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RATES OF CONVERGENCE TO NORMALITY
FOR SOME VARIABLES WITH ENTIRE
CHARACTERISTIC FUNCTION

By RATAN DASGUPTA
Indian Statistical Institute

SUMMARY. Nonuniform rates of convergence to normality are studied for standardised
sum of independent random variables in & triangular array when m.g.f. of the random variables
necessarily exist but the r.v’s may not be bounded. The assumed condition (2.1} implies that
each variable has an entire characteristic function of order £ 2. As application of these results,
rates of moment type convergences and non-uniform L, version of Berry-Esseen theorem are
obtained. The results are generalised to the general non-linear statistics. As for example

linear process is considered.
1. INTRODUOTION

Consider a double sequence {Xp:1 < i< n, 07> 1} of r.v’s where
variables in each array are independently distributed and satisfy EXp¢ = 0.

Then defining
Sn

n n
Y Xpi, 82 = 3 EXZ and F,(t) = P(s;' S, < t)
S |

t=]

we have, under very moderate assumption that F, =3 @. Ini.i.d case the
uniform rate of convergence of | F,(t)—®(t)| to zero is provided by classical
Berry-Esseen theorem and was later extended by Katz (1963).

Through very helpful, these uniform rates are inappropriate for many
purposes, e.g. since [, == ® it is natural to ask when does a L, version of
Berry-Esseen theorem holds, or given that Eg(T) < co where 7' is a normal
deviate and g is a real valued non negaiive, even and non decreasing
function over [0,00), when does |Eg(s;! S,)—Eg(T) | > 0 and at what rate?

Note that Eg(T) < oo if g(x) = O((14 |=|) exp(x?/2)) for some & > 1.
We explain further in the followings.

Consider the double sequence X, which along with EXg4 = O also
satisfies

sup 71 B EX% 9(Xn) < 00 e (L1)

where ¢ is non negative, even, non, decreasing on. [0, 00).
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The whole spectrum of g can be broadly classified into three categories :
(i) g(x) < |x|* for some &k > 0.
(i) |x|* < g(x) € exp(s|x|),¥ k> 0 and some s > 0
(iii) g(x) &> exp (8]z]), ¥ s> 0.

The first case where & finite moment higher than second exists has been
dealt by various authors. Von Bahr (1965) considered convergence of
moments with g(z) = |x|¢ ¢ > 0. Michel (1976) derived non-uniform rates
with same g in i.i.d case and used these to find a normal approximation zone,
ie. a zone of {, where 1—Fu(ly)~®(—t,)~F,(—t,),t,—>00 and to
find out rate of moment convergences. His results were extended to
triangular array of independent random variables with slightly more general
g by Ghosh and Dasgupta (1978), the results were also extended to
non-linear statistis in general. A non-uniform L, version of Berry KEsseen
theorem was also derived.

The situation (ii) has also been studied extensively, e.g., see Linnik
(1961, 62), Nagaev (1979) in the intermediate case and under the assumption
of existance of m.gf by Chernoff (1952), Plachky (1971), Plachky and
Steinebach (1975), Bahadur and Rao (1960), Statulevicius (1966), Petrov
(1975) ete. That the necessary and sufficient assumptions for the normal
approximation zones are the same is shown in Dasgupta (1989) with allied
results.

In this paper we study the situation (iit) when m.g.f. of the r.v’s exist
but the r.v’s may not be bounded. We only partially cover the spectrum
(ili) as it turns out that better result may not be possible in general even when
the r.v’s are bounded, see remark 1. Also since it is known that normal
approximation zone, i.e., the zone of ¢, such that 1—F (¢, ) ~®(—¢,)~F (—t,)
t,—> 00, cannot be extended in general, even for bounded r.v’s compared to
weaker assumption of the existance of m.gf. (see e.g. Feller p-520, (6.21))
we shall not proceed to study normal approximation zone in this case which
has already been considered in Dasgupta (1989).

We shall assume without loss of generality

EXqy=0npl, 1K1 n oo (1.2)
and
lim »=! s > 0 where &} = ﬁ E X3 oo (1.3)
- w ]

A Z2~-9



200 RATAN DASGUPTA

With the assumption that all the odd order moments are vanishing j.e,
EI§?+]‘=0V%> 1,1<i<n!m=ll2l3l”' oo (1.4)

we shall show that a sharper result is possible. As one may note this is sagjg.
fied for symmetric r.v’s.

