 1] =⇒ [bi ≥ b(k + 1)]

Decision efficiency is obtained by solving the following program for any

reported valuation profile b,

max
d1,d2,...,dn

{ ∑
t=1,...,n

dtbt

}

Using the tie-breaking rule 1 � . . . � n we obtain a unique efficient decision

for each b ∈ <n+.

Definition 3.2.2. A mechanism (d, τ) satisfies no envy (NE) if ∀ b ∈ <n+,

∀ {i, j} ⊆ N ,

ui(di(b), τi(b); bi) ≥ ui(dj(b), τj(b); bi)

Definition 3.2.3. A mechanism (d, τ) satisfies equal treatment of equals

(ETE) if ∀ b ∈ <n+, ∀ {i, j} ⊆ N ,

[bi = bj] =⇒ [ui(di(b), τi(b); bi) = uj(dj(b), τj(b); bj)]

Definition 3.2.4. A mechanism (d, τ) satisfies anonymity in welfare (AN)

if ∀ i 6= j ∈ N , ∀ b ∈ <n+,

ui(di(bi, bj, b−i−j), τi(bi, bj, b−i−j); bi) = uj(dj(bj, bi, b−i−j), τj(bj, bi, b−i−j); bi)

Clearly, AN implies ETE.

Definition 3.2.5. A mechanism (d, τ) is strategyproof if ∀i ∈ N , ∀bi, b′i ∈ <+,

∀ b−i ∈ <n−1
+ ,

ui(di(bi, b−i), τi(bi, b−i); bi) ≥ ui(di(b
′
i, b−i), τi(b

′
i, b−i); bi)
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Strategyproof mechanism guarantees that revealing the true valuation is a

weakly dominant strategy for every agent. If a mechanism achieves EFF and

strategyproofness, then we say that the efficient decision is implementable

in dominant strategies. But there remains the possibility of agents forming

coalitions and misreporting together. Ideally a mechanism should also be im-

mune to such coalitional misreporting. Hence, we discuss two new incentive

compatibility criteria. First, we introduce the following notation. For any

b, b′ ∈ <n+; b′ is an S-profile of b if ∀ i 6∈ S, bi = b′i, for any non-empty S ⊆ N .

Definition 3.2.6. A mechanism (d, τ) is strong group strategyproof (SGS)

if ∀ b ∈ <n+, @ S ⊆ N such that

ui(di(b), τi(b); bi) ≤ ui(di(b
′), τi(b

′); bi),∀ i ∈ S

and uj(dj(b), τj(b); bj) < uj(dj(b
′), τj(b

′); bj) for some j ∈ S

where b′ is an S-profile of b.

Definition 3.2.7. A mechanism (d, τ) is weak group strategyproof (WGS) if

∀ b ∈ <n+, ∀ S ⊆ N , ∃ j ∈ S;

uj(dj(b), τj(b); bj) ≥ uj(dj(b
′), τj(b

′); bj)

where b′ is an S-profile of b.

It can easily be seen that SGS implies WGS which in turn implies strat-

egyproofness.

Definition 3.2.8. A mechanism (d, τ) is feasible if
∑

i∈N τi(b) ≤ 0, ∀b ∈ <n+.

Definition 3.2.9. A mechanism (d, τ) satisfies zero transfer (ZT) if

τi(0, 0, . . . , 0) = 0,∀ i ∈ N

47



3.3 Results

We first, show that the any fair mechanism must be decision efficient.

Proposition 3.3.1. If a mechanism (d, τ) satisfies NE, then it must satisfy

EFF and ETE.

Proof: For any {i, j} ⊆ N , ∀ b ∈ <n+, no-envy implies that bidi(b) + τi(b) ≥

bidj(b) + τj(b) and bjdj(b) + τj(b) ≥ bjdi(b) + τi(b) for any profile b. From

these two inequalities, it follows that (i) bi(dj(b) − di(b)) ≤ τi(b) − τj(b) ≤

bj(dj(b)−di(b)) for all b. This implies that bi(dj(b)−di(b)) ≤ bj(dj(b)−di(b));

from which it follows that di(b) > dj(b) =⇒ bi ≥ bj, ∀ i, j ∈ N . Hence the

mechanism (d, τ) is EFF.

If bi = bj then from (i) it follows that either di(b) = dj(b), τi(b) = τj(b)

or dj(b) > di(b), τi(b) = bj + τj(b) or di(b) > dj(b), τj(b) = bi + τi(b). In

all three case, ui(di(b), τi(b); bi) = uj(dj(b), τj(b); bj). Hence, the mechanism

(d, τ) satisfies ETE.

Corollary 3.3.1. If a mechanism (d, τ) satisfies NE and strategyproofness,

then ∀ i ∈ N , ∀ b ∈ <n+,

τi(b) =

 g(b−i) if dei (b) = 0

−b(k + 1) + g(b−i) if dei (b) = 1

Proof: By Proposition 3.3.1, no-envy implies efficiency of decision. Then

from Holmstŕ’om [21] it follows that the efficient and strategyproof mecha-

nism is VCG mechanism given by the transfer τi(b) =
∑

j 6=i d
e
j(b)bj +hi(b−i),

∀ b ∈ <n+. Substituting hi(b−i) = −
∑

j 6=i d
e
j(b−i)bj + gi(b−i), we can write
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that τi(b) = −
∑

j 6=i(d
e
j(b−i) − dej(b))bj + gi(b−i). Therefore, if di(b) = 1,

τi(b) = −b(k + 1) + gi(b−i), or else τi(b) = gi(b−i).

All we need to show is that for all i, the gi(.) function is independent of

agent label. To prove this, fix any vector x̄ ≡ (x1, x2, . . . , xn−1) ∈ <n−1
+ . For

all i = 1, . . . , n− 1 define the profile b̂i,x̄ such that

b̂i,x̄j =


xj if j ≤ i

xi if j = i+ 1

xj−1 if j > i

Note that ∀ i, b̂i,x̄i = b̂i,x̄i+1. Therefore, by proposition 3.3.1, NE implies that

for all i = 1 . . . , n− 1,

ui((d
e
i (b̂

i,x̄), τi(b̂
i,x̄));xi) = ui+1((dei (b̂

i+1,x̄), τi(b̂
i+1,x̄));xi) (3.1)

From condition 3.1 it follows that if dei (b̂
i,x̄) = dei+1(b̂i,x̄) then gi(x̄) = gi+1(x̄).

Now, if dei (b̂
i,x̄) > dei+1(b̂i,x̄) or dei+1(b̂i,x̄) > dei (b̂

i,x̄) then b̂i,x̄(k + 1) = xi. So

condition 3.1 implies that gi(x̄) = gi+1(x̄). Therefore, g1(x̄) = g2(x̄) = . . . =

gn−1(x̄) = gn(x̄). Since x̄ was chosen arbitrarily, for all i ∈ N , the gi(.)

function must be independent of agent label i.

Remark 3.3.2. Corollary 3.3.1 implies that the g(.) functions are symmetric

and independent of agent labels. Pápai [37] (Observation 3) proves the same

result in the heterogeneous indivisible good allocation context.

3.3.1 Single Good

We, now, state the results for k = 1.
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Proposition 3.3.2. There exists no mechanism (d, τ) which satisfies SGS

and NE.

Proof: Since SGS implies strategyproofness, by Corollary 3.3.1 τi(b) =∑
j 6=i[bj(d

e
j(b)− dej(b−i))] + g(b−i).

W.l.o.g. fix a b ∈ <n+ such that b1 > b2 > . . . > bn. Say ∃ x ≥ b2 such that

g(x, b−1−2) 6= g(b1, b−1−2). If g(x, b−1−2) > g(b1, b−1−2) then consider a {1, 2}-

deviation from the true profile b to (x, b−1). If g(x, b−1−2) < g(b1, b−1−2)

then consider a {1, 2}-deviation from the true profile (x, b−1) to b. In either

case SGS is violated and so it must be that g(x, b−1−2) = C(b−1−2), ∀ x ≥

b2. But, now consider another {1, 2}-deviation from b to (b2 − ε, b−2) with

ε ∈ (0, b2). Since the efficient decision remains unchanged, the transfers

τ2(b) = τ2(b2−ε, b−2) and τ1(b) = b1−b2 +C(b−1−2) < b1−(b2−ε)+C(b−1−2).

Hence, SGS is violated and so contradiction.

Proposition 3.3.2 rules out existence of mechanisms immune to those

group deviations which make no member worse off and at least one mem-

ber strictly better off. This implies non-existence of mechanisms immune

to coalitional deviations where the sum of utilities of all members strictly

increases. Hence, we focus on WGS mechanisms.

Proposition 3.3.3. If a mechanism (d, τ) satisfies NE and strategyproof-

ness, then ∀ i 6= j ∈ N , ∀ b ∈ <n+, ∀ {xu} ⊆ [M(b−i−j),∞),

[{xu} → x̃] =⇒ [{g(xu, b−i−j)} → g(x̃, b−i−j)]

Proof: W.l.o.g. fix a b ∈ <n+ such that b1 > b2 ≥ M(b−1−2). Now, NE

(for agents 1 and 2) implies that b1 − b2 + g(b2, b−1−2) ≥ g(b1, b−1−2) and
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g(b2, b−1−2) ≤ g(b1, b−1−2). Therefore, ∀b2 ∈ [M(b−1−2), b1], 0 ≤ g(b1, b−1−2)−

g(b2, b−1−2) ≤ b1 − b2. Therefore, for any sequence {bu2} ⊆ [M(b−1−2), b1)

such that {bu2} → b1, the corresponding sequence {g(bu2 , b−1−2)} converges to

g(b1, b−1−2). Since b was arbitrarily chosen, the result follows.

Henceforth, for simplicity, whenever we are concerned with the efficient

decision, we write d(.) instead of de(.).

The following theorem describes the behaviour of the g(x, b−i−j) function

when x ≥M(b−i−j), for any chosen b−i−j vector, and any {i, j} ⊆ N .

Theorem 3.3.3. If a mechanism (d, τ) satisfies NE and WGS then for any

i 6= j ∈ N , ∀ b−i−j ∈ <n−2
+ , ∃ η(b−i−j) ∈ [0,∞] such that

g(x, b−i−j) = C̄(b−i−j) + min{x, η(b−i−j)},∀ x ≥M(b−i−j)

Proof: See Appendix.

Theorem 3.3.4. A mechanism (d, τ) satisfies NE and WGS if and only if

∀ i ∈ N , ∀ b ∈ <n+,

τi(b) =

 K + min{η,M(b−i)} if di(b) = 0

K + min{η,M(b−i)} −M(b−i) if di(b) = 1

for some η ∈ [0,∞].

Proof of Only If: Since k = 1, ∀ i ∈ N , ∀ b ∈ <n+, di(b) = 1 implies

that b(2) = M(b−i). Therefore, we simply need to show that g(b−i) =

K + min{η,M(b−i)} for some η ∈ [0,∞], in Corollary 3.3.1. We do so

by obtaining, for all i, the behaviour of g(b−i) function in response to partial

change in any component of the vector b−i. So, we pick any j ∈ N \ {i} and
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fix any arbitrary vector b−i−j ∈ <n−2
+ . Theorem 3.3.3 specifies the impact of

bj on g(b−i) when bj ≥ M(b−i−j). In the following lemma, we consider the

case when bj < M(b−i−j) and show that g(., b−i−j) remains constant over the

interval [0,M(b−i)).

Lemma 3.3.5. If a mechanism (d, τ) satisfies NE and WGS then ∀ b−i−j ∈

<n−2
+ ,

g(x, b−i−j) = C(b−i−j),∀ x < M(b−i−j)

Proof of Lemma: Consider a pair of profiles b, b′ such that bi, bj, b
′
i, b
′
j <

M(b−i−j). WGS implies that [li(b, b
′) ≥ 0 or lj(b, b

′) ≥ 0] and [li(b
′, b) ≥ 0 or lj(b

′, b) ≥ 0].

W.l.o.g. suppose li(b, b
′) > 0 and lj(b

′, b) > 0. This would imply that

g(bj) > g(b′j) and g(b′i) > g(bi). But then lt((bi, b
′
j, b−i−j), (b

′
i, bj, b−i−j)) < 0,

∀ t = i, j which would violate WGS. Also note that li(b, b
′) = 0 =⇒ g(bj) =

g(b′j) =⇒ lj(b, b
′) = 0 (and vice-versa). Hence, g(x, b−i−j) = g(x′, b−i−j),

∀ x, x′ < M(b−i−j), ∀ b−i−j ∈ <n−2
+ .

Therefore, we can write that for some η(b−i−j) ∈ [0,∞],

g(x, b−i−j) =

 C̄(b−i−j) + min{x, η(b−i−j)} if x ≥M(b−i−j)

C(b−i−j) otherwise

Hence, any discontinuity in g(., b−i−j) can occur only at point M(b−i−j) and

it can only be a jump discontinuity. Define

Gij := lim
{xu}→M(b−i−j)+

g(xu, b−i−j)− lim
{xu}→M(b−i−j)−

g(xu, b−i−j)

= C̄(b−i−j) + min{M(b−i−j), η(b−i−j)} − C(b−i−j)

If there exists a jump discontinuity in g(., b−i−j) map at the point M(b−i−j),

then Gij 6= 0.
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If Gij > 0, then there exist bi, bj, b
′
i, b
′
j such that bj < bi < M(b−i−j) <

b′j < b′i, b
′
j − bi < Gij, g(b′i, b−i−j)− g(bi, b−i−j) ≥ g(b′j, b−i−j)− g(bj, b−i−j) ≥

Gij. Therefore, {i, j}-deviation from (bi, bj, b−i−j) to (b′i, b
′
j, b−i−j) violates

WGS. If Gij < 0 then there are two possibilities, (i) η(b−i−j) > M(b−i−j)

and (ii) η(b−i−j) ≤ M(b−i−). If (i) holds then there exist bi, bj, b
′
i, b
′
j such

that b′j < M(b−i−j) < bj < bi < b′i < η(b−i−j), g(b′j, b−i−j) > g(bj, b−i−j) and

g(b′i, b−i−j) > g(bi, b−i−j). Clearly the {i, j}-deviation from (bi, bj, b−i−j) to

(b′i, b
′
j, b−i−j) violates WGS. If (ii) holds then there exist bi, bj, b

′
i, b
′
j such that

b′j < b′i < M(b−i−j) < bj < bi, bi − bj < |Gij| and g(b′i, b−i−j)− g(bi, b−i−j) =

g(b′j, b−i−j) − g(bj, b−i−j) = |Gij|.3 Once again WGS is violated in {i, j}-

deviation from (bi, bj, b−i−j) to (b′i, b
′
j, b−i−j).

Therefore, it must be that Gij = 0, and so there can be no discontinuity

in the g(., b−i−j) map. This allows us to obtain the functional form of the

g(.) function by aggregating the results in Theorem 3.3.4 and Lemma 3.3.5

in the following manner. W.l.o.g. consider any b ∈ <n+ such that bi > bj ≥

M(b−i−j). Then, we can write for any k ∈ N \ {i, j},

g(b−i) = C(b−i−k)⇒ g(b−i) = C̄(b−i−j−k) + min{bj, η(b−i−j−k)}

Arguing similarly for all k′ 6∈ {i, j, k}, we get that

g(b−i) = K + min{bj, η}

where K is a constant and η ∈ [0,∞].

Proof of If: W.l.o.g. pick a profile b such that b1 ≥ b2 ≥ . . . ≥ bn. Therefore

d1(b) = 1 and dj(b) = 0, ∀ j 6= 1 and τj(b) = τj′(b), ∀ j, j′ 6= 1. Hence,

3Note that for case (ii), Gij = M(b−i−j)− C(b−i−j).
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NE is trivially satisfied for all such pair of agents. Now, choose any i 6= 1

and consider the pair of agents 1 and i. Define D1
i := bi − b2 + min{b2, η} −

min{b1, η} and Di
1 := min{b1, η}− [b1− b2 + min{b2, η}]. Now, since bi < b1,

D1
i ≤ 0 and Di

1 ≤ 0 irrespective of the ordering amongst b1, b2, η. Hence NE

holds.