In section 2 we prove the results for independent r.v’s in a triangular
array and these are generalised to non linear statistics in Section 3. As for
example linear process is considered in Section 4. The implications of the
assumptions made and some examples are discussed in Section 5.

2. 'THE RESULTS ON THE ROW SUMS OF RANDOM VARIABLES
IN A TRIANGULAR ARRAY

We start with the following theorem :

Theorem 2.1. Let {Xns:1< i n,n > 1} be a iriangular array of
r.v'8 where variables within each array are independent and satisfy (1.2)—(1.4)
and

1 =n
sup (njepy® — % EXP < I™ (2m)! [ m!
nz1 n g
1<igC2,m=2,3,... oo (2.1)

then. there exist a constant b (> 0) such that

| F,(0)—P@) | < bexp(—8(1—I1), —0 < ¢ < 00. e (2.2)

Kemark 1. The bound in (2.2) cannot, in general, be substantially
improved, even for bounded r.v’s is evident from the fact that F(t)—®()

= 1-0(t) for ¢t > a n'2, ‘e’ being sufficiently large and X,’s bounded.
~ (2m)~V3 1 exp(—12/2), t—> 0o.

For a particular r.v X, (2.1) implies F exp(cX?) < oo for some ¢ > 0, which
i turn implies that the c.f of X is an entire function of order < 2, possibly

having zeroes (see Feller, 1969, 498-499). In the followings b represents &
generic positive constans.

Proof of the theorem. Since 1—®(f) < bj¢|—t exp(—i2/2) sufficient to
show that

P(s;1 8 > t) < exp (—#(1—I1)), ¢ > 0. . @3)

Now

P18, >0 < 11 i exp(—ha, ) . 24)

fm]
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where
o= Elexp(h Xy)],+=12,...,n. (2.5)
Let % = /s, then
P18, >1) < ( ‘li ﬁc) exp (—#). e (2.6)
Now
J A< exp (B ifl) e (2)
8INce
ng X 5 oLs S (™ 1
A< IS T gy (7 BEXR) < E (SE) o

from (1.4) and (2.1). Hence (2.3).

Remark 2. If odd order moments are von-zero, still we may have

—he, —hi, he
i< Ble ™He 1‘)€2m2_'-.0 Gm) | E XX

P(s;1 8, > 1) & 2% exp (—#(1—I-1)). . (2.8)

Hence we have the following.

Theorem 2.2. If the assumption (1.4) ts omitted in Theorem 2.1 then
| F,()—®(t)| < b2% exp(—8(1—12)) o (2.9)

In the following we continue to assume that odd order momenis are

zero, our nexb theorem states moment type convergences of Y, = |s;1 &, |
to that of 7 = | N(0, 1)].

Theorem 2.3. Let the assumptions of Theorem 2.1 alongwith inf n~1 8§ > 0

be satisfied, let g : (—o0, 00)— [0, ), g(%) even, g(0) = 0 be such that B g(T') < oo
and

g (%) = O {(1+z)2? exp(a®(1—-12))}, 2 > 0,6 > 0, o (2.10)
Then

| E g(Yu)—E g(T| = O(n~?*) e (2.11)
where
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Proof. Under (2.1) since the m.g.f. of X,; exist (as Sy < oo for fixed )
we have, in view of inf %! s2 > 0 and (1.4) with m-= 1, by an application

n>31
of Theorem 2.2 of Dasgupta (1989),

| F () —D()| < b exp(—i32)r,, 0 < |} < My o (2.12)
where r, = (n-3 M3) V (n~22), M, = O (nl/4).

To see this note that from (2.6) of Dasgupta (1989) for 0 < ¢ < an!/4 where
¢« > 0 one has [¢]! Jexp(O(n1tt)—1| = On~) = O(n~1M}) with ¢t <
anV/t = O(M,). In the same region of ¢, exp(—#3/2+4-O(n—24))nV2 < b exp

(—#2/2) V2 and ';3 P(| Xpus| > rs,|t]) < b|2]~2 e ™81/ for gome #* > 0
§wi

e_i‘a’2 for t < anl/s,

gince m.g.f. exists < bn~VA
Again from Theorem 2.1,
| F () —P()] < bexp(—#(1—I"1)), M, < [t} <oo. ... (2.13)

Hence with the representation

|Bg(Y,)—E g(T)| < f’ 7O P(jar 8,] < H—P(IN@, 1)| <] d

(2.14)
and that
? (14-2)2% de < oo, 5]: (14+-2)1~% de = O(M ;%)
we have
| E 9(Y,)—E g(T)| = O(ra)+O0(M?) oo (2.15)

Equating the order of M ¢ and »,, the result follows.

The following theorem provides a non uniform L, version of the
Berry-Esseen theorem.

Theorem 2.4. Under the assumptions of theorem 2.1 for any ¢ > 1

lexp{tf(1—1-1)) (14 [£] )-C+/D (F_()—D(E))llg = O®—*) ... (2.16)
where & > 0 and 8* is defined in Theorem 2.3.

Remark 3. The bound in (2.16} is quite sharp. For symmertic point
binomial variable this asserts

I

exp( 5 (E+ ] yortionm, ) — o0

== O(n"‘lfﬂ)

a
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whereas the weaker known result given in Bhattacharya and Rae (19%8)

gtates

F.()—®() | < ( ?

I n()""" )I\exP —-..Z..)_
The proof of (2.16) follows along the lines of theorem 2.3 expressing Lh.s. of
(2.16) in integral form.

Nexi we consider moment convergences and L, version of the Berry-
Egseen theorem when the assumption (1.4) is not satisfied i.e., odd order

moments are nNON-zZero.

Theorem 2.5. Let the assumptions (1.2), (1.3) and (2.1) be satisfied.
Then for any g :(—00,00)-> [0, 00), g(x) even g(0) = O such that E q(T) < oo

and
g'(x) = O(exp\zv)), z > 0 . (347

and 0 < v < min(c’, (1—11)) = v* the following holds
| Bg(Y ) —Bq(T)| = O(n-2%) . (218
¢’( > 0) being a constant depending on distributions of {X .}, via

c** = min 8up — E [(2r/3)E | X p; | 2exp(2r | X pi| )—1]r.

O<cr<cm a1 §=1

[Note that since k{(r) = sup — )3 E|X,;)%exp(2r| Xn|)T o0 a8 ¢ T oo there

nal'n' -l

' % . 3 s __
exists a 7* such that »* = ek hence ¢** < —r*[2 < 0.
Proof. TFirst of all we shall show
| F,(6)—®@#)| < bn 12 exp(—v" ##), —00 <t <00 (2.19)

then the theorem will follow from (2.17) with the representation (2.14)

Without: loss of generality let £ < 0. Since the m.g.f. of X, exist under
(2.1) delating the last term of r.h.s. of (2.2) Theorem 2.1, of Dasgupta (1989)
and following the proof of Theorem 2.6 of Dasgupta (1989) we have

| F.(t)— ® ()| <bn V2 exp(—at) (2.20)

for £ (p—2a)log n,0< a <%,0 <p < 1 and ¢  f(p}n'”* where fip) > 0.
Nimilarly for ## < (p—2a)~! log n from theorem 1 of Ghosh aud Dasgupta

(1978) choosing ¢ therein sufficiently large,
|Fa0)— @ (8)] < b w22 exp(—ay), 0 <y <

[221)

N’lll—'
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There ¢ is taken to be sufficiently large to make (p—2a)2 € cK/2 and the
order of the second term of (2.1) of Ghosh and Dasgupta (1978) is

z P(| X ] < 73,t]) < bJt] 2" I gee (5.1), (5.2) ; 0 < ¢ < U4,

< b2 g-renid
< b2 e 122, for 2 < (p—2a)-Llog n.
Also from Theorem 2.2
| Fa(t)— @ (6)] < b2%exp(—3(1—177)
2 bn12 exp (—a,?), a, > 0 o (2.22)
if 2 > A%2n for some A depending on [ and a,, 0 < a, < (1—1-1),
Finally for the zone f(pn'? <t <A 72 we imitate the proof of