To check for WGS, define M̄i(C) := max

{
max
t∈C\{i}

xt,max
t6∈C

bt

}
, ∀ i ∈ C,

∀C ⊆ N . Pick any C ⊆ N \{1} with |C| ≥ 2 and any x ∈ <|C|+ . Now, if ∃ i ∈

C such that di(b) = 0 and di(x, b−C) = 1; then li(b, (x, b−C)) = min{b1, η} −

min{M̄i(C), η} − bi + M̄i(C). By construction M̄i(C) ≥ b1 ≥ bi and so;

η < b1 ⇒ li(b, (x, b−C)) = M̄i(C) − bi, η ∈ [b1, M̄i(C)) ⇒ li(b, (x, b−C)) =

(b1− bi)+(M̄i(C)−η), and η ≥ M̄i(C)⇒ li(b, (x, b−C)) = b1− bi. Therefore,

irrespective of the value of η, li(b, (x, b−C)) ≥ 0 and so, WGS is not violated.

If di(b) = di(x, b−C) = 0 for all i ∈ C, then li(b, (x, b−C)) = 0 (since 1 6∈ C)

and again, WGS is not violated.

Now, consider any C ⊆ N with 1 ∈ C. Suppose that ∃ x ∈ <|C|+ such that

WGS is violated a C-deviation from b to (x, b−C). Therefore, lj(b, (x, b−C)) <

0, for all j ∈ C. If d1(x, b
C

) = 1, then all members in C \ {1} are strictly

better off in this deviation, only if min{x1, η} > min{b1, η}. This implies that

b2 ≤ b1 < η, and so, l1(b, (x, b−C)) = min{b2, η}−b2+M̄1(C)−min{M̄1(C), η}

which is non-negative irrespective of the value of η. Hence, contradiction. If

∃ j ∈ C \ {1} such that dj(x, b−C) = 1, then l1(b, (x, b−C)) < 0 implies that

min{b2, η}+b1 < b2 +min{xj, η}. It can easily be checked that this condition

holds only if η > b2. In that case, the condition reduces to b1 < min{xj, η};

which can be true only if b1 < η. But then lj(b, (x, b−C)) = b1− bj +M̄j(C)−

min{M̄j(C), η} ≥ 0. Hence, contradiction. Finally, if dj(x, bC ) = 0, ∀ j ∈ C,
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then l1(b, (x, b−C)) ≥ 0 and once again, contradiction.

Therefore, we can say that there does not exist a coalitional deviation

which violates WGS.

An obvious question that arises out of Theorem 3.3.4: what are the mech-

anisms satisfying AN and WGS? This question is relevant because AN, too,

is a popular notion of fairness (Hashimoto and Saitoh [18]). In the follow-

ing proposition we show that any mechanism in the single good allocation

problem satisfying AN and strategyproofness, must be EFF.

Theorem 3.3.6. If a mechanism (d̂, τ) satisfies AN and strategyproofness,

then it must satisfy EFF.

We, first, prove the following lemma;

Lemma 3.3.7. If a mechanism (d̂, τ) satisfies strategyproofness, then for

any i ∈ N, b ∈ <n+,

ti(b) =

 Ki(b−i)− Ti(b−i) if d̂i(b) = 1

Ki(b−i) if d̂i(b) = 0

Proof: Fix any i and any b′i ∈ <+. Strategyproofness for profiles b and

(b′i, b−i) implies that

bi(d̂i(b
′
i, b−i)− d̂i(b)) ≤ τi(b)− τi(b′i, b−i) ≤ b′i(d̂i(b

′
i, b−i)− d̂i(b)) (3.2)

Therefore, (i) d̂i(b
′
i, b−i) = d̂i(b) =⇒ τi(b) = τi(b

′
i, b−i) and (ii) d̂i(b

′
i, b−i) >

d̂i(b) =⇒ b′i ≥ bi. The non-decreasingness of the d̂i(., b−i) function in (ii)

implies that there exists a Ti(b−i) ∈ <+ such that

d̂i(x, b−i) =

 1 if x ≥ Ti(b−i)

0 if x < Ti(b−i)
(3.3)
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In case, Ti(b−i) = Tj(b−j) for some b ∈ <n+ and i 6= j ∈ N , the good is

allocated according to any arbitrarily chosen linear order � defined on N .

Given b−i profile of other agents’ reports, Ti(b−i) = 0 implies that i always

gets the good and Ti(b−i) =∞ implies that i never gets the good, irrespective

of what i reports.

From (i) it follows that ∀ x ∈ <+,∀ b−i ∈ <n−1
+ ,

ti(x, b−i) ∈ {ti(d̂i = 0; b−i), ti(d̂i = 1; b−i)}

where given b−i, ti(d̂i = 1; b−i) denotes the transfer to i if he/she gets the

good and ti(d̂i = 0; b−i) denotes the transfer if he/she does not get the good.

Then, for any two sequences {xu} ⊂ [0, Ti(b−i)) and {x̄u} ⊂ [Ti(b−i),∞) with

{xu} → Ti(b−i) and {x̄u} → Ti(b−i) respectively, (3.2) implies that

∀ u, xu ≤ [ti(d̂i = 0; b−i)− ti(d̂i = 1; b−i)] ≤ x̄u

As u → ∞, we get [ti(d̂i = 0, b−i) − ti(d̂i = 1, b−i)] = Ti(b−i). Defining

ti(d̂i = 0, b−i) := Ki(b−i) the result follows.

Proof of Theorem 3.3.6: It can be easily seen that we simply need to prove

that Ti(b−i) = M(b−i) for all i and all b in (3.3). For this, we define ∀b ∈ Rn
+,

∀x ∈ R+, ∀k = 1, . . . , n; cbx := |{i ∈ N : bi = x}| and x̄k := (x, x . . . , x) ∈ Rk
+.

Also define the sequence of sets {Sxk}
n−1
k=1 where ∀ k,

Sxk :=
{
b ∈ Rn

+|b(1) = x and cbx = n− k + 1
}

Therefore, for all x ≥ 0, Sx1 = {x̄n}. We now prove that strategy-proofness

and AN implies decision efficiency in the following three steps.

STEP 1. For all i and all x ≥ 0, Ti(x̄
n−1) = x.
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Proof of Step: For any x ≥ 0, consider the profile x̄n. W.l.o.g. suppose

that d̂1(x̄n) = 1. Therefore, AN implies that (i) Kj(x̄
n−1) = x+K1(x̄n−1)−

T1(x̄n−1),∀j 6= 1. From Lemma 3.3.7, strategy-proofness implies that ∀ε > 0,

d̂1(x+ ε, x̄n−1) = 1. Again, AN implies that

u1(d̂1(x+ε, x̄n−1), τ1(x+ε, x̄n−1);x+ε) = u2(d̂2(x, x+ε, x̄n−2), τ2(x, x+ε, x̄n−2);x+ε)

Given (i) this implies that d̂2(x, x + ε, x̄n−2) = 1. From Lemma 3.3.7, it

follows that ∀ ε > 0, x+ ε ≥ T2(x̄n−1) and so x ≥ T2(x̄n−1). Our supposition

d̂1(x̄n) = 1 ⇒ d̂2(x̄n) = 0 implies that x2 ≤ T2(x̄n−1) and so T2(x̄n−1) = x.

Arguing similarly for all j 6= 1, 2, we get that Tj(x̄
n−1) = x

To prove the result for agent 1, consider the profile (x, x − ε, x̄n−2). By

Lemma 3.3.7 and our supposition, d̂2(x̄n) = 0 ⇒ d̂2(x, x− ε, x̄n−2) = 0. AN

implies that

u1(d̂1(x−ε, x̄n−1), τ1(x−ε, x̄n−1);x−ε) = u2(d̂2(x, x−ε, x̄n−2), τ2(x, x−ε, x̄n−2);x−ε)

As before, (i) implies that d̂1(x− ε, x, x̄n−2) = 0 and so, ∀ ε ∈ (0, x], x− ε ≤

T1(x̄n−1)⇒ x ≤ T1(x̄n−1). Therefore, d̂1(x̄n) = 1 implies that x = T1(x̄n−1).

STEP 2. (INDUCTION HYPOTHESIS) For any x ≥ 0, if for all 1 ≤ k ≤

n− 2, ∀ b ∈ Sxk , ∀ i, Ti(b−i) = x; then

Ti(b−i) = x,∀ b ∈ Sxk+1,∀ i ∈ N

Proof of Step: W.l.o.g. consider the profile

b = (x, x, . . . , x, bn−k+1, bn−k+2, . . . , bn) ∈ Sxk+1

For any r = n− k + 1, . . . , n, design the profile b̃r such that ∀ t 6= r, b̃rt = bt

and b̃rr = x. Clearly, b̃r ∈ Sxk and so by induction hypothesis, Ti(b̃
r
−i) = x
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for all i ∈ N . Therefore, by construction, Tr(b−r) = Tr(b̃
r
−r) = x and so, the

result is established for all r = n− k + 1, . . . , n.

By construction ∀ r = n − k + 1, . . . , n, x > br and so Tr(b−r) > br.

Therefore, for all such r, d̂r(b) = 0 and so, any one of the agents with

valuation equal to x, must get the good. Also, irrespective of the value

of k + 1, there will always be two agents that announce valuation x in b.

W.l.o.g. suppose that d̂1(b) = 1 and d̂2(b) = 0. As in Step 1, ∀ ε > 0,

d̂1(x+ ε, b−1) = 1. AN implies that (ii)K2(b−2) = x+K1(b−1)−T1(b−1) and

u1(d̂1(x+ ε, x, b−1−2), τ1(x+ ε, x, b−1−2);x+ ε) = u2(d̂2(x+ ε, x, b−1−2), τ2(x+

ε, x, b−1−2);x + ε). Arguing as in Step 1, d̂2(x, x + ε, b−1−2) = 1 and so,

∀ ε > 0, x + ε ≥ T2(b−2) ⇒ x ≥ T2(b−2). Therefore, from our supposition

d̂2(b) = 0 ⇒ x ≤ T2(b−2) we get T2(b−2) = x. Arguing in this manner, we

can show that for all i 6= 1 with bi = x, Ti(b−i) = x.

As in Step 1, ∀ ε > 0, d̂2(x, x− ε, b−1−2) = 0. AN implies that u1(d̂1(x−

ε, x, b−1−2), τ1(x−ε, x, b−1−2);x−ε) = u2(d̂2(x−ε, x, b−1−2), τ2(x−ε, x, b−1−2);x−

ε). Hence, by (ii) it follows that d̂1(x − ε, x, b−1−2) = 0 ⇒ x − ε ≤ T1(b−1)

for all ε > 0. Therefore, x ≤ T1(b−1) and so, d̂1(b) = 1⇒ T1(b−1) = x. Thus,

the result holds for all i with bi = x.

STEP 3. Fix any b ∈ Rn
+, any i ∈ N and consider the real number Ti(b−i).

Construct the profile b̂ such that b̂i = M(b−i) and b̂−i = b−i. Clearly for

some k = 1, . . . , n− 1, b̂ ∈ SM(b−i)
k . Therefore, from the induction argument

Step 1 (which serves as the induction base of k = 1) and Step 2, it follows

that Ti(b−i) = M(b−i).

Proposition 3.3.4. A mechanism (d̂, τ) satisfies WGS and AN if and only
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if ∀ i ∈ N and ∀ b ∈ <n+,

• d̂i(b) = di(b)

• τi(b) =

 K + min{M(b−i), η} −M(b−i) if di(b) = 1

K + min{M(b−i), η} if di(b) = 0

Proof: The sufficiency is easy to check. So we prove the necessity only.

Since WGS implies strategyproofness, Theorem 3.3.6 implies EFF and so,

for all i and b, d̂i(b) = di(b). This implies that any mechanism satisfying

WGS and AN must belong to the class of VCG mechanisms that satisfy

ETE. Therefore, arguing as in Theorem 3.3.3, we obtain the same result, but

with a possibility of discontinuity at point η(b−i−j). However, arguing as in

Claim 4.6.8 (in the appendix 4.6 of the next chapter) we can rule out this

possibility. Thus, we can argue in lines of Theorem 3.3.4 and get the desired

result.

Remark 3.3.8. Pápai [37] discusses the class of VCG mechanisms satisfying

NE in a heterogeneous indivisible good allocation (with non-unit demand)

setting. When adapted to the present single good context, her result (Theo-

rem 1) requires that for any VCG mechanism satisfying NE, ∀ i 6= j, ∀ b,

W (b−i) > W (b−j)⇒ 0 ≤ h(W (b−i))− h(W (b−j))

W (b−i)−W (b−j)
≤ 1

where h(W (b−i)) = W (b−i)−g(b−i) and W (b−i) = max
{dj}

∑
j 6=i dj(b)bj. Clearly,

for our setting, W (b−i) = M(b−i).

Consider an EFF mechanism with transfers as defined in Corollary 3.3.1

with g(b−i) = M(b−i)
2

. This mechanism does not belong to the class specified

by Theorem 3.3.4. However, this mechanism belongs to the class specified by
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Theorem 1 in Pápai [37]. To see this, consider w.l.o.g. the profile b such that

b1 > b2 > M(b−1−2). Then W (b−2) −W (b−1) = b1 − b2 > 0, h(W (b−2)) −

h(W (b−1)) = b1−b2
2

and so the result follows.

Definition 3.3.9. A mechanism (d̂, τ) is Pivotal if ∀ b ∈ <n+, ∀ i ∈ N ,

• d̂i(b) = di(b)

• τi(b) = −
∑

j 6=i(dj(b−i)− dj(b))bj

Using Theorem 3.3.4 above, we provide a complete characterization of

Pivotal mechanism in the indivisible good allocation problem.

Proposition 3.3.5. The following statements are equivalent;

1. (d, τ) is a feasible WGS mechanism satisfying NE and ZT.

2. (d, τ) is the Pivotal mechanism.

Proof: It is easy to check that 2 implies 1. To prove that 1 implies 2,

note that whenever η > 0, from Theorem 3.3.4 it follows that
∑
i∈N

τi(b) =

nK − max
t′∈{j:dj(b)=0}

bt′ +
∑
i∈N

min{M(b−i), η} for all b ∈ <n+. Then imposing ZT

and checking for profile bη ∈ <n++ such that bηt < η for all t ∈ N ; we get that∑
i∈N

τi(b
η) = (n− 1) min{M(bη), η} > 0 and hence, not feasible. This implies

that any feasible NE and WGS mechanism satisfying ZT must have η = 0.

Hence, 1 implies 2.

Remark 3.3.10. From Proposition 3.3.4 it follows that the result in Propo-

sition 3.3.5 continues to hold even if NE is replaced with AN.
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3.3.2 Multiple Goods

We now discuss the case n > k > 1. Recall that for any vector of valuations

b ∈ <n+ and for all r = 1, 2 . . . , n, b(r) is the rth ranked valuation in a

non-increasing arrangement of the components of b (where ties are broken

according to the rule 1 � . . . � n). Therefore, for any announced valuation

profile b, any mechanism satisfying NE (as discussed in Proposition 3.3.1)

requires that all agents in {j ∈ N |bj = b(r), 1 ≤ r ≤ k} get a good. In this

section, for simplicity of notation we denote b(r) as b(r).

Like in the single good case, we can easily show (by designing {k, k +

1}-deviations as done in Proposition 3.3.2) that there does not exist any

mechanism satisfying NE and SGS. Also, as in Proposition 3.3.3, we can

show that any mechanism satisfying NE and strategyproofness must have

the g(.) function continuous over
[
b

(k)
−i−j, b

(k−1)
−i−j

)
.4

The structure of externality, however, is a little different for multiple

goods. To see this, consider a profile of non-identical valuations. The exter-

nality imposed by the winners of the goods is not on the agent with second

highest valuation, but on the agent with the (k + 1)th highest valuation.

Therefore, in this case, we get qualitatively similar class of mechanisms sat-

isfying NE and WGS; albeit, with a different formulation of the g(.) function,

where M(b−i) is replaced by b−i(k). This is given by the following theorem.

Theorem 3.3.11. If a mechanism (d, τ) satisfies NE and WGS then ∀b ∈ <n+,

4And so the g(.) function is continuous over
[
b
(k)
−i−j ,∞

)
. In case b

(k)
−i−j is undefined,

we take it to be 0.

61



∀ i ∈ N ,

τi(b) =

 K + min{η, b−i(k)} if di(b) = 0

K + min{η, b−i(k)} − b(k + 1) if di(b) = 1

Proof: The proof is similar to that of Theorem 3.3.4. Pick any {i, j} ⊆ N

and any b ∈ <n+. Then as in lemma 3.3.5, we can show that (i) g(x, b−i−j) =

C ′(b−i−j),∀ x ∈
[
0, b

(k)
−i−j

)
, and (ii) g(x, b−i−j) = C̃ ′(b−i−j),∀ x ≥ b

(k−1)
−i−j .