Theorem 2.5 of Dasgupba (1989) with g(x) = exp (|z|) and A = 2141 log
(tg(rs,t)) ==2r,0 < r < oo to obtain

[ F () —®()| < b {t glrs,g))-t+hkw)s

<b en,,t(ark(r)ls—n
where k(r) is defined in the Theorem 2.5
Shentt* " < —1r*2 < 0 e (2.28)
So for f(p) n'/2 <t < Anl2, 1 = Og(n/?) = Os,), one gets
| Falt)—® (1) | < bn1/2 gmote® . (229

¢* > 0 depends on ¢** and A. (2.19) follows from (2.20), (2.21) and (2.24).
Hence the theorem.,

The following corrollary on & nonuniform L, version of Berry-Essoen
theorem is also immediate from (2.19).

Corrollary 2.1. Let the assumptions (1.2), (1.3) and (2.1) be satisfied.
Then for any 6 > 1 and q > 1.

I+ 16127 exp (*8) (Fo(t)—® @)y = On—3) ... (2.25)
where v* 18 defined in Theorem 2.5.

3. RATES OF OONVERGENCE FOR GENERAL NON-LINEAR STATISTIOS

This section generalises the results of section 2 for non-linear statistics
of the form

T,=818,+R, (3.1)

where S, = > KXoty 83 = 2‘: EX,‘, inf #1482 > 0

§=l sl
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X,go Xngs ooos X,, being independent r.v’s with vanishing expectation. .Also
let
E(R3™) < c¢(2m) n~™ (log n)hm .. (3.2)

for some k> 0,m=1,2,3.. where ¢2m) < L™m! for some L>1. It
may not be out of place to mention that similar type of analysis are carried

out for T, with ¢(2m) = O(1) for some m 2 1 in Ghosh and Dasgupte (1978)
and with ¢c(2m) < L™ (2m) ! in Dasgupta (1989).

Because Of (3.2) With 0(2'm) g me! we have the fOﬂOWing

2
s:p E[exp ( An'/2 (log ﬂ)‘h/"’lRﬂ_l) ]

= §up [l-l— E ()l n1/2 (log n)-h/2 )2'” E Rg™Im | ]

7% m=1

Qo
14+ 3 AL <o if 0 <A< L .. (3.3)

M=l

Consequently

P(|R,| >a,(t) =0 ( exp (-- (/lnm (log n)~h/2 a,,(t))z) ) 0< A< L,

(3.4)
Also note that due to representetion (8.1)

|1P(Ty < )—® )] < [Plsg? 8, < t10,())—DltLa, b))
+1® (t-£0,(6)—D ()| +P(| B, | > a, (). . (8.5)
w.olg. let ¢ > 0 ard take a, /t) = n~V2 (log n)#+1/2 ] 2-1 then
| P(T, < 8)—P(t)]| < bn~VY2 12 exp(—t2/2)+b n-1/2
(log n)#+1)/2 ¢ exp(—¢2/2)+b n~1/2 exp (—i2/2) oo (3.6)

for #2 < k& log », using Theorem 2.1 of Dasgupta (1989) and (3.4), where & may
be taken to be arbitrarily large.

For £ > k log n, under the assumptions of Theorem 2.1 oue has, using
(2.2) and (3.5) with the same choice of a,(t) as above
| T,  1)—0()| < bnV2 exp(—t3(1—I1)p)
+b n=% (log n)+1/2exp(—£3/2)
+b n~12 exp(—13/2) (3.7)

where 0<p<1 since exp(—t*(1—-I"1)) < 72 exp(—3(1—I-Y)p) if
# 3 (2a(1 —p))~* log n, which can be ensured choosing & sufficiently-laxge.
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As a consequence of (3.6) and (3.7) we have the following non-uniform
bound over the entre range of &.

Theorem 3.1. Under the assumptions of Theorem 2.1 and (3.1), (3.2) theye
exists a connstant b( > 0) depending on 0 << p < 1 such that

2T, < )—® ()] < bnVlog n)hH0/2 exp(—(1—I-1)p), —00 < ¢ < oo.
(3.8)
Subsequently the following two theorems are immediate from (3.8) taking
p>p.

Theorem 3.2. Under the assumptions of Theorem 3.1 for any g : (—oo, o0)
—» [0, >0), g(x) even, such that Eg(T) << 00,g(0) = 0,T = N(0, 1) and

g'(x) = O (exp(x*(1—I"1)p*)), 0 <z < 0 .. (3.9)
and for some p*, 0 < p* << 1, the following holds
| BEg(T,)—Eg(T)| = O (n%(log n) #+1)2), .. (8.10)

Proof of the above follows from (3.8) along the lines of (2.14) since the
representation (2.14) remains valid even if ¥, = g5+ S, is replaced by a general
nonlinear statistics 7', converging weakly to a N(0, 1) variable 7'

Theorem 3.83. Under the assumption of Theorem 3.1
lexp(t*(1—I-)p) (P(T, < )—D()llg
= O(n%(log n) WV2) forany q > 1land 0 << 1. ... (3.11)

Next we consider the case when odd order moments of X, are non-vanishing.
As before for ##  klog n it is possible to obtain (3.6). However for
t* 2 k log n one may use (2.19) in (3.5) with the same choice of a,, (f) viz.,

a,(t) = n~V3(log n)R+1)/2 | £] A-1 to obtain
| P(T, < )—@ ()] < bn~Y2 exp(—v"?)
+-bn~V2(log n) #HV/2 | ¢| exp (—#2/2) +bn-12 exp(—#2/2) ... (3.12)

For t* > k log n, where »* is defined in Theorem 2.5. Hence combining (3.6)
with (3.12) it is possible to obtain the following non-uniform bound.

Theorem 3.4. Under the assumptions (1.2), (1.3), (2.1), (3.1) and (3.2)
there exists a constant b ( > 0) such that

| AT, < t)—@ ()] <b nV2 (log n) W2 |¢] exp (—p*h), —00 << OO
where v* i3 defined in Theorem 2.5. . (8.18)
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Hence we have the following theorem from the representation (2.14)
and (3.13).

Theorem 3.5. Under the assumptlions of Theorem 3.4 and g satisfying the
conditions of Theorem 2.5, the following holds

| Eg(T,)—Eg(T)| = On='2 (log n) #+1/2), oo (3.14)
The next theorem is also immediate from (3.13).
Theorem 3.5. Under the assumptions of Theorem 3.4, for any & > 2
11418 )~ exp(v* &) (P(T,, < 6)—D (t))lg
= O (nV2(log n) (h+12) .. (8.15)
for any q > 1, where v* is defined in Theorem 2.5.

4., RATES OF CONVERGENCE FOR LINEAR PROCESSES

a
For a sequence of constants a; with ¥ a2 << oo consider
fm1

0 )
Xn = El a»;E,;_iﬁLl or -Xn == 151 aizn#_l see (4:.1)

where £¢'s are pure white noise. w.0lg. assume E% =0 and E & =1.
Under the assumption of finiteness of (C24-2)th moment of ¢ Babu and Singh

(1978) proved the moderate deviation result decomposing the sum S, = > Xy

as follows =
;] n
S, = L Xg+ X (X¢—Xy) o (4.2)
where §=1 §=1
m
.X msn — '§1 a‘gﬂ-—‘-l-l

The representation (4.2) is clearly of the type (3.1). Now assume
EBEm L 1M (2m) | [m \. . (4.3)
Then by Minkowski’s inequality

o 2m 00 om
E — A4 ) 2m '
2 E—X)| < (Elﬁlml) EE™ < Lmm ! . (44)
for some L > ¢ assuming
Z iag] <oco. . (4.B)
gl
: ’ ”
Ag&l]], fOr 8“ T E X“ — E tﬂ—‘cl-l 5‘ -y 2 t‘ E‘
$=1 {1 $=1

A 2-10
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where

one may use the results of section 2 for the independent r.v’s #. Observing
that

1 ]
— ‘51 (2" —y Z°m oo (4.8)
where
oo
Z= X aq4#0,
i=1

which for m = 1 implies lim »~! V(8,) = Z2, one may also check that (2.1)
with sup replaced by lim is satisfied for r.v’s#; &4 under the assumption
(4.8). Normalisation of §, in (4.2) may be done by [V(Ss)]~V2 since for
nZy = V(S,), |Z3—2Z%| =0 (n1) as shown in Babu and Singh (1978).
Therefore from (4.2)