Finally, as done in Theorem 3.3.3, we can show that (iii) g(x, b−i−j) =

C̄ ′(b−i−j) + min{x, η(b−i−j)},∀ x ∈
[
b

(k)
−i−j, b

(k−1)
−i−j

)
where η(b−i−j) ∈ [0,∞].

Note that in this case, there can be jump discontinuity at two points b
(k)
−i−j

(when it is positive) and b
(k−1)
−i−j . As in Theorem 3.3.4, WGS rules out jump

discontinuity at b
(k)
−i−j. To obtain same result for the other point b

(k−1)
−i−j , define

Ḡij := lim
{xu}→b(k−1)

−i−j +

g(xu, b−i−j)− lim
{xu}→b(k−1)

−i−j −
g(xu, b−i−j)

= C̃ ′(b−i−j)− C̄ ′(b−i−j)−min{b(k−1)
−i−j , η(b−i−j)}

As before, jump discontinuity at b
(k−1)
−i−j implies that Ḡij 6= 0.

If Ḡij < 0 then either (a) η(b−i−j) < b
(k−1)
−i−j or (b) η(b−i−j) ≥ b

(k−1)
−i−j . If

(a) holds then there exist bi, bj, b
′
i, b
′
j such that max{η(b−i−j), b

(k)
−i−j} < b′i <

b′i < b
(k−1)
−i−j < bj < bi, bj − b

(k−1)
−i−j < |Ḡij| and gi(b

′
j, b−i−j) − gi(bj, b−i−j) =

gj(b
′
i, b−i−j) − gj(bi, b−i−j) = |Ḡij|. Clearly, WGS is violated in the {i, j}-

deviation from (bi, bj, b−i−j) to (b′i, b
′
j, b−i−j). If (b) holds then there exist

bi, bj, b
′
i, b
′
j such that b

(k)
−i−j < b′j < b′i < b

(k−1)
−i−j < bj < bi, g(b′i, b−i−j) −

g(bi, b−i−j) > 0, g(b′j, b−i−j)−g(bj, b−i−j) > bj−b(k−1)
−i−j . Again WGS is violated

in {i, j}-deviation from (bi, bj, b−i−j) to (b′i, b
′
j, b−i−j). Finally, if Ḡij > 0

then there exist bi, bj, b
′
i, b
′
j such that b

(k)
−i−j < bj < bi < b

(k−1)
−i−j < b′j < b′i,
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b
(k−1)
−i−j − bj < Ḡij. The the {i, j}-deviation from (bi, bj, b−i−j) to (b′i, b

′
j, b−i−j)

violates WGS.

Therefore, WGS implies that Ḡij = 0 and so, there can be no discontinuity

in g(., b−i−j) map. Then, aggregating the functions (i), (ii) and (iii), as in

Theorem 3.3.4, we arrive at the result.

As in the single good case, the result in Theorem 3.3.11 would continue

to hold if NE were replaced by AN. Also, Theorems 3.3.4 and 3.3.11 are

qualitatively similar. This becomes clear on making a graphical comparison

between the two results. Take for example the case where n = 4. If k = 1,

the graph of Theorem 3.3.4 will look like one of the following maps (when

b3 < b2);
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g(x,b2,b3)

x

��
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��
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slope=1

b3 b2 η
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�
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�
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6
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b3 b2
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6

-
O

g(x,b2,b3)

x

b3 b2

If k = 2, the graph of Theorem 3.3.11 is one of the following maps;
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6

-
O

g(x,b2,b3)

x

b3 b2

Note that for k = 2 case, there is no g(., b2, b3) map similar to the second

map in the panel of graphs for the case k = 1. This particular feature of

multiple goods case, follows from the different externality structure in this

setting.

3.4 Conclusion

We completely characterize the class of fair mechanisms satisfying weak group

strategyproofness for the indivisible good allocation problem. We show that

for both fairness criteria of no-envy and anonymity in welfare, we get the

same class of mechanisms. Pivotal mechanism (with a constant term) turns

out to be a member of this class. We use the zero transfer axiom and the

feasibility requirement to prune this class down to Pivotal mechanism.

3.5 Appendix

W.l.o.g. consider a pair of profiles b, b′ such that b′ is an {1, 2}-profile of b with

b1 ≥ b2 ≥ M(b−1−2) and b′1 ≥ b′2 ≥ M(b−1−2). Therefore d1(b) = d1(b′) = 1

while d2(b) = d2(b′) = 0.
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Now, WGS with respect to {1, 2}-deviation between the profiles b, b′; re-

quires that [either l1(b, b′) ≥ 0 or l2(b, b′) ≥ 0] and [either l1(b′, b) ≥ 0 or l2(b′, b) ≥ 0].

Note that lt(b, b
′) = 0 ⇒ lt(b

′, b) = 0 for any t = 1, 2. Therefore, if there

exists a t ∈ {1, 2} such that lt(b, b
′) = 0, then WGS among b, b′ is trivially

satisfied. We refer to this situation as WGS holding with equality for b and

b′. There is also the possibility of WGS holding with a strict inequality. That

is, either [l1(b, b′) > 0 and l2(b′, b) > 0] or [l2(b, b′) > 0 and l1(b′, b) > 0].

W.l.o.g. we analyze the first case where l1(b, b′) > 0 and l2(b′, b) > 0.

Proposition 3.5.1. If l1(b, b′) > 0 and l2(b′, b) > 0, then ∀ x ≥M(b−1−2),

g(x, b−1−2) = C̄(b−1−2) + min{x, η(b−1−2)}

where η(b−1−2) = g(b′1, b−1−2)− g(b1, b−1−2) + b1.

Proof: The conditions l1(b, b′) > 0 and l2(b′, b) > 0 imply that the following

restrictions hold simultaneously

−b′2 + g(b′2, b−1−2) < −b2 + g(b2, b−1−2) (3.4)

g(b1, b−1−2) < g(b′1, b−1−2) (3.5)

The first step of the proof is to show that if we can find a pair of profiles b

and b′ such that (3.4) and (3.5) hold; then M(b−1−2) ≤ b2 ≤ b1 < b′2 ≤ b′1.5

Henceforth, whenever obvious, we suppress the b−1−2 argument.

5If the other combination of inequalities [l2(b, b′) > 0, l1(b′, b) > 0] were to be chosen,

the direction of the inequalities in (3.4) and (3.5) would get reversed. However, even with

this different combination of inequalities; using the same techniques, we could show that

M(b−1−2) ≤ b′2 ≤ b′1 < b2 ≤ b1 and derive similar results to arrive at the same g(.) maps.
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Lemma 3.5.1. If equations (3.4) and (3.5) hold; then M ≤ b2 ≤ b1 < b′2 ≤

b′1.

Proof: As shown in Proposition 3.3.3, NE implies that g(y) ≤ g(x), ∀ x >

y ≥ M . Hence, g(., b−1−2) is a non-decreasing function for all values greater

than or equal to M . Then (3.5) implies that M ≤ b1 < b′1. By construction

b2 ≤ b1 and b′2 ≤ b′1. Now if M ≤ max{b2, b
′
2} ≤ b1 < b′1 , then (3.4)

and (3.5) imply that lt(α, β) < 0, ∀ t = 1, 2 where α ≡ (b1, b
′
2, b−1−2) to

β ≡ (b′1, b2, b−1−2), which violates WGS. So the only other possibility that

remains is M ≤ b2 ≤ b1 < b′2 ≤ b′1.

W.l.o.g. assume that M < b2 < b1 < b′2 < b′1 (the same functional from

would follow, no matter what combination of inequalities we take). We, now,

show that if (3.4) and (3.5) hold, then g(., b−1−2) function is kinked over the

domain of values greater than or equal to M . Such a kink occurs at the point

η in the interval (b1, b
′
2). Over this domain, the function turns out to be a

straight line with slope of 1 for all values less than η and flat line after η.

Lemma 3.5.2. If equations (3.4) and (3.5) hold; then

1. g(x)− g(x′) = x− x′,∀ x, x′ ∈ [M, b1]

2. g(x) = g(b′1),∀ x ≥ b′2

Proof: For any x, x′ ∈ [M, b1]; if g(x) − x > g(x′) − x′, then from equation

(3.5), WGS is violated in a deviation from true profile (b1, x
′) to (b′1, x).

Similarly, WGS is violated in a deviation from (b1, x) to (b′1, x
′) if g(x)−x <

g(x′)−x′. Hence, statement 1 is proved. Now, equation (3.4) implies that for

any x, x′ ≥ b′2 , if g(x) < g(x′) then lt((x, b
′
2), (x′, b2)) < 0, for both t = 1, 2.
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Similarly, if g(x′) < g(x) then lt((x
′, b′2), (x, b2)) < 0, ∀ t = 1, 2. In both cases

WGS is violated and so, statement 2 is proved.

Taking the results in lemma 3.5.2 above, along with (3.4) and (3.5); we

see that

0 < g(b′2, b−1−2)− g(b1, b−1−2) < b′2 − b1 (3.6)

This (3.6) implies that ∃ η ∈ (b1, b
′
2) such that g(b′2) − g(b1) = η − b1.6 We

now show that in the region (b1, b
′
2), the g(., b−1−2) graph is upward sloping

on the left of η and flat on the right.

Lemma 3.5.3. If equations (3.4) and (3.5) hold; then

1. g(x)− g(x′) = x− x′,∀ x, x′ ∈ (b1, η)

2. g(x) = g(b′1),∀ x ∈ (η, b′2)

Proof: If ∃ x ∈ (η, b′2) such that g(x) > g(b′1), then equation (3.4) implies

that lt((b
′
1, b
′
2), (x, b2)) < 0, ∀ t = 1, 2. Therefore, (i) g(x) ≤ g(b′1), ∀ x ∈

(η, b′2). Now pick any x, x′ ∈ (η, b′2) with x > x′. From construction of η,

statement 2 of lemma 3.5.2 and (i); we get that g(b1)− b1 > g(x′)− x′ which

in turn implies that l1((x, x′), (b′2, b1)) < 0. WGS, therefore, requires that

l2((x, x′), (b′1, b1)) ≥ 0, that is, g(x) ≥ g(b′1). The statement 2, then, follows

from (i).

If ∃ x ∈ (b1, η) such that g(x) − g(b2) > x − b2, then equation (3.5)

implies that lt((b1, b2), (b′1, x)) < 0, ∀ t = 1, 2. Therefore, it must be that

(ii) g(x) − g(b2) ≤ x − b2, ∀ x ∈ (b1, η). Statement 1 of lemma 3.5.2, then,

6In (3.6), the left hand inequality implies that η > b1 while the right hand inequality

implies that η < b′2.
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implies that g(x) < g(b1) + η − b1. Therefore, by construction of η and

statement 2 of lemma 3.5.2, g(x) < g(b′2) = g(b′1), ∀ x ∈ (b1, η). Now, if

(ii) holds with strict inequality then lt((x, x), (b′1, b2)) < 0, ∀ t = 1, 2 and so,

contradiction to WGS. Hence, statement 1 must be true.

Proof of Proposition 3.5.1: Lemmas 3.5.1, 3.5.2 and 3.5.3, have been

proved keeping all other agents’ announcements fixed at b−1−2. Hence the

kink point η obtained may be a function of the b−1−2 vector.7 Therefore,

the continuity of g(., b−1−2) map over the interval [M(b−1−2),∞) implied by

Proposition 3.3.3, completes the proof.

Proposition 3.5.1 shows that for any vector b−1−2 ∈ <n−2
+ ; if there ex-

ist b1, b2, b
′
1, b
′
2 ∈ <+ with (a) b1 ≥ b2 ≥ M(.), b′1 ≥ b′2 ≥ M(.) and

(b) WGS holds with strict inequality between profiles (b1, b2), (b′1, b
′
2); then

g(x, b−1−2) = C̄(b−1−2) + min{x, η(b−1−2)}, ∀ x ≥ M(.) where η(b−1−2) =

g(b′1, b−1−2)− g(b1, b−1−2) + b1. But there remains the possibility that WGS

never holds with strict inequalities. In other words, there may not exist

any four real numbers satisfying the conditions (a) and (b). That is, either

l1((b1, b2, b−1−2), (b′1, b
′
2, b−1−2)) = 0 or l2((b1, b2, b−1−2), (b′1, b

′
2, b−1−2)) = 0 for

all choices of non-negative b1, b2, b
′
1, b
′
2 such that (a) holds. The following

proposition gives the g(., b−1−2) map in this case, by analyzing those {1, 2}-

deviations where both agents misreport (that is, b1 6= b′1 and b2 6= b′2).

Proposition 3.5.2. For all ∀ b, b′ ∈ <n+ such that b′ is an {1, 2}-profile of

b with b1 > b2 > M(.) and b′1 > b′2 > M(.); if ∃ t ∈ {1, 2} such that

7From Corollary 3.3.1 it follows that g(.) must be independent of agent labels. Hence,

η cannot depend on agent labels.
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lt(b, b
′) = 0, then,

either g(x, b−1−2) = C̄(b−1−2),∀ x ≥M(.)

or g(x, b−1−2) = C̄(b−1−2) + x,∀ x ≥M(.)

Proof: We claim that for any such pair of profiles b, b′; if ∃ t ∈ {1, 2} with

lt(b, b
′) = 0 then lt(b, b

′′) = 0, ∀ b′′ 6= b′ with M(.) ≤ b′′2 ≤ b′′1. Suppose

not. That is, suppose w.l.o.g. that there exists b′′ ≡ (b′′1, b
′′
2, b−1−2) such that

l1(b, b′) = 0 but l1(b, b′′) > 0. Then, by assumption, (i) l2(b, b′′) = 0. Now

there are three possibilities; either l2(b, b′) > 0 or l2(b, b′) = 0 or l2(b, b′) < 0.

If l2(b, b′) > 0 then (i) implies that l2(b′′, b′) > 0. Also note that l1(b, b′) =

0 and l1(b, b′′) > 0 taken together imply that l1(b′, b′′) > 0. Thus, we find a

pair of profiles b′, b′′ such that WGS among them holds with a strict inequal-

ities and hence, contradiction. Again, if l2(b, b′) < 0 then (i) implies that

l2(b′′, b′) < 0. As before, combining l1(b, b′) = 0 and l1(b, b′′) > 0, we get that

l1(b′′, b′) < 0 and hence, WGS is violated leading to contradiction.

Therefore, the only possible implication of [l1(b, b′) = 0 and l1(b, b′′) >

0] that remains; is l2(b, b′) = 0. By assumption b1 6= b′1 and b2 6= b′2,

and so, l1(b, b′) = 0 ⇒ g(b2, b−1−2) 6= g(b′2, b−1−2), from which, as be-

fore, we can show that WGS requires that g(x, b−1−2) − g(x′, b−1−2) = x −

x′, ∀ x, x′ ∈ (M(.),min{b2, b
′
2}). Similarly, l2(b, b′) = 0 ⇒ g(b1, b−1−2) −

g(b′1, b−1−2) 6= b1− b′1, from which, as before, we can show that WGS requires

that g(x, b−1−2) − g(x′, b−1−2) = 0, ∀ x, x′ > max{b1, b
′
1}. By assumption

M(.) < min{b2, b
′
2} < max{b1, b

′
1}, and so, the g(., b−1−2) graph is rising

with a slope of 1 in the region (M(.),min{b2, b
′
2}) while it is flat for all

values greater than max{b1, b
′
1}. From lemma 3.5.1, NE requires that the

g(., b−1−2) function be non-decreasing. Hence, g(x, b−1−2) > g(x′, b−1−2),

70



for all x, x′ such that M(.) < x′ < min{b2, b
′
2} ≤ max{b1, b

′
1} < x. De-

fine m := min{b2, b
′
2} and m̄ := max{b1, b

′
1}; and consider a deviation from

α ≡ (m−ε,m−2ε, b−1−2) to β ≡ (m̄+2ε, m̄+ε, b−1−2) where ε ∈
(

0, m−M(.)
2

)
.

It is easy to check that lt(α, β) 6= 0 for both t = 1, 2, and hence, contradiction.

Therefore, if lt(b, b
′) = 0 then lt(b, b

′′) = 0, ∀ b′′ 6= b′ with M(.) ≤ b′′2 ≤ b′′1.

Hence, the result follows.