[V(S,)I7V2 8, =[V(8,)]7/2 8,+R, e (4.7)
where

R, =[V(S)I"? = (Xi—Xg)

$=1

satisfies (3.2) with 2~ = 0. Consequently all the results of Section 8 hold for S,

5. DISOUSSION AND SOME EXAMPLES

The assumption (2.1) imples that each of the random variables in the
triangular array has an entire characteristic functon. To see this write

¢, = (82/n)2, ¢, > 0 &% n. Then from (2.1) one gets for ¢ > 0

sup n-t B B oxp(c(Xmijon)) =112 (1+ E B om(Xnife,jim/m ! )

n=1 =1 §=1 m=1

=1+ 3 (02 E Bom(Xpc,)m/m 1) <1+ S omi-m2m) lfm 1) ... (5.1)
m=l m=1

§=1

Since for large m, m | ~ (2m)V2mm+1/2 ¢~m the above sum is finite if ¢ is suffis

ciently small e.g. if 0 <c<1/4,1 <1 2. This is turn states that there
exist ¢* = ¢, = ¢/c2 > 0 for which

Bexp(c*X3) <0, t=1,...,0 e (8.2}
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which implies that the characteristic function of X,¢ is an entire function

of order < 2 (see page 498, Feller Vol. II); (5.2) also specifies the tail behaviour
of the distribution of Xaz;.

P(|Xnt| > x) = o(exp(—c” %)), 2— 0. . (6.8)
Some examples are provided below where (2.1) are satisfied.

Example 1. Xp¢ are uniform on the range [—Fkyg, kag] where kys € [a, b]
a,b > 0 are to be specified later. Then

EXT = ki |(2m--1).
The L.h.s. of (2.1) in this case turns out to be

sp (v 2 Epemtn) + (1 3 BT ¢ I gapm g
nali - =1 3 2m+-1

Require it to be =™ (2m) !/m ! so that (2.1) is satisfied. Therefore one may
require

M

2m-+1

(2(bja))zm L 2m) ! jm ! m = 2,3, 4,....

From Stirling’s approximation it is easy to see that r.h.s. of the above hss
higher order of growth than that of Lh.s. So the restriction or @b comes

from first few m. For m = 1,(2.1) is trivially satisfied. For m = 2 this
states

I-12(b/a) < (20/3)/4 = 1.6068
For m =3  I-12(bja) < (280/9)V6 — 1.773
For m =4  I-Y2(bja) < (1680/9)/8 — 1.923
For m =5  I-V2bja) < (12320/9)V10 — 2.059

As expected upper bound increases with m and therefore the restriction on
@ and b comes from the first bound for m = 2. This states

bla < 1.6068 I-1/2,

For I =2 one gets bja < 1.13622; a < b. Here the choice of kes's are

completely \arbitrary ; kus ¢ [a, b] with the restriction that bja < 1.6068
-1z, g < b. Theorem 2.1 holds for Xas's with 1 <12 in this region

of ¢ and b,

Example 2. X% has probability density function
f(@) = Egillens — 12]);  |2] < ks
=0 otherise
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where k4 €[a,b]. This means that the density function has a triangular
shape with vertices (kp, 0), (—k,, 0) and (0, k73).

Here EX,; = 0, EX%® = k*%/((m-+1) (2m4-1)).
The r.h.s. of (2.1) then becomes

sup{ n~t > k%n/((m+-1) (2m—|—1))} —:-( (n—t 5 k,?,-/ﬁ)m

n-sl f=1 {=1

gm p . om
(m+1) (2m4-1) (_)
In order that this is < I-(2m) ! /m ! one may need

m(z—w bjayim < (2m) ! [m ! .. (5.5)

As in Example 1 the restriction on ¢ and b comes from first a few m. For
m = 2, (5.5) states
-2 pjg < 514 = 1.4953
For m =3 [-12bja < (140/9)1/6 = 1.5799
For m =4 [I712bja < (175/3)1/8 = 1.6624.

The restriction for m =2 is most stringent : bja < 1.4953 I-1/2, g < b.
Theorsm 2.1 holds for X ,; in this region of a,b. For | = 2 this states
bla < 1.05737.