Proof of Theorem 3.3.3: Proposition 3.5.1 establishes the result in the

theorem for the finite positive values of the term η(b−1−2). The possibility of

η(b−1−2) = 0 is captured by the result g(x, b−1−2) = C̄(b−1−2),∀ x ≥M(.) in

Proposition 3.5.2. The possibility of η(b−1−2) =∞8 is captured by the result

g(x, b−1−2) = C̄(b−1−2)+x,∀x ≥M(.) in Proposition 3.5.2. Since the pair of

agents {1, 2} and the b−1−2 vector were chosen arbitrarily, Propositions 3.5.1

and 3.5.2 prove the theorem.

8With a slight abuse of notation
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Chapter 4

Group Strategyproof Queueing

4.1 Introduction

A queueing problem involves a set of agents wanting to consume a service

provided by one or many machines, and a set of machines who can only serve

the agents sequentially (one by one). Such a problem with n agents and m

machines has the following features: (i) each agent has exactly one job to

complete using any one of these machines, (ii) each machine can process only

one job at a time, (iii) the jobs are identical across agents so that for a given

machine, they take the same time to get processed, (iv) the machines are

non-identical so that for a given job, different machines may take different

times to process.

This model captures a multitude of real life situations; a typical example

would be the problem of provision of the quickest possible service to n cus-

tomers waiting at m cashier windows. Similar situations arise in a printing

press, truckload transportation, people waiting on ATM machines, amateur
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astronomers waiting to use public telescopes and whole host of other possi-

bilities. Maniquet [28] discusses many other interesting applications of this

problem in the single machine context. Apart from the aforementioned prac-

tical relevance, queueing models are also important from a theoretical point

of view. Mitra and Sen [34] show that for any multiple heterogenous good

allocation problem; if there exists a mechanism satisfying full efficiency and

strategyproofness, then the underlying structure of the problem must be like

that of a queueing problem. Such wide applicability of the queueing model

has led to an extensive literature1.

The server wants to ensure the efficiency in decision, that is, minimize the

aggregate waiting cost of provision of the service to the agents. In case the

waiting costs of agents is private information, this requires the agents to re-

veal their waiting costs to the server. But in doing so, they have the incentive

to misreport so as to ensure a favorable outcome (distinct from the socially

optimal one). Thus, the server runs into a problem of information extraction;

and so needs to apply a cost revelation mechanism. Information extraction

problems of this kind have been analyzed by Vickerey [47], Clarke [9] &

Groves [16] leading to the formulation of VCG mechanisms, which are suffi-

cient for decision efficiency and strategyproofness. For smoothly connected

domains, Holmström [21] established the uniqueness of VCG mechanisms in

this regard.

As in the previous chapter, we are interested in decision efficient mecha-

1Dolan [10], Suijs [42], Mitra [32], Moulin [35], Hashimoto and Saitoh [18], Kayi and

Ramaekers [26], Maniquet [20], Chun [7], Katta and Sethuraman [25], Kar, Mitra and

Mutuswami [24], Chun and Heo [8], Mitra and Mutuswami [33]
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nisms which are immune to not only unilateral misreporting but also group

misreporting. Our goal is to identify the class of continuous mechanisms that

satisfy decision efficiency and group strategyproofness in the incomplete in-

formation queueing problem with multiple machines. Continuity, in this

problem too2, turns out to have a fairness interpretation as it is implied by

equal treatment of equals. As before, strategyproofness is implied by group

strategyproofness; and therefore, we identify the class of VCG mechanisms

that satisfy group strategyproofness.

Mitra and Mutuswami [33] discuss the two variants of group strate-

gyproofness, weak and strong in the setting of single machine queueing. As

in Proposition 3.3.2 of Chapter 3; they show that there does not exist any

strong group strategyproof mechanism that satisfies efficiency of decision in a

single machine queueing context. They also argue that the notion of strong

group strategyproofness presumes the ability of agents to arrange credible

side payments, which is not reasonable as reporting honestly is a weakly

dominant strategy for VCG mechanisms. Therefore, as in Chapter 3, we

focus on weak group strategyproof mechanisms.

Mitra and Mutuswami [33] identify the class of linear mechanisms neces-

sary for efficiency (in decision) and pairwise strategyproofness; and remark

that for two or four agents, there is no budget balancing mechanism which

satisfies the aforementioned properties. They also characterize the efficient,

pairwise strategyproof, linear class of mechanisms with the fairness property

of equal treatment of equals in a single machine queueing problem.

By restricting their attention to only linear mechanisms, Mitra and Mu-

2As in Proposition 3.3.3 of Chapter 3.
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tuswami [33] implicitly assume linearity (implying absence of any kind of

kink) and hence, continuity of the transfer maps. They restrict their char-

acterization result to only pairwise misreports, that too, in a single machine

setting. This chapter generalizes their results, by (i) allowing for multiple

non-identical machines (ii) allowing groups to contain more than two agents

while deviating, (iii) assuming no more than continuity, (iv) showing that the

transfer maps may contain a kink3, (v) showing that for two agents, decision

efficiency and weak group strategyproofness rule out the possibility of dis-

continuity at more than one point on the transfer map and (vi) providing a

general class of efficient and weak group strategyproof mechanisms (of which

the k-Pivotal mechanisms are a special case of). A particular feature of the

general multiple machine case is that more than one agents may have to wait

same amount of time to get the service. In contrast, in the single machine

special case, no two agents ever wait the same time to get the service. The

generalizations (ii)-(vi), however, continue to hold in both cases.

When number of agents is two, efficiency and weak group strategyproof-

ness are found to imply lower semi-continuity of the transfer schedule. By

considering all possible deviations three possible cases emerge; (a) flat straight

line, (b) positively sloped straight line, and (c) initially positively sloped but

later flat straight line (a kink occurs in the map). We see that discontinuity

in graph can only occur for case (c), that too at the kink point with the only

possibility of a sudden fall in value at that point. Thus there can be at most

one point of discontinuity in the transfer map, that too with both side limits

being equal (at that point). Further, such a point of discontinuity, if present,

3This possibility is ruled out by the weak linearity axiom in Mitra and Mutuswami [33].
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can only occur for one agent.

We provide a necessary condition for continuous mechanisms that satisfy

decision efficiency and weak group strategyproofness. We then provide the

class of kinked mechanisms which satisfy continuity, decision efficiency and

weak group strategyproofness.

Section 4.2 states the model. The section 4.3.1 states the two agent

results while the section 4.3.2 states the n > 2 results. Section 4.4 discusses

the possible extensions. Section 4.5 states the conclusion and section 4.6 is

the appendix.

4.2 Model

Let N = {1, . . . , n}, n ≥ 2 be the set of agents with identical jobs4 and

M = {1, . . . ,m} be the set of machines. Each machine j is identified with a

speed of sj ∈ (0, 1] which is the time taken by the machine to process one job.

W.l.o.g. we assume s1 ≤ s2 ≤ . . . ≤ sm. Similarly each agent i is identified

with θi ∈ <+ which denotes the disutility incurred by i per unit of waiting

time. Let θ = (θi)i∈N denote the profile of waiting costs and θ−i denote the

cost vector (θ1, . . . , θi−1, θi+1, . . . , θn). The cost of waiting on the machine

4W.l.o.g. the processing time of the job is assumed to be 1. If we assume private

processing times then an agent’s utility from the service depends directly on the announce-

ments of processing times of other agents. Then strategyproofness is not possible and is

typically replaced by “implementation in ex-post equilibrium”, which is Bayesian incentive

compatibility under all priors (Hain and Mitra [17]).
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j, to agent i, in the position k is given by ksjθi.
5 Agents have quasilinear

preferences over queue positions and money. So an agent i waiting on the

machine j in the kth position with money ti ∈ < gets a utility ti − ksjθi.

The objective of the planner is to achieve decision efficiency, which means

that the n jobs need to be scheduled through m machines in such a way that

the aggregate waiting cost is minimized. To attain decision efficiency, the

planner needs to pick the smallest n numbers from the set of all possible

waiting times {{ksj}k∈N}j∈M , arrange them in a non-decreasing order and

then assign these waiting times to the agents in such a way that decision

efficiency is achieved. Let (z(1), . . . , z(n)) denote the smallest n waiting

times arranged in such an order.

Now, any ranking of n agents can be represented by a bijection σ̂ : N → N

so that the agent i is ranked σ̂i. Let Σ be the set of all such bijections. Then,

for any profile of waiting costs θ, the planner simply picks a efficient ranking

of agents6, σ(θ) = (σi(θ))i∈N ; and then assigns to each agent i a waiting time

z(σi(θ)). This efficient ranking is unique if and only if no two agents have

the same waiting cost per unit time. To ensure that the efficient ranking

be a single valued selection, a tie-breaking rule is required. A strict order

� is defined on N , for this purpose. This relation is used to break ties in

5Note that an agent is supposed to incur a cost of waiting until a machine ends process-

ing its job; unlike in Mitra and Mutuswami [33]) where an agent incurs a cost of waiting

until a machine starts processing it. This allows for the situations where an agent prefers

the kth (some k > 1) position on the queue of a faster machine then the first position on

the queue of a slower machine.
6For any θ ∈ <n+, an efficient ranking satisfies the following; σ(θ) ∈

argmin σ̂∈Σ

∑n
i=1 σ̂iθi.
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the following manner; if any two agents i and j have same waiting cost per

unit time, then σi(θ) < σj(θ) iff i � j. Also define for any cost profile

θ, P ′i (θ) := {k ∈ N |σk(θ) > σi(θ)} and Pi(θ) := {k ∈ N |σk(θ) < σi(θ)}.

Therefore, P ′i (θ) and Pi(θ) denote the set of agents ranked after agent i and

before agent i, respectively, in the efficient order.

Now, if the waiting costs are private information, agents will have the in-

centive to misreport. In such an incomplete information situation the planner

has to design a mechanism to extract information. A mechanism associates

to any profile of waiting costs θ ∈ <n+, a tuple (σ̂(θ), τ(θ)) ∈ N × <n where

τ(θ) = (τi(θ))i∈N and σ̂(.) ∈ Σ. Under this mechanism, any agent i gets the

rank σ̂i(θ) and a transfer τi(θ). The utility to agent i for any reported pro-

file of costs θ is ui(σ̂i(θ), τi(θ); θ
′
i) = −z(σ̂i(θ))θ

′
i + τi(θ), where θ′i is the true

waiting cost of the agent i. We assume that τi(0, 0, . . . , 0) = 0 irrespective of

the tie-breaking rule chosen, ∀ i ∈ N . This essentially means that transfers

are independent of agent specific constants no matter what the tie-breaking

rule.

Definition 4.2.1. A mechanism (σ̂, τ) is queue-effcient (EFF) if ∀ θ ∈ <n+,

σ̂(θ) ∈ argminσ̃∈Σ

n∑
i=1

z(σ̃i)θi

In other words, a mechanism (σ̂, τ) is EFF if σ̂(θ) = σ(θ), ∀ θ ∈ <n+.

Definition 4.2.2. A mechanism (σ̂, τ) is strategyproof if ∀ i ∈ N , ∀ θi, θ′i ∈

<+ and ∀ θ−i ∈ <n−1
+ ,

ui(σ̂i(θi, θ−i), τi(θi, θ−i); θi) ≥ ui(σ̂i(θ
′
i, θ−i), τi(θ

′
i, θ−i); θi)
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As in Chapter 3, we introduce the following notation to define weak group

strategyproofness in this setting. For any θ, θ′ ∈ <n+; θ′ is an S-profile of θ if

∀ i 6∈ S, θi = θ′i, for any non-empty S ⊆ N . Cost profile θ′ is said to be an

order preserving S-profile of θ if ∀ i ∈ S, σ̂i(θ) = σ̂i(θ
′).

Definition 4.2.3. A mechanism (σ̂, τ) is weak group strategyproof (WGS)

if, ∀ θ ∈ <n+, ∀ S ⊆ N , there exists an i ∈ S such that

ui(σ̂i(θ), τi(θ); θi) ≥ ui(σ̂i(θ
′), τi(θ

′); θi)

where θ′ is an S-profile of θ.

Like in Chapter 3, WGS implies strategyproofness.

Result 4.2.1. An EFF mechanism (σ, τ) is strategyproof if and only if for

all θ ∈ <n+,

τi(θ) = −
∑
j 6=i

z(σj(θ))θj + hi(θ−i),∀ i ∈ N

Proof: Since the domain of cost profiles <n+ is convex, the result follows

from Theorem 2 of Holmström [15].

Any EFF mechanism with transfers given by the above equation is known

as a Vickrey-Clarke-Groves (VCG) mechanism.

Result 4.2.2. An EFF mechanism (σ, τ) is strategyproof if and only if

τi(θ) = −
∑

j∈P ′i (θ)

[z(σj(θ))− z(σj(θ−i))] θj + gi(θ−i),∀ i ∈ N

Proof: This result follows from Result 4.2.1 by substituting hi(θ−i) =∑
j 6=i z(σj(θ−i))θj + gi(θ−i).
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From the definition of WGS, it follows that WGS mechanisms are neces-

sarily strategyproof. Thus we need to search the class of transfers given by

Result 4.2.2 for a WGS transfer map. Effectively, the additional restriction

of WGS imposes a structure on the gi(θ−i) function.

Definition 4.2.4. An EFF and WGS mechanism (σ, τ) is upper semi con-

tinuous (USC) if ∀ i ∈ N the set {x ∈ <n−1
+ : gi(x) ≥ α} is closed in <+,

∀ α ∈ <+.

Definition 4.2.5. An EFF and WGS mechanism (σ, τ) is lower semi con-

tinuous (LSC) if ∀ i ∈ N the set {x ∈ <n−1
+ : gi(x) ≤ α} is closed in <+,

∀ α ∈ <+.

Definition 4.2.6. An EFF and WGS mechanism (σ, τ) is continuous if it is

USC as well as LSC.

Definition 4.2.7. A mechanism (σ̂, τ) satisfies equal treatment of equals if

∀ θ ∈ <n+, ∀ {i, j} ⊆ N ,

θi = θj =⇒ ui(σ̂i(θ), τi(θ); θi) = uj(σ̂j(θ), τj(θ); θj)

Definition 4.2.8. A mechanism (σ̂, τ) is feasible if ∀ θ ∈ <n+,∑
i∈N

τi(θ) ≤ 0

4.3 Results

4.3.1 Two Players

Suppose N = {1, 2}. We discuss the two agent case, first, because it is the

building block of the n agent result.
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Theorem 4.3.1. In a 2 agent multiple machine queueing problem, an EFF

mechanism (σ, τ) is WGS if and only if ∀ i, j ∈ {1, 2}, i 6= j

• For some η ∈ [0,∞],

gi(θj) =

 (z(2)− z(1)) min{θj, η} if θj 6= η

αi[(z(2)− z(1))η ] if θj = η

• max{α1, α2} = 1

Sketch of the Proof: Suppose N = {1, 2}. Pick any θ, θ′ ∈ <2
+ such that

θ′ is an order-preserving {1, 2}-profile of θ. W.l.o.g. assume7 that σ1(θ) =

σ1(θ′) = 1, σ2(θ) = σ2(θ′) = 2 (which implies that θ1 ≥ θ2 and θ′1 ≥ θ′2).

Consider the possibility of {1, 2}-deviation from true profile θ to misreport

θ′. WGS, then, requires that either

g1(θ2)− g1(θ′2) ≥ [z(2)− z(1)][θ2 − θ′2] (4.1)

or

g2(θ1)− g2(θ′1) ≥ 0 (4.2)

must be true.

Now, consider the possibility of {1, 2}-deviation from true profile θ′ to mis-

report θ. WGS, then, requires that either

g1(θ2)− g1(θ′2) ≤ [z(2)− z(1)][θ2 − θ′2] (4.3)

or

g2(θ1)− g2(θ′1) ≤ 0 (4.4)

7In case of equality of reports, 1 is ranked before 2.
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must be true.

If any of the equations above holds with equality, WGS is ensured by the

mechanism irrespective of whether {1, 2} deviates from θ to θ′ or from θ′ to

θ. Such a situation will be referred to as WGS holding with equality. There is

also the possibility that from each of two pairs of equations, one holds with

strict inequality. WGS requires that the two equations thus chosen must have

their inequalities in the opposite direction. Such a situation will be referred

to as WGS holding with strict inequality. W.l.o.g. assume that equations

(4.1) & (4.4) hold with inequality for some particular vectors θ and θ′. Thus

rewriting them;

g1(θ2)− g1(θ′2) > [z(2)− z(1)][θ2 − θ′2] (4.5)

g2(θ1)− g2(θ′1) < 0 (4.6)

Now, either z(2) − z(1) 6= 0 or z(2) − z(1) = 0. We first prove the result

for the former possibility, and then discuss the latter possibility in Remark

4.6.12 in Appendix.

The first step of the proof is to show that if we can find a pair of profiles

θ and θ′ such that WGS holds with strict inequality then θ2 ≤ θ1 < θ′2 ≤ θ′1
8.

This is done in Claim 4.6.1 of Appendix. Then, in Claims 4.6.2-4.6.10, we

show that the g(.) maps for both agents have a kink in their graphs at some

point η ∈ [θ1, θ
′
2]. Only at this point there can be a discontinuity for at

most one agent, that too with both side limits being equal. Further, in

8Had we taken the different combination of inequalities in equations (4.5) and (4.6);

arguing similarly we could show that θ′2 ≤ θ′1 < θ2 ≤ θ1 and then the similar results would

follow leading to the same g(.) maps.
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Figure 4.1:

Proposition 4.6.2, we show that if there is no pair of profile exhibiting WGS

with strict inequality then either η = ∞ or η = 0. Finally the sufficiency is

established.

Figure 4.1 shows the graphical representation of Theorem 4.3.1 when

η ∈ (0,+∞) and α2 < 1. The η value decides the position of the kink

point while α value decides whether there is any discontinuity at the kink

point or not. Also note that Theorem (4.3.1) implies that there cannot be

discontinuity in both the g(.) maps. We interpret the values of α and η in

the following way;

1. If αt = 1, ∀ t = 1, 2, then there is no discontinuity in either of the g(.),

no matter what the value of η.
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2. If η = 0 then the g(.) maps are horizontal straight lines along the

x-axis, irrespective of the values of α.

3. If η =∞ then the values of α become immaterial since then g(.) maps

will simply be upward sloping straight lines with the slope z(2)− z(1).

Remark 4.3.2. In the single machine setting formalized by Mitra and Mu-

tuswami [33] z(2) − z(1) = 1 and hence, the result in Theorem 4.3.1 result

reduces to

gi(θj) =

 min{θj, η} if θj 6= η

αiη if θj = η

with max{α1, α2} = 1, for any θj ≥ 0, for some η ∈ [0,∞].

Remark 4.3.3. From Theorem 4.3.1 it follows that when the number of

agents is 2; any mechanism will satisfy EFF and WGS only if the number

of discontinuities in the mechanism does not exceed one. Moreover, any

discontinuity, if present, can occur for only one of the two agents. Such

discontinuity must occur at the kink point of the transfer map and must

have equal both side limits.

Corollary 4.3.4. In a 2 agent multiple machine queueing problem, an EFF

and WGS mechanism is Lower Semi-Continuous.

From the Corollary 4.3.4, it is obvious that in a two agent case, imposition

of the USC property, leads to Continuity of the mechanism. Hence the

following result;

Result 4.3.1. In a 2 agent multiple machine queueing problem, an EFF and

USC mechanism (σ, τ) is WGS if and only if , ∀ θ ∈ <2
+, ∀ i 6= j,

gi(θj) = (z(2)− z(1)) min{η, θj}
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where η ∈ [0,∞].

Note that the discontinuity in the two agent result is ‘mild’, in the sense

that the both hand limits at the only possible point of discontinuity (the

kink point), are equal. Also, if we impose the fairness requirement of equal

treatment of equals on Theorem 4.3.1, the possibility of discontinuity gets

eliminated (as α1 = α2) and we get the continuous mechanism specified by

Result 4.3.1. Hence, the axiom of continuity has technical as well as fairness

justifications in the multiple machine queueing problem.

4.3.2 n Players

Let ∆z(i)
def
= z(i+ 1)− z(i),∀ i = 1, 2, . . . , n− 1.

Theorem 4.3.5. In a multiple machine queueing problem, a continuous

mechanism (σ, τ) is EFF and WGS only if ∀ i ∈ N , ∀ θ−i ∈ <n−1
+ ,

gi(θ−i) =
∑
j 6=i

∆z(σj(θ−i)) min{θj, ηij(σ(θ−i))}

Proof: Suppose N = {1, 2, . . . , n}. Pick a θ ∈ <n+ such that σ1(θ−2) =

σ2(θ−1), that is, agents 1 and 2 are adjacently ranked in the efficient order

for profile θ. Note that while analyzing the impact of change in 2’s report on

the g1(.) function; we assumed that the announcements of other agents, that

is, the vector θ−1−2 was constant. The impact of this θ−1−2 can be deemed

to enter the g1(.) function through a constant intercept term F12(θ−1−2).

Also upfront, we cannot rule out the possibility of this F12(.) depending on

σ2(θ−1), that is, the rank of agent 2 when 1 is not around. We can then
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invoke the Result 4.3.1 to write that

g1(θ−1) = ∆z(σ2(θ−1)) min{θ2, η12(σ2(θ−1); θ−1−2)} (4.7)

+ F12(σ2(θ−1); θ−1−2)

Consider a profile θ′ = (θ′1, θ−1) such that σ1(θ′−3) = σ3(θ′−1), that is,

agents 1 and 3 are adjacently ranked in the efficient order. Again invoking

the Result 4.3.1, now for agents {1, 3}, we can write

g1(θ−1) = ∆z(σ3(θ−1)) min{θ3, η13(σ3(θ−1); θ−1−3)} (4.8)

+ F13(σ3(θ−1); θ−1−3)

The left hand side of both the above equations are the same. This means that

the F13(.) must contain ∆z(σ2(θ−1)) min{θ2, η12(.)}. This in turn implies that

(i) the η12(.) function may contain σ3(θ−1) as its argument, (ii) the η12(.) does

not depend on θ3, (iii) the F13(.) term may contain σ2(θ−1) as its argument

and (iv) the F13(.) does not depend θ2 as argument.

Arguing similarly for the terms F12(.) and ∆z(σ3(θ−1)) min{θ3, η13(.)} in

the right hand side of equations (4.7) and (4.8), respectively; we can write

that

g1(θ−1) = ∆z(σ2(θ−1)) min{θ2, η12(σ2(θ−1), σ3(θ−1); θ−1−2−3)}

+ ∆z(σ3(θ−1)) min{θ3, η13(σ2(θ−1), σ3(θ−1); θ−1−2−3)}

+ F123(σ2(θ−1), σ3(θ−1); θ−1−2−3)

Continuing this recursion for all j 6= 1, we get that

g1(θ−1) =
∑
j 6=1

∆z(σj(θ−1)) min{θj, η1j(σ(θ−1))}+ C(σ(θ−1))
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Note that τ1(0, 0, . . . , 0) = 0 irrespective of what tie-breaking rule we use.

Hence, it must be that C(σ(θ−1)) = 0 and η1j(σ(θ−1)) ∈ [0,∞], ∀j ∈ N−{1}

and ∀ θ−1 ∈ <n−1
+ . Arguing similarly, we can establish the result for all

i ∈ N .

Remark 4.3.6. For the single machine setting formalized in Mitra and Mu-

tuswami [33], ∆z(i) = 1, ∀ i = 1, 2, . . . , n − 1. Therefore the expression in

Theorem 4.3.5 reduces to

gi(θ−i) =
∑
j 6=i

min{θj, ηij(σ(θ−i))}

for any θ−i ∈ <n−1
+ , ∀ i ∈ N .

Remark 4.3.7. If we focus only on weakly linear mechanisms, then ηij(s) ∈

{0,∞}, ∀{i, j} ⊆ N , for all possible ranking s among the players other than i

(or j). It follows from Theorem 4.3.1 that ηij(s) = ηji(s) for all i, j and s. We

can also show that ∀{i, k} ⊆ N , θi > θk =⇒ ηik(σ(θ−k)) ≥ ηki(σ(θ−i)) for all

θ ∈ <n+ with θ1 > θ2 > . . . > θn.9 Thus the result in Theorem 4.3.5 reduces

to that of Theorem 3.7 in Mitra and Mutuswami [33]), when we consider

weakly linear mechanisms only . This occurs because, in proving Theorem

4.3.5, we check only for 2 player coalitional deviations which is equivalent to

“pairwise strategyproofness” in Mitra and Mutuswami [33].

The following is an example of a continuous transfer map which satisfies

WGS and belongs to the class specified by Theorem 4.3.5.

9Suppose ∃ θ such that θ1 > . . . > θi > θj > θk > . . . > θn and ηik(σ(θ−i)) = 0 <

ηki(σ(θ−k)) =∞. Then WGS is violated in an order preserving {i, k} deviation from θ to

(θ′i, θ
′
k, θ−i−k) where θ′i > θi and θ′k < θk.
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Example 4.3.8. Let N = {1, 2, 3} and ∆z(1) = ∆z(2) = 1. Therefore, the

σ(θ−i) term in Theorem 4.3.5 can be either (1, 2) or (2, 1). Let η12(1, 2) = 0

and ηij(1, 2) = ηij(2, 1) =∞ for all ij 6= 12. Therefore, for any θ ∈ <3
+,

• if θ1 > θ2 > θ3 then τ1(θ) = −θ2, τ2(θ) = 0, τ3(θ) = θ1 + θ2

• if θ1 > θ3 > θ2 then τ1(θ) = 0, τ2(θ) = θ3, τ3(θ) = θ1

• if θ2 > θ1 > θ3 then τ1(θ) = 0, τ2(θ) = −θ1, τ3(θ) = θ1 + θ2

• if θ2 > θ3 > θ1 then τ1(θ) = θ3, τ2(θ) = 0, τ3(θ) = θ2

• if θ3 > θ1 > θ2 then τ1(θ) = θ3, τ2(θ) = θ1 + θ3, τ3(θ) = 0

• if θ3 > θ2 > θ1 then τ1(θ) = θ2 + θ3, τ2(θ) = θ3, τ3(θ) = 0

It can easily be checked that these continuous transfers along with decision

efficiency satisfy weak group strategyproofness.

Complete characterization of the class of mechanisms that satisfy conti-

nuity, EFF and WGS; would require proving that the transfers in Theorem

4.3.5, when coupled with decision efficiency, satisfy weak group strategyproof-

ness. This turns out to be difficult since the η terms depend on player labels

as well as the σ(θ−i) vector. Instead, in the following theorem, we generate a

class of continuous mechanisms that satisfy EFF and WGS, by allowing the

η terms to depend only on the rank σj(θ−i) (instead of the vector of ranks

σ(θ−i)).
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Theorem 4.3.9. In a multiple machine queueing problem, a continuous

mechanism (σ, τ) satisfies EFF and WGS if ∀ i ∈ N , ∀ θ−i ∈ <n−1
+ ,

gi(θ−i) =
∑
j 6=i

∆z(σj(θ−i)) min{θj, η(σj(θ−i))} (4.9)

η(r + 1) ≥ η(r), ∀ r = 1, 2, . . . , n− 2 (4.10)

Proof: See Appendix.

The following set of graphs capture the implication of the Theorem 4.3.9

when n = 3. Equations (4.9) and (4.10) imply that the three agent g(.) maps

must look like one of the following five figures10.
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10The second graph is drawn with a positive intercept to emphasize the flat curvature.
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Remark 4.3.10. As before, in the single machine setting of Mitra and Mu-

tuswami [33], equation (4.9) reduces to gi(θ−i) =
∑

j 6=i min{θj, η(σj(θ−i))}.

We can, then, easily show that the k-pivotal mechanism mentioned Mitra

and Mutuswami [33]; is a special case of the mechanism given by Theorem

4.3.9. When

η(s) =

 ∞ if s ≥ k

0 if s < k

and ∆z(i) = 1,∀i = 1, 2, . . . , n−1 (that is, in the single machine setting); the

equation (4.9) reduces to the k-pivotal mechanism in for any k = 1, 2, . . . , n.

In fact, this arrangement η values gives us the k-pivotal mechanism for the
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general multiple machine case where ∀ θ ∈ <n+,

τ ki (θ) =


∑

s=σi(θ)+1,...,k ∆z(s− 1)θ(s) if σi(θ) < k

0 if σi(θ) = k∑
s=k,...,σi(θ)−1 ∆z(s)θ(s) if σi(θ) > k

where θ(s) := {θj|σj(θ) = s}, ∀ s = 1, . . . , n.

Remark 4.3.11. An interesting subclass of the mechanisms described by

Theorem 4.3.9 are the feasible mechanisms. Note that for all such mecha-

nisms,

∑
i∈N

τi(θ) = −
∑

s=2,3,...,n

(s− 1)∆z(s− 1)θ(s)

+
∑

s=1,2...,n

[(n− s)∆z(s) min{θ(s), η(s)}+ (s− 1)∆z(s− 1) min{θ(s), η(s− 1)}]

for all θ ∈ <n+. It can easily be seen that feasible mechanisms in the class

provided by Theorem 4.3.9 must have η(1) = 0. This means that; in the

panel of graphs above, the third and fourth possibilities are ruled out.

4.4 Discussion

The formulation of the queueing problem in this chapter assumes that (i)

machine speeds are constant across jobs, and (ii) per unit time waiting cost

of each agent is constant over time. Relaxing assumption (i) would mean

that each machine j is associated with a sequence
{
stj
}∞
t=1

where stj > 0, ∀ t.

Any agent placed on the kth position in the queue for machine j would have

to wait
∑k

t=1 s
t
j to get his job completed. Since these speeds are known to the

planner with certainty; the planner can choose the n smallest numbers out
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of the set
{{∑k

t=1 s
t
j

}n
k=1

}m
j=1

and arrange them in a non-decreasing order

to get the z ≡ (z(1), . . . , z(n)) vector. The rest of the analysis would remain

same as above.

Relaxing the assumption (ii) is more difficult. If we measure time as a

discrete variable and assume the waiting cost to vary with time t; we get

that the cost to agent i upon being assigned the rank k is

[z(k)]∑
t=1

θi(t) + {z(k)− [z(k)]} θi([z(k)] + 1)

where [x] is the integer nearest to x but smaller than x, ∀ x > 0. This leads

to a different definition of decision efficiency and may well lead to different

results. Identifying the necessary and sufficient conditions for mechanisms

to satisfy EFF and WGS in this setting, would be an interesting but very

difficult problem.

Similar kinked mechanisms may also be obtained in analysis of group

strategyproofness in related fields like the indivisible good (single and mul-

tiple) allocation problem and the public good provision problem.

4.5 Conclusion

In this chapter, we analyze queueing problem with multiple machines and

identical jobs. The crucial aspect here is how the gi(θ−i) function (which can

be any arbitrary function if we require only strategyproofness) behaves when

we require weak group strategyproofness. We assume continuity, which is

weaker than the weak linearity (unlike in Mitra and Mutuswami [33]) and this

results in transfer maps having kinks. The continuity is not demanding in this
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structure from technical as well as fairness perspective. This is because, for

two agents, any decision efficient and weak group strategyproof mechanism is

lower semi-continuous ; and any such mechanism satisfying equal treatment

of equals, is continuous.

Our results show that if we restrict the gi(.) function to be continuous

then it must be that (i) it is piecewise linear and (ii) if θj (j 6= i) changes

without changing the queue order then it cannot have a flat stretch followed

by an increasing stretch. This feature prevails even in the single machine

case. We also provide a class of mechanisms satisfying continuity, decision

efficiency and weak group strategyproofness. The k-pivotal mechanisms in

Mitra and Mutuswami [33], are a special case of this class in the single as

well as multiple machine setting (Remark 4.3.10).

4.6 Appendix

Proof of Theorem 4.3.1: Define li(θ, θ
′) := ui(σ̂i(θ), τi(θ); θi)−ui(σ̂i(θ′), τi(θ′); θi),

∀ i ∈ S, ∀ S ⊆ N , ∀ θ, θ′ ∈ <n+ such that θ′ is an S-profile of θ. Therefore

li(θ, θ
′) captures the change in utility to member i of the misreporting coali-

tion S as they deviate from (truth) profile θ to (misreport) profile θ′. We first

prove the following Claims 2-10 and Propositions 1-2. Using these results,

we prove the required necessity and sufficiency.

Claim 4.6.1. Consider an EFF & WGS mechanism (σ, τ). If WGS holds

with strict inequality for θ, θ′ (equations (4.5) and (4.6) hold); then θ2 ≤

θ1 < θ′2 ≤ θ′1.
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Proof: Let us eliminate the other possibilities, namely the following five

cases;

Case 1: θ′1 ≥ θ2, θ1 ≥ θ′2

Design a {1, 2} deviation from α ≡ (θ1, θ
′
2) to β ≡ (θ′1, θ2). By equations

(4.5) and (4.6), lt(α, β) < 0, ∀ t = 1, 2 and thus WGS is violated.

Case 2: θ′2 = θ′1 < θ2 < θ1

Design a {1, 2} deviation from β ≡ (θ2, θ
′
2) to α ≡ (θ′1, θ2). By (4.5),

−z(2)θ2 + g1(θ2) > −z(1)θ2 − [z(2) − z(1)]θ′2 + g1(θ′2) =⇒ l1(β, α) < 0.

Thus WGS =⇒ l2(β, α) ≥ 0 which means −z(1)θ′2 − [z(2) − z(1)]θ′1 +

g2(θ′1) ≤ −z(2)θ′2 + g2(θ2) =⇒ (a) g2(θ′1) ≤ g2(θ2). Now in a {1, 2} de-

viation from β̃ ≡ (θ1, θ
′
2) to α̃ ≡ (θ2, θ2); from (4.5), l1(β̃, α̃) < 0 and so

WGS =⇒ l2(β̃, α̃) ≥ 0 =⇒ (b) g2(θ1) ≥ g2(θ2). Combining condi-

tions (a) and (b) we get that g2(θ1) ≥ g2(θ′1) which violates (4.6). Hence,

contradiction.

Case 3: θ′2 = θ′1 < θ2 = θ1

In a {1, 2} deviation from α ≡ (θ1, θ
′
2) to β ≡ (θ′1, θ2); (4.5) implies that

−z(2)θ2 + g1(θ2) > −z(1)θ2 − [z(2) − z(1)]θ′2 + g1(θ′2) ⇒ l1(α, β) < 0. Sim-

ilarly (4.6) implies that g2(θ′1) − [z(2) − z(1)]θ′1 − z(1)θ′2 > g2(θ1) − z(2)θ′2

⇒ l2(α, β) < 0 which violates WGS.

Case 4: θ′2 < θ′1 < θ2 = θ1

Design a {1, 2} deviation from β ≡ (θ1, θ
′
1) to α ≡ (θ′1, θ2). (4.6) implies

that g2(θ′1) − z(1)θ′1 − [z(2) − z(1)]θ′1 > g2(θ1) − z(2)θ′1 ⇒ l2(β, α) < 0. So

WGS =⇒ l1(β, α) ≥ 0 =⇒ (c) g1(θ2) − g1(θ′1) ≤ [z(2) − z(1)][θ2 − θ′1].

Now for an {1, 2} deviation from β̃ ≡ (θ1, θ
′
2) to α̃ ≡ (θ′1, θ

′
1); (4.6) implies
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that l2(β̃, α̃) < 0, and so WGS =⇒ l1(β̃, α̃) ≥ 0 which implies that

(d) g1(θ′1) − g1(θ′2) ≤ [z(2) − z(1)][θ′1 − θ′2]. Then (4.5) minus (d) we get

that g1(θ2) − g1(θ′1) > [z(2) − z(1)][θ2 − θ′1] which contradicts (c). Hence,

contradiction.

Case 5: θ′2 < θ′1 < θ2 < θ1

Consider four profiles (θ2, θ
′
2), (θ1, θ2), (θ1, θ

′
2), and (θ2, θ2). Given (4.5), if

g2(θ2) < g2(θ1) then a {1, 2} coalition deviation from the first profile to the

second makes both agents strictly better off; and if g2(θ2) > g2(θ1) then a

{1, 2} coalition deviation from the third profile to the fourth leads to both

agents being strictly better off. Therefore WGS =⇒ (e) g2(θ2) = g2(θ1).

Now, for a pair of profiles α ≡ (θ2, θ
′
1) and β ≡ (θ′1, θ2); from (4.6) and

(e) it follows that g2(θ′1) > g2(θ2) =⇒ g2(θ′1) − [z(2) − z(1)]θ′1 − z(1)θ′1 >

g2(θ2)−z(2)θ′1 =⇒ l2(α, β) < 0. SoWGS =⇒ l1(α, β) ≥ 0 =⇒ (f) g1(θ2)−

g1(θ′1) ≤ [z(2)− z(1)][θ2 − θ′1].

Consider four profiles (θ1, θ
′
2), (θ′1, θ

′
1), (θ1, θ

′
1), and (θ′1, θ

′
2). If g1(θ′1) −

g1(θ′2) > [z(2)−z(1)](θ′1−θ′2), then in a {1, 2} deviation from the first profile

to the second; from (4.6) it follows that both agents are strictly better off.

Again if, g1(θ′1)− g1(θ′2) < [z(2)− z(1)](θ′1− θ′2), then in a deviation from the

third profile to the fourth; from (4.6) it follows that both agents are strictly

better off. Thus WGS =⇒ g1(θ′1) − g1(θ′2) = [z(2) − z(1)](θ′1 − θ′2). Using

(f), we can then say that g1(θ2)− g1(θ′2) ≤ [z(2)− z(1)][θ2− θ′2], which then,

contradicts (4.5).

By Claim 1 we know that θ2 ≤ θ1 < θ′2 ≤ θ′1. W.l.o.g., assume θ2 < θ1 <

θ′2 < θ′1 and continue the proof11.

11This of course rules out the possibility that θ1 = 0. We will discuss the implications
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Claim 4.6.2. Consider an EFF & WGS mechanism (σ, τ). If WGS holds

with strict inequality for θ, θ′ (equations (4.5) and (4.6) hold); then

A ∀ x, y ≤ θ1, g1(x)− g1(y) = [z(2)− z(1)][x− y]

B ∀ x, y < θ1, g2(x)− g2(y) = [z(2)− z(1)][x− y]

C ∀ x, y ≥ θ′2, g2(x)− g2(y) = 0

D ∀ x, y > θ′2, g1(x)− g1(y) = 0

E ∀ x ∈ (θ1, θ
′
2), g2(x) ≤ g2(θ′1)

F If ∃ an x ∈ (θ1, θ
′
2) such that g2(x) < g2(θ′1), then

g1(θ1)− g1(y) = [z(2)− z(1)][θ2 − y],∀ y ∈ (θ1, x]

Proof:

A: For any x, y ≤ θ1, x 6= y; consider the profiles (θ1, x), (θ′1, y) (θ1, y), (θ′1, x).

If g1(x) − g1(y) > [z(2) − z(1)][x − y] then consider a {1, 2} deviation from

the third profile to the fourth; and if g1(x)− g1(y) < [z(2)− z(1)][x− y] then

consider a deviation from the first profile to the second. In both cases, by

(4.6), WGS is violated.

B: Pick any x, y, ρ, x′ such that x < y < ρ < x′ ≤ θ1. If g2(x) − g2(y) >

[z(2)− z(1)][x− y] then in a {1, 2} deviation from β ≡ (y, ρ) to α ≡ (x, x′);

l2(β, α) < 0. From the previous case A, g1(x′)− g1(ρ) > 0 =⇒ l1(β, α) < 0

which violates WGS. If g2(x)− g2(y) < [z(2)− z(1)][x− y], then in a {1, 2}

deviation from (x, ρ) to (y, x′), as before, WGS is violated.

of that possibility in Remark 4.6.11.

96



C: Pick any x, y ≥ θ′2. If g2(x) > g2(y) then in a {1, 2} deviation from

β ≡ (y, θ′2) to α ≡ (x, θ2), given (4.5); lt(β, α) < 0,∀ t = 1, 2. If g2(x) < g2(y)

then in a deviation from (x, θ′2) to (y, θ2), using (4.5), lt(β, α) < 0,∀ t = 1, 2.

In both cases WGS is violated.

D: Pick any x, y, x′, ρ such that x > y > x′ > ρ ≥ θ′2. From the case C, we

get that g2(ρ)−g2(x′) = 0 > [z(2)−z(1)][ρ−x′]. Now, if g1(x) > g1(y), then

lt((x
′, y), (ρ, x)) < 0,∀ t = 1, 2; and if g1(x) < g1(y), then lt((x

′, x), (ρ, y)) <

0,∀ t. In both cases WGS is violated.

E: Say ∃ x ∈ (θ1, θ
′
2) such that g2(x) > g2(θ′1). Then in a deviation from

profile α ≡ (θ′1, θ
′
2) to β ≡ (x, θ2), l2(α, β) < 0; while by (4.5), l1(α, β) < 0.

Thus WGS is violated.

F: For any y ∈ (θ1, x], if g1(θ1)−g1(y) > [z(2)−z(1)][θ1−y] then l1(α, β) < 0

where α ≡ (x, y) to β ≡ (θ′1, θ1) while g2(x) < g2(θ′1) =⇒ l2(α, β) < 0. If

g1(θ1) − g1(y) < [z(2) − z(1)][θ1 − y], then similarly, it can be shown that

lt((x, θ1), (θ′1, y)) < 0,∀ t = 1, 2.

The implications of all the subcases of the Claim 4.6.2 is depicted in the

following set of Figures 4.2 - 4.7;
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��
��6

sl.=z(2)−z(1)
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θ2 θ1 θ′2 θ′1

Figure 4.2: Claim 4.6.2A

Claim 4.6.3. Consider an EFF & WGS mechanism (σ, τ). If WGS holds
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Figure 4.3: Claim 4.6.2B
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Figure 4.4: Claim 4.6.2C

with strict inequality for θ, θ′ (equations (4.5) and (4.6) hold); then either of

the following must be true,

i g1(y) = g1(θ′2), ∀ y ≥ θ′2

ii g1(y) = K > g1(θ′2), ∀ y > θ′2 where K is some constant

Proof: If ∃ y > θ′2 such that g1(y) < g1(θ′2) then l1(α, β) < 0 where α ≡

(x′, y) and β ≡ (θ1, θ
′
2) with x′ ∈ (θ′2, y). Then WGS =⇒ l2(α, β) ≥

0 =⇒ g2(θ1) ≤ g2(x′)− [z(2)− z(1)][x′ − θ1]. Now, by Claim 4.6.2C; g2(x′)

is constant, ∀ x′ ≥ θ′2. Since there is no upper bound on y and so, on x′;

there can be no lower bound on the value g2(θ1). However, (4.6) implies

that g2(θ1) > −g2(θ′1) and so, contradiction. Claim 4.6.2D completes the

proof.
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Figure 4.5: Claim 4.6.2D
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Z
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Figure 4.6: Claim 4.6.2E =⇒ interior of zone Z is vacant

The graphical implication of the above Claim 4.6.3 is given by Figure 4.8.

In the following Claim 4.6.4 we analyze the implication of Claim 4.6.3i.

Claim 4.6.4. Consider an EFF & WGS mechanism (σ, τ). If WGS holds

with strict inequality for θ, θ′ (equations (4.5) and (4.6) hold) and g1(y) =

g1(θ′2), ∀ y ≥ θ′2 then

g1(x) ≤ g1(θ′2),∀ x ∈ [θ1, θ
′
2]

Proof: If ∃ x ∈ [θ1, θ
′
2) such that g1(x) > g1(θ′2) then consider a {1, 2}

deviation from profile α ≡ (δ, y) to β ≡ (θ2, x) where θ′2 ≤ δ < y. Therefore

g1(y) = g1(θ′2) < g1(x), which implies that l1(α, β) < 0. Then WGS =⇒

l2(α, β) ≥ 0 =⇒ g2(δ)− g2(θ2) ≥ [z(2)− z(1)][δ − θ2]. Note that there is no

upper bound on y, and so, on δ; while from Claim 4.6.2C we know that the
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Figure 4.7: Claim 4.6.2F
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Figure 4.8: Claim 4.6.3 =⇒ interior of zone Z is vacant =⇒ either (i) or

(ii) must hold

value g2(δ) stays constant for all δ > θ′2. Then, as in previous Claim 4.6.3,

we cannot get a lower bound on the value g2(θ2) and so, contradiction.

The graphical implication of the above Claim 4.6.4 is given by Figure 4.9.

Claim 4.6.4 states that if Claim 4.6.3i holds, then g1(θ1) ≤ g1(θ′2). Claims

4.6.5 and 4.6.6 state the consequences of g1(θ1) = g1(θ′2); while Claims 4.6.7

and 4.6.8 state the consequences of g1(θ1) < g1(θ′2).

Claim 4.6.5. Consider an EFF & WGS mechanism (σ, τ). If WGS holds

100



6

-
O

g1(.)

<+

[ ig1(θ
′
2)

Z
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Figure 4.9: Claim 4.6.4 =⇒ [Claim 4.6.3i =⇒ interior of zone Z is vacant]

with strict inequality for θ, θ′ (equations (4.5) and (4.6) hold) and

• g1(y) = g1(θ′2), ∀ y ≥ θ′2

• g1(θ1) = g1(θ′2)

then ∀ t ∈ {1, 2},

gt(x) = gt(θ
′
2),∀ x ∈ (θ1, θ

′
2)

Proof: If ∃ x ∈ (θ1, θ
′
2) such that g2(x) < g2(θ′2), then l2(α, β) < 0 when

α ≡ (x, x′) and β ≡ (θ′2, θ1) with x′ ∈ (θ1, x). Since x′ ∈ (θ1, θ
′
2), by Claim

4.6.4, g1(x′) ≤ g1(θ′2) = g1(θ1) =⇒ g1(θ1)−g1(x′) > [z(2)− z(1)][θ1−x′] =⇒

l1(α, β) < 0. Therefore WGS =⇒ g2(x) ≥ g2(θ′2). Then from Claim 4.6.2E,

it follows that (a) g2(x) = g2(θ′2),∀ x ∈ (θ1, θ
′
2).

Now, if ∃ x ∈ (θ1, θ
′
2) such that g1(x) < g1(θ′2) then l1(α′, β′) < 0 where

α′ ≡ (δ, x) and β′ ≡ (ε, θ′2) with θ1 < ε < δ < x. Since δ, ε ∈ (θ1, θ
′
2), by

condition (a), we get g2(ε)−g2(δ) = 0 > [z(2)−z(1)][ε−δ] =⇒ l2(α′, β′) < 0.

Thus WGS =⇒ g1(x) ≥ g1(θ′2) which coupled with Claim 4.6.4 implies that

g1(x) = g1(θ′2).

The graphical implication of the above Claim 4.6.5 is given by Figure

4.10.
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Figure 4.10: Claim 4.6.5

Claim 4.6.6. Consider an EFF & WGS mechanism (σ, τ). If WGS holds

with strict inequality for θ, θ′ (equations (4.5) and (4.6) hold) and

• g1(y) = g1(θ′2), ∀ y ≥ θ′2

• g1(θ1) = g1(θ′2)

then ∀ t ∈ {1, 2},

lim
x→θ1−

gt(x) = gt(θ
′
2)

Proof: If ∃ ν ∈ [θ2, θ1) such that g2(ν) > g2(θ′2), then l2(α, β) < 0 where

α ≡ (θ′2, θ
′
2) and β ≡ (ν, θ2). From (4.5) it follows that l1(α, β) < 0.12

Therefore WGS =⇒ g2(ν) ≤ g2(θ′2). Now by Claim 4.6.2B; ∀ ν2 < ν1 < θ1,

g2(ν1) > g2(ν2). Thus g2(ν) ≤ g2(θ′2), ∀ ν < θ1 which in turn implies that

lim
x→θ1−

g2(x)
def
= T ≤ g2(θ′2). Given Claim 4.6.2B, if T < g2(θ′2) then ∃ ε > 0

12In case θ2 = θ1, we choose any ν, ν′ < θ1 such that ν < ν′. Claim 4.6.2A and (4.5)

imply that l1((θ′2, θ
′
2), (ν, ν′)) < 0. The rest of the proof remains same.
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such that g2(θ′2) − g2(x) > ε, ∀ x < θ1. Then ∃ δ < θ1 and ρ ∈ (θ1, θ
′
2)

such that ρ − δ < ε
(z(2)−z(1))

. Therefore by Claim 4.6.5 g2(ρ) = g2(θ′2) =⇒

g2(ρ) − g2(δ) > ε > [z(2) − z(1)][ρ − δ]. This implies that l2(α′, β′) < 0

when α′ ≡ (δ, ξ) and β′ ≡ (ρ, θ′2) with ξ ∈ (δ, θ1). Now, by Claim 4.6.2A,

g1(ξ) < g1(θ1) = g1(θ′2), since ξ < θ1. Therefore l1(α′, β′) < 0 and so

WGS =⇒ T = g2(θ′2).

For t = 1; from Claim 4.6.2A and the condition g1(θ1) = g1(θ′2) we get

that g1(θ′2) − g1(x) = [z(2) − z(1)][θ′2 − x]. Therefore as x tends to θ′2, the

result is established.

Claims 4.6.2A, 4.6.2B, 4.6.2C, 4.6.5 & 4.6.6 imply that if Claim 4.6.3i

holds true and g1(θ1) = g1(θ′2) then g(.) map for each agent will look like in

the Figure 4.11 where the kink point η = θ1. Note that there is only one

point of discontinuity and that too for a single agent, here agent 2.
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Figure 4.11: Claim 4.6.6

Let us now consider the other possible implication of the Claim 4.6.3i, that
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is, g1(θ1) < g1(θ′2). Given Claim 4.6.2A; (4.5) implies that g1(θ1)− g1(θ′2) >

[z(2) − z(1)][θ1 − θ′2]. Since g1(θ1) < g1(θ′2); we can extend the straight line

with slope z(2)−z(1) passing through the (θ2, g1(θ2)) point in the g1(.) map;

on the right side of θ1, to find a number ω ∈ (θ1, θ
′
2) such that13

g1(θ2) + [z(2)− z(1)][ω − θ2] = g1(θ′2) (4.11)

By Claim 4.6.4 and equation (4.11) above;

g1(θ2)− g1(x) > [z(2)− z(1)][θ2 − x],∀ x > ω (4.12)

Claim 4.6.7. Consider an EFF & WGS mechanism (σ, τ). If WGS holds

with strict inequality for θ, θ′ (equations (4.5) and (4.6) hold) and

• g1(y) = g1(θ′2), ∀ y ≥ θ′2

• g1(θ1) < g1(θ′2)

then,

A gt(x) = gt(θ
′
2), ∀ x ∈ (ω, θ′2], ∀ t ∈ {1, 2}

B gt(θ2)− gt(x) = [z(2)− z(1)][θ2 − x], ∀ x < ω, ∀ t ∈ {1, 2}

C gt(ω) = gt(θ
′
2) for some t = 1, 2

Proof:

A: For t = 2; pick any x, x′ such that ω < x′ < x < θ′2. Then by (4.12),

l1(α, β) < 0 when α ≡ (x, x′) and β ≡ (θ′2, θ2). Therefore, by Claim 4.6.2E ,

WGS =⇒ (a) g2(x) = g2(θ′2),∀ x ∈ (ω, θ′2).

13Note that we are not assuming continuity; but simply extending the line continuously

to locate the value ω.
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For t = 1; if ∃ x ∈ (ω, θ′2) such that g1(x) < g1(θ′2) then consider a

deviation from α′ ≡ (ρ, x) and β′ ≡ (δ, θ′2) where ω < δ < ρ < x. By

condition (a); g2(δ) − g2(ρ) = 0 > [z(2) − z(1)][δ − ρ] =⇒ l2(α′, β′) < 0.

Therefore by Claim 4.6.4, WGS =⇒ g1(x) = g1(θ′2), ∀ x ∈ (ω, θ′2).

B: For t = 2, from Claim 4.6.2B it follows that the statement is satisfied for

any x < θ1. Now, if g2(θ2)− g2(θ1) > [z(2)− z(1)][θ2 − θ1] then l2(α, β) < 0

when α ≡ (θ1, ψ) and β ≡ (θ2, θ
′
2), where ψ ∈ (θ1, ω). Hence, by Claim 4.6.4,

WGS =⇒ g1(ψ) = g1(θ′2),∀ ψ ∈ (θ1, ω). This coupled with (4.11), implies

that g1(ψ)−g1(θ2) > [z(2)−z(1)][ψ−θ2] =⇒ l1(β′, α′) < 0 where α′ ≡ (θ′1, ψ)

and β′ ≡ (θ1, θ2). Then from (4.6), it follows that l2(β′, α′) < 0 and so WGS

is violated. Thus WGS =⇒ g2(θ2)− g2(θ1) ≤ [z(2)− z(1)][θ2 − θ1]. If this

equation holds with strict inequality then l2(α′′, β′′) < 0 when α′′ ≡ (θ2, θ1)

and β′′ ≡ (θ1, θ
′
2) while g1(θ1) < g1(θ′2) =⇒ l1(α′′, β′′) < 0. Therefore

WGS =⇒ (b) g2(θ2)− g2(θ1) = [z(2)− z(1)][θ2 − θ1].

We now show that (b) holds even if θ1 is replaced by any real number

lying in the open interval (θ1, ω). If ∃ a ψ ∈ (θ1, ω) such that g1(ψ) = g1(θ′2)

then (4.11) implies that g1(ψ)− g1(θ1) > [z(2)− z(1)](ψ − θ1) and so, from

(4.6); lt((θ1, θ1), (θ′1, ψ)) < 0, ∀ t = 1, 2. Hence, by Claim 4.6.4 , WGS =⇒

(c) g1(ψ) < g1(θ′2). But from (c) it follows that l1((θ2, ψ), (x, θ′2)) < 0 where

x ∈ (θ1, ψ); and so WGS =⇒ (d)g2(θ2)−g2(x) ≥ [z(2)−z(1)][θ2−x]. Now,

if (d) holds with strict inequality then equation (c) =⇒ lt((x, ψ), (θ2, θ
′
2)) <

0,∀ t = 1, 2 which violates WGS. Therefore (d) must hold with equality.

Using (b) and Claim 4.6.2B, then, we complete the proof for t = 2.

For t = 1, pick any ψ, ε such that θ1 < ψ < ε < ω. As proved in the

paragraph above, we can say that g2(ε) − g2(ψ) = [z(2) − z(1)][ε − ψ] > 0
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which implies that l2((ψ, x), (ε, θ1)) < 0 where x ∈ (θ1, ψ). Then WGS =⇒

(e)g1(x)−g1(θ1) ≥ [z(2)−z(1)][x−θ1]. Now, if (e) holds with strict inequality

then l1((x, θ1), (ε, x)) < 0. Again, from the statement proved in the previous

paragraph ε > x =⇒ g2(ε) > g2(x) =⇒ l2((x, θ1), (ε, x)) < 0 and so

WGS is violated. Therefore (e) must hold with equality. Claim 4.6.2A, then,

completes the proof for t = 1.

C: If g1(ω) < g1(θ′2) then from (4.11) it follows that g1(ω) < g1(θ′2) =⇒

g1(θ2) − g1(ω) > [z(2) − z(1)][θ2 − ω] =⇒ l1((ω, ω), (θ′2, θ2)) < 0 and so by

Claim 4.6.2E, WGS =⇒ g2(ω) = g2(θ′2). Therefore, given Claim 4.6.4, we

can say that there always exists a t′ ∈ {1, 2} such that gt′(ω) = gt′(θ
′
2).

The graphical implications of Claim 4.6.7 are given by Figure 4.12.
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Figure 4.12: Claim 4.6.7 with g1(ω) = g1(θ′2)

Claim 4.6.8. Consider an EFF & WGS mechanism (σ, τ). If WGS holds

with strict inequality for θ, θ′ (equations (4.5) and (4.6) hold) and

• g1(y) = g1(θ′2), ∀ y > θ′2
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• g1(θ1) < g1(θ′2)

then ∀ t = 1, 2,

lim
x→ω−

gt(x) = gt(θ
′
2)

Proof: From Claim 4.6.7C, w.l.o.g. assume that g1(ω) = g1(θ′2). Then from

(4.11) and Claim 4.6.7B we get that g1(θ′2) − g1(x) = [z(2) − z(1)][ω − x],

∀ x ≤ ω. Therefore as x tends to ω, the result is established for t = 1.

For t = 2; notice that Claim 4.6.2E and Claim 4.6.7B imply that g2(x) ≤

g2(θ′2), ∀ x < θ′2. Thus lim
x→ω−

g2(x)
def
= T ′ ≤ g2(θ′2). As in Claim 4.6.6, the

possibility of T ′ < g2(θ′2) can be ruled out.

Claims 4.6.2C, 4.6.7 and 4.6.8 imply that if Claim 4.6.3i holds true with

g1(θ1) < g1(θ′2) then discontinuity in the g(.) maps, if present, shall occur

only at a single point (at the kink point) and for at most one agent out of

the two. The g(.) map for each agent will look like in the Figure 4.13 where

the kink point η = ω ∈ (θ1, θ
′
2).

Now that the consequences of two possible implications of Claim 4.6.3i

have been analyzed, let us move to the implications of Claim 4.6.3ii.

Claim 4.6.9. Consider an EFF & WGS mechanism (σ, τ). If WGS holds

with strict inequality for θ, θ′ (equations (4.5) and (4.6) hold); and g1(y) =

K > g1(θ′2), ∀ y > θ′2, then

A gt(x)− gt(x′) = [z(2)− z(1)][x− x′], ∀ x, x′ < θ′2, ∀ t ∈ {1, 2}

B g2(θ′2)− g2(x) = [z(2)− z(1)][θ′2 − x], ∀ x ≤ θ′2

Proof:
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Figure 4.13: Claim 4.6.8 with g1(ω) = g1(θ′2)

A: For t = 2, pick any x, x′ < θ′2. If g2(x) − g2(x′) > [z(2) − z(1)][x − x′],

then consider the deviation from l2((x′, θ′2), (x, y)) < 0, where y > θ′2. Also

g1(y) = K > g1(θ′2) =⇒ l1((x′, θ′2), (x, y)) < 0. Hence WGS =⇒ g2(x) −

g2(x′) ≤ [z(2) − z(1)][x − x′]. But if this holds with strict inequality then

again lt((x, θ
′
2), (x′, y)) < 0, ∀ t = 1, 2. Thus WGS =⇒ (a) g2(x)− g2(x′) =

[z(2)− z(1)][x− x′].

For t = 1, pick any ν, ε such that ε < ν < θ′2 and any x, x′ < ε. By (a),

g2(ν)−g2(ε) = [z(2)−z(1)][ν− ε] > 0. By checking the deviation from (ε, x′)

to (ν, x) and then the deviation from (ε, x) to (ν, x′), we see that WGS is

violated unless g1(x′)− g1(x) = [z(2)− z(1)][x′ − x].

B: Pick any ε, y such that θ′2 < ε < y. By assumption, g1(y) = K >

g1(θ′2) =⇒ l1((θ2, θ
′
2), (ε, y)) < 0. Then WGS =⇒ (a) g2(θ2) − g2(ε) ≥

[z(2) − z(1)][θ2 − ε], ∀ ε > θ′2. Also by Claim 4.6.2C, g2(θ′2) = g2(ε), which

coupled with (a) implies that g2(θ2)− g2(θ′2) ≥ [z(2)− z(1)][θ2 − ε]. Since ε
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was chosen arbitrarily, this equation must hold for all ε > θ′2. This implies

that (b) g2(θ2)− g2(θ′2) ≥ [z(2)− z(1)][θ2 − θ′2].14

Now, if (b) holds with strict inequality, then there exists a ζ < θ′2 such

that g2(ζ) > g2(θ′2)15. Therefore l2((θ′2, θ
′
2), (ζ, x′)) < 0 where x′ < ζ. From

the previous case A (for t = 1) and (4.5), l1((θ′2, θ
′
2), (ζ, x′)) < 0. Thus WGS

requires that condition (b) hold with equality. This along with case A (for

t = 2) completes the proof.

The graphical exposition of this Claim 4.6.9 is given by Figure 4.14.
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Figure 4.14: Claim 4.6.9

Claim 4.6.10. Consider an EFF & WGS mechanism (σ, τ). If WGS holds

with strict inequality for θ, θ′ (equations (4.5) and (4.6) hold); and g1(y) =

14Suppose not, that is, g2(θ2)− g2(θ′2) = [z(2)− z(1)][θ2 − θ′2]− ν for some ν > 0; then

we can find some ε′ ∈
(
θ′2, θ

′
2 + ν

z(2)−z(1)

)
such that (a) is violated.

15If g2(ζ) ≤ g2(θ′2),∀ ζ < θ′2, then by invoking the previous case A for t = 2, we get that

g2(θ2)− g2(ζ) = (θ2 − ζ) =⇒ g2(θ2)− g2(θ′2) ≤ (θ2 − ζ),∀ ζ < θ′2. Then as ζ tends to θ′2,

in limit this violates condition (b) holding with strict inequality .
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K > g1(θ′2), ∀ y > θ′2, then ∀ t = 1, 2,

lim
x→θ′2−

gt(x) = K

Proof: Given Claim 4.6.9B, as {x} → θ′2, the result is established for t = 2.

For t = 1; if ∃ x ∈ (θ1, θ
′
2) such that g1(x) > K then as in Claim 4.6.4, WGS

is violated. Again from Claim 4.6.9A, ∀ ζ < θ′2, g1(.) is an increasing in ζ.

Therefore g1(x) ≤ K, ∀ x < θ′2 =⇒ lim
x→θ′2−

g1(x)
def
= T ′′ ≤ K. If T ′′ < K then

as in Claim 4.6.6, we can design a violation of WGS.

Claims 4.6.2C, 4.6.9 & 4.6.10 imply that if g1(y) = K > g1(θ′2), ∀ y > θ′2,

then there is only one point of discontinuity (at the kink point η = θ′2) and

that too for a single agent, here agent 1 (as shown in Figure 4.15).

6

-
O

g1(.)

<+

��
�
��

(6

sl.=z(2)−z(1)

).

θ2 θ1 θ′2 θ′1

6

-
O

g2(.)

<+

��
�
��6

sl.=z(2)−z(1)

θ2 θ1 θ′2 θ′1

Figure 4.15: Claim 4.6.10

Thus we come to our first proposition.

Proposition 4.6.1. Consider an EFF & WGS mechanism (σ, τ). If WGS

holds with strict inequality for θ, θ′ (equations (4.5) and (4.6) hold), then
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• ∀ i 6= t ∈ {1, 2},

gi(θt) =

 (z(2)− z(1)) min{θt, η} if θt 6= η

αi[(z(2)− z(1))η] if θt = η

for some η ∈ [θ1, θ
′
2]

• max{α1, α2} = 1.

Proof: Claims 4.6.1-4.6.10 prove the proposition.

Proposition 4.6.2. Consider an EFF & WGS mechanism (σ, τ). If @ θ, θ′ ∈

<2
+ such that θ′ is an order preserving {1, 2}-profile of θ and WGS holds with

strict inequality for θ, θ′ (equations (4.5) and (4.6) hold); then either

gt(x) = 0,∀ x ∈ <+,∀ t ∈ {1, 2}

or

gt(x) = [z(2)− z(1)]x,∀ x ∈ <+,∀ t ∈ {1, 2}

Proof: Pick any θ ∈ <2
+ and any two order preserving {1, 2}-profiles of

θ; θ′ and θ′′. W.l.o.g. assume that 1 precedes 2 in the efficient order for

all three profiles. From the statement of the proposition; WGS holds with

equality for both pairs θ, θ′ and θ, θ′′. W.l.o.g. suppose that for the pair θ, θ′,

(ai) g1(θ2) − g1(θ′2) = [z(2) − z(1)](θ2 − θ′2) and (aii) g2(θ1) − g2(θ′1) > 0;

while for the pair θ, θ′′, (bi) g1(θ2) − g1(θ′′2) > [z(2) − z(1)](θ2 − θ′′2) and

(bii) g2(θ1) − g2(θ′′1) = 0. Now, (ai) & (bi) =⇒ g1(θ′2) − g1(θ′′2) > [z(2) −

z(1)](θ2− θ′′2) =⇒ l1(θ′′, θ′) < 0 while (aii) & (bii) =⇒ g2(θ′′1) > g2(θ′1) =⇒

l2(θ′′, θ′) > 0. Therefore WGS holds with strict inequality for the pair θ′, θ′′

and hence, contradiction. In the same way, for any other combination of >
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and < amongst the inequalities (aii) and (bi); either WGS is violated or

WGS holds with strict inequality . Therefore if (ai) holds with equality then

(bi) holds with equality; and if (aii) holds with equality then (bii) holds with

equality. Since θ, θ′, θ′′ are chosen arbitrarily, this means that ∀ x, y ∈ <+

either (c) g1(x)− g1(y) = [z(2)− z(1)][x− y] or (d) g2(x) = g2(y)16.

If (c) holds, then it can be shown, as in Claim 4.6.2B that ∀ x′, y′ ∈ <+

g2(x′)−g2(y′) = [z(2)−z(1)][x′−y′]. If (d) holds then it can be shown, as in

Claim 4.6.2D that ∀ x′, y′ ∈ <++ g1(x′) = g1(y′). There remains a possibility

that lim
x→0+

g1(x)
def
= T̄1 6= g1(0) = 0. Pick any ζ, ζ ′ such that 0 < ζ ′ < ζ. Now if

T̄1 > 0 then g1(ζ) > 0 =⇒ l1((0, 0), (ζ ′, ζ)) < 0 while from (d) we know that

g2(ζ ′) = g2(0) =⇒ l2((0, 0), (ζ ′, ζ)) > 0. If T̄1 < 0 then g1(ζ) < g1(0) =⇒

l1((ζ ′, ζ), (0, 0)) < 0 while g2(ζ) = g2(0) =⇒ l2((ζ ′, ζ), (0, 0)) > 0. Thus

in both cases WGS holds with strict inequality and hence, contradiction.

Therefore, T̄1 = 0 which implies that gt(x) = 0,∀ x ≥ 0,∀ t = 1, 2.

Proof of Only If in Theorem 4.3.1: If a pair of order preserving {1, 2}-profiles

exists such that WGS amongst them holds with strict inequality then from

Proposition 4.6.1 we can obtain the g(.) maps. This is captured by the expres-

sion in theorem, when η takes a finite positive value. If for all pairs of order

preserving {1, 2}-profiles, WGS holds with equality, then the corresponding

16It may be that WGS holds with equality in such a way that g1(θ2) − g1(x) = [z(2) −

z(1)][θ2 − x] & g2(θ1)− g2(y) = 0 where x ∈ {θ′2, θ′′2} and y ∈ {θ′1, θ′′1} respectively. Then

arguing as above we could say that ∀m,n > 0, g1(m)− g1(n) = [z(2)− z(1)][m− n] and

g2(m)−g2(n) = 0. But then it is easy to check that li((m,n), (m− ε, n+ ε)) < 0, ∀ i = 1, 2

when 0 < ε < m < n.
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g(.) maps are given by Proposition 4.6.2. The expression in theorem captures

the two possible implications of this possibility; when η = 0 or when (with a

slight abuse of notation) η =∞.

Proof of If in Theorem 4.3.1: We need to show that the necessary result

obtained above, ensures that WGS is not violated for any possible {1, 2}

deviations, order preserving or otherwise. All the logical arguments involved

in establishing Propositions 4.6.1 & 4.6.2 are reversible. Therefore, given the

expression of g(.) maps in the theorem; if there existed any order preserving

{1, 2} deviation such that WGS is violated, then either of the two proposi-

tions mentioned above, would have been violated. Thus the g(.) maps are

sufficient to ensure WGS for order preserving {1, 2} deviations.

Since there are only two agents, there is only one other possible type of

{1, 2} deviations; order interchanging deviations. Pick any such deviation,

say, from β ≡ (ζ1, ζ2) to α ≡ (ρ1, ρ2) where ρ1, ρ2, ζ1, ζ2 are any four arbitrary

non-negative numbers such that (w.l.o.g.) ρ1 ≥ ρ2 and ζ1 < ζ2. Therefore, 1

precedes 2 in the efficient order for α while 2 precedes 1 in the efficient order

for β. Then (i) l1(β, α) = [z(2) − z(1)][ρ2 − ζ1] − g1(ρ2) + g1(ζ2) and (ii)

l2(β, α) = [z(2) − z(1)][ζ2 − ζ1] + g2(ζ1) − g2(ρ1). It will be shown that for

any possible values of the arbitrarily chosen four numbers; there exists one

agent t∗ ∈ {1, 2} such that t∗ is not strictly better off in a deviation from β

to α.

Now, there are two possible cases, namely;

Case A: ρ2 < η

Now if ζ2 < η then g1(ρ2)− g1(ζ2) = [z(2)− z(1)][ρ2 − ζ2] which means that
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equation (i) =⇒ l1(β, α) = [z(2)− z(1)][ζ2 − ζ1] > 0. Hence t∗ = j.

If ζ2 ≥ η then g1(ρ2) − g1(ζ2) = [z(2) − z(1)][ρ2 − η] =⇒ l1(β, α) =

[z(2) − z(1)](η − ζ1). If ζ1 ≤ η then t∗ = 1. If ζ1 > η, then l1(β, α) < 0;

but g2(ζ1) = [z(2) − z(1)]η and the fact that g2(ρ1) ≤ [z(2) − z(1)]η imply

that g2(ζ1) − g2(ρ1) ≥ 0. From (ii), it then follows that l2(β, α) ≥ [z(2) −

z(1)][ζ2 − ζ1] > 0 and so t∗ = 2.

Case B: ρ2 ≥ η

If ζ2 < η then g1(ρ2)− g1(ζ2) = [z(2)− z(1)][η − ζ2] =⇒ l1(β, α) > 0 and so

t∗ = 1.

If ζ2 ≥ η then g1(ρ2) − g1(ζ2) = 0 =⇒ l1(β, α) = [z(2) − z(1)][ρ2 − ζ1].

Now if ζ1 ≤ ρ2 then t∗ = 1. If ζ1 > ρ2 then l1(β, α) < 0; but ζ1 > ρ2 ≥ η

and so, as in the previous case g2(ζ1)− g2(ρ1) ≥ 0 =⇒ l2(β, α) ≥ [z(2) −

z(1)][ζ2 − ζ1] > 0 and so t∗ = 2.

Thus, given the g(.) maps, no order interchanging {1, 2} deviation violates

WGS.

Remark 4.6.11. It is possible that in the (4.5); θ1 = 017. In that case

all the Claims other than 4.6.2A, 4.6.2B and 4.6.6 will go through. Since

g1(0) = 0; in case Claim 4.6.3i holds with g1(θ1) = g1(θ′2), the g1(.) map

is a horizontal straight line along the x-axis. As in Claim 4.6.2D, it can

then be proved that the g2(.) map, too, is a horizontal straight line. But

there remains a possibility of jump discontinuity at the origin in g2(.) map.

It can further be shown that such a jump, if present, can only occur in an

17Recall that 1 precedes 2 in both profiles θ and θ′. Therefore θ1 = 0 =⇒ θ2 = 0 so

that σ1(0, 0) < σ2(0, 0).
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upward direction18. To capture this possibility we would need to assume

that τt(0, 0, . . . , 0) = Ct > 0 in the expression for the gt(.) map for all t. The

relevant map containing the implications of θ1 = 0 would then be given by

η = 0 and α2 < 1. Hence, our assumption of transfers independent of agent

specific constants, that is τi(0, 0, . . . , 0) = 0,∀ i ∈ N , rules out the case where

θ1 = 019.

Remark 4.6.12. Consider the possibility that z(2)− z(1) = 0. For any θ, θ′

such that θ′ is an order preserving {1, 2}-profile of θ with σ1(θ) = 1, σ2(θ) = 2;

if WGS holds with strict inequality then from (4.5) and (4.6) we get that

g1(θ2) > g1(θ′2) and g2(θ1) < g2(θ′1). But then WGS gets violated in a {1, 2}

deviation from (θ1, θ
′
2) to (θ′1, θ2). Then from Proposition 4.6.2 we get that

η ∈ {0,∞}.

Proof of Theorem 4.3.9:First we need to prove the following lemma, which

says that given equations (4.9) and (4.10) there will always be an agent whose

transfer turns out be independent of the announcements of all other players.

For this purpose, we need to define the notation θ(r) := {θi|σi(θ) = r},

∀ θ ∈ <n+, ∀ r = 1, 2, . . . , n. Therefore θ(r) denotes the per unit time waiting

cost of the agent ranked r in the efficient ranking for profile θ.

Lemma 4.6.13. If equations (4.9) and (4.10) hold then ∀θ ∈ <n+, ∃m(θ) ∈ N

such that τm(θ)(θ) = Constant.

18If the jump is in downward direction then lt((x, y), (0, 0)) < 0 where 0 < y < x.
19If θ1 = 0 then σ1(θ) = 1 =⇒ θ2 = 0. Putting gt(0) = 0 for all t in equations (4.5)

and (4.6) we get that (i) g1(θ′2) < θ′2 and (ii) g2(θ′1) < 0. But then WGS gets violated in

a deviation from θ′ to θ ≡ (0, 0). Hence contradiction.
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Proof: Suppose N = {1, 2, . . . , n}. Define s′= min{s = 1, 2, . . . , n − 1 :

θ(s) ≤ η(s)}, ∀ θ ∈ <n+. Then choose the agent m(θ) so that

σm(θ)(θ) =

 n when {s′} = ∅

s′ when {s′} 6= ∅

We will show that τm(θ)(θ) = Constant in each of the following two cases;

Case 1: {s′} = ∅

Therefore the last ranked agent is chosen to be m(θ); hence (i) τm(θ)(θ) =

gm(θ)(θ−m(θ)) and (ii) θ−m(θ)(s) = θ(s) > η(s) for all s = 1, 2, . . . , n − 1.

Therefore using (i) & (ii) we can write that

τm(θ)(θ) =
∑

j 6=m(θ)

∆z(σj(θ−m(θ))) min
{
θj, η(σj(θ−m(θ)))

}
=

∑
k=1,2,...,n−1

∆z(k) min
{
θ−m(θ)(k), η(k)

}
=

∑
k=1,2,...,n−1

∆z(k).η(k) = Constant

Case 2: {s′} 6= ∅

In this case σm(θ)(θ) = s′ < n; which implies that (a) θ−m(θ)(k) = θ(k) >

η(k), ∀ k = 1, 2, . . . , s′ − 1. Now from (4.10) we get that η(s′) ≤ η(k),

∀ k = s′+1, s′+2, . . . , n−1 and so we can say that (b) θ−m(θ)(k) = θ(k+1) ≤

θ(s′) ≤ η(s′) ≤ η(k), ∀ k = s′, s′ + 1, . . . , n − 1. Note that ∀ j ∈ P ′m(θ)(θ),

z(σj(θ))− z(σj(θ−i)) = z(σj(θ−i) + 1)− z(σj(θ−i)) = ∆z(σj(θ−i)). Therefore

using (a) and (b), we can write that
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τm(θ)(θ) = −
∑

j∈P ′
m(θ)

(θ)

∆z(σj(θ−m(θ)))θj +
∑

j 6=m(θ)

∆z(σj(θ−m(θ))) min
{
θj , η(σj(θ−m(θ)))

}
= −

∑
k=s′,s′+1,...,n−1

∆z(k)θ−m(θ)(k) +
∑

k=1,2,...,n−1

∆z(k) min
{
θ−m(θ)(k), η(k)

}
=

∑
k=1,2,...,s′−1

∆z(k)η(k) = Constant

Pick any non-empty S ⊆ N and θ, θ′ ∈ <n+ such that θ is an S-profile

of θ′. Suppose coalition S deviates from θ′ to θ and this deviation violates

WGS. For notational simplicity we suppress the argument θ in the term m(θ)

and write just m.

Claim 4.6.14. m 6∈ S

Proof of Claim: Say m ∈ S. Lemma 4.6.13 implies that τm(θ) is indepen-

dent of the announcements of its coalition partners. Therefore, for agent m,

this coalitional deviation is only as good as a unilateral deviation. But then

strategyproofness contradicts WGS being violated.

Identify the agent a
def
= argmax{σj(θ)|j ∈ S ∩ Pm(θ)} and the rank ra

def
=

σa(θ). Similarly, agent b
def
= argmax{σj(θ)|j ∈ S ∩ P ′m(θ)} and the rank

rb
def
= σb(θ). Therefore, a is the last ranked member of S preceding agent m

and b is the first ranked member of S succeeding agent m; in the efficient

ranking for cost profile θ. Also note that if not both, either of the agents a

and b, must exist.

Now, from the definition of m, there are two possible cases;

Case 1: σm(θ) = n
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In this case, only a is well defined. As before we can write

τa(θ) = −
∑

k=ra,ra+1,...,n−1

∆z(k)θ−a(k) +
∑

k=1,2,...,n−1

∆z(k) min {θ−a(k), η(k)}

Note that σm(θ) = n =⇒ either {s′} = ∅ or s′ = n =⇒ θ(k) >

η(k),∀ k = 1, 2, . . . , n− 1. Therefore since a′ < n; (i) θ−a(k) = θ(k) > η(k),

∀ k = 1, 2, . . . , ra − 1 and from (4.10); (ii) θ−a(k) = θ(k + 1) > η(k + 1) ≥

η(k), ∀ k = ra, ra + 1, . . . , n − 2. Also (iii) θ−a(n − 1) = θm. Using (i), (ii)

and (iii); the equation above can be reduced to the following;

τa(θ) =
∑

k=1,2,...,ra−1

∆z(k)η(k) +
∑

k=ra,ra+1,...,n−2

∆z(k) [η(k)− θ(k + 1)]

+ ∆z(n− 1) [min {θm, η(n− 1)} − θm]

By the definition of a; the numbers {θ(k + 1)}n−2
k=ra

are waiting costs of

agents who are not members of S. Given m 6∈ S, this means that τa(θ) does

not depend on the misreports of members of S − {a}. Therefore arguing as

in Claim 4.6.14, we can arrive at a contradiction.

Case 2: σm(θ) = s′ < n

Once again, if a exists;

τa(θ) = −
∑

k=ra,ra+1,...,n−1

∆z(k)θ−a(k) +
∑

k=1,2,...,n−1

∆z(k) min {θ−a(k), η(k)}

=
∑

k=a,ra+1,...,s′−2

∆z(k) [min {θ−a(k), η(k)} − θ−a(k)]

+
∑

k=s′,s′+1,...,n−1

∆z(k) [min {θ−a(k), η(k)} − θ−a(k)]

+ ∆z(s′ − 1) [min {θ−a(s′ − 1), η(s′ − 1)} − θ−a(s′ − 1)]

+
∑

k=1,2,...,ra−1

∆z(k) min {θ−a(k), η(k)}
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By definition; (a) s′ < n =⇒ θ(k) > η(k), ∀ k = 1, 2, . . . , s′ − 1. By

construction, ra < s′ and so (i) θ−a(s
′ − 1) = θ(s′) = θm. Then using (a)

we can say that (ii) θ−a(k) = θ(k) > η(k), ∀ k = 1, 2, . . . , ra − 1. From the

construction of the rank s′ and (4.10), it follows that (iii) θ−a(k) = θ(k+1) >

η(k + 1) ≥ η(k), ∀ k = ra, ra + 1, . . . , s′ − 2 and (iv) θ−a(k) = θ(k + 1) ≤

θ(s′) ≤ η(s′) ≤ η(k), ∀ k = s′, s′+ 1, . . . , n− 1. Using conditions (i)-(iv), we

can write that

τa(θ) =
∑

1,2,...,ra−1

∆z(k)η(k) +
∑

ra,ra+1,...,s′−2

∆z(k) [η(k)− θ(k + 1)]

+ ∆z(s′ − 1) [min {θm, η(s′ − 1)} − θm]

Arguing as in Case 1; we can see that τa(θ) in independent of reports of

members of S−{a}. Therefore as in Claim 4.6.14, we reach a contradiction.

Similarly, if b exists;

τb(θ) = −
∑

k=rb,rb+1,...,n−1

∆z(k)θ−b(k) +
∑

k=1,2,...,n−1

∆z(k) min {θ−b(k), η(k)}

=
∑

k=1,2,...,rb−1

∆z(k) min {θ−b(k), η(k)}

+
∑

k=rb,rb+1,...,n−1

∆z(k) [min {θ−b(k), η(k)} − θ−b(k)]

By definition rb > s′. Then using (4.10) and the condition (a) we get

that (v) θ−b(s
′) = θ(s′) = θm ≤ η(s′); (vi) θ−b(k) = θ(k) > η(k), ∀ k =

1, 2, . . . , s′ − 1; (vii) θ−b(k) = θ(k) ≤ θ(s′) ≤ η(s′) ≤ η(k), ∀ k = s′ +

1, s′ + 2, . . . , rb − 1 and (viii) θ−b(k) = θ(k + 1) ≤ θ(s′) ≤ η(s′) ≤ η(k),

∀ k = rb, rb + 1, . . . , n− 1. Conditions (v)-(viii) then imply that

τb(θ) = −
∑

k=1,2,...,s′−1

∆z(k)η(k) + ∆z(s)θm +
∑

k=s′+1,s′+2,...,rb−1

∆z(k)θ(k)
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By definition of b, the numbers {θ(k)}rb−1
k=s′+1 are waiting costs of members

of N − S. Since m 6∈ S, it can therefore be said that τb(θ) is independent

of misreports of members of S − {b}. Thus as in Claim 4.6.14, we reach a

contradiction.
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