This bound for b/a is more restrictive than that in Example 1. This is
due to the change of the type of denstiy. In both the examples, for i.i.d

set up with a =bie., ky=~Fk, the upper bound of{X|’s may be {aken
arbitrarily large.

Kxample 3. (i) Xu4 == X¢ where X; is symmetric point bionomial variable
1.e., X¢=41 with probability 1/2. EXm/(EX2m|EX%)m = 1, (2.1) is
satigfied with [ = 2,
(ii) Xp¢ = X, where X4 is asymmetric point binomial variable
Xs = —a with probability g/(x+p8),a, 8 > 0
= f# with probability a/(¢-4p).

The mean is zero and the variance is af. Without loss of generality take
B = a1 so that the variance is 1. Then

BXm (aam_l_aa—zm) /(1 +4-0r2).
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We need EX2m L I-™(2m) ! /m!. This imposes some restriction on c.
As before r.h.s. has higher order of growth than 1L.h.s. For m = 2 one needs
Ata? <12 F3(1+a?). For =2 one gets atta? 3(1+a?) ie.,
0.518 < o < 1.9305.

For m = 3 the restriction with I =2 is a®}a—4 < 15(14-a2). This is
satisfied by a on .518 < a < 1.9305. The restriction on « is more stringent
for m = 2. In this case the random variable is not symmetric unless
a=pf =1. Theorem 2.5, Corollary 2.1 hold for X,; with ! == 2 whenever

518 < a < 1.9305.

Example 4. Truncated cauchy distribution: X, ;= X; where X;~.

1
f(x) = (2 tan~)™" — ey lz] <k

EX? = (kftan~1k)—1, BX?*m L k*m—2[(k/tan~1k)—1]
EX#n[(EX2)m  k2m=2[(k/tant k)—1]~tm~D)  (k tan —1k)m~1,
As m increases [=™(2m)!/m! has higher order of growth than that of (ktan—1%)™.

So the restriction on k& comes from first few m. As for example, for m = 2
with I = 2 one may need ktan—1k < 2-241 /2! = 3.

For m == 3 one requires (k tan—1k)? < 15 or, &k tan~1k < 3.87.

The first restriction is more stringent :k tan=k < 3 or, k¥ < 2.5158.
Therefore Theorem 2.1 holds for X¢ with k < 2.5158 and [ = 2. Incidentally

for a standard cauchy variable Y,

P(Y e(—F, k)) = -72? pan-1k >0.769 for k = 2.5158.

—i%g

Example 5. Let X = ¢ with probability C1. e "'+ =0, 11, 2, 43,

a 2
44,..., where C = X e i

tm — 0

The following result of Poisson (1827) may be found in Whittaker and
Watson, page 124, chapter VI :

< o0 ;8 >0andlet X, be i.i.d copies of X.

w0 o 2.2

p e—nzﬂ--mp — (ﬂ-/ ﬂ)lm eaaﬂ {]_ +2 OZD e_n * ” cO8 2‘]@1!'&} s
n=—0 n=1

2 e = (mw/f)*/? {1-]—2 2 e } . (5.6)
7} =00 1

Wwhere the second summations in brackets go to mero very fast as f decreases
(see Davis, page 117).
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This gives
“_;E_m e—-n2ﬁ+hu (m[B)Y2 e 2/(45) {1_|_2 El e—nzﬂﬂlﬂ CcOS (mrh/ﬁ)} e (8.7)

For fixed £ denoting the lh.s. as f(h) one gets f(0) = 0 as expected since
EX = 0. Also

var(X) = EX2 = C-1f" (0),
where

0 _iﬂlﬂ

¥y — (m]BY2 (1+0(1)) . (58)

f=--00

where o(1) represents negligible term for esmall £ (F < 1/2 suffices). Now

17 (0) = (m|B)¥2. -—5. (@[ 2n%)p2 ,21 e 1 gy X Pl oo 21;?.
= mpP® 35 (1+o(1)
Therefore
var(X) = %-3 (1+o0(1)). ... {b.9)

From (5.7) and (5.8) one gets

EehX = /8 (14-0(1))

In view of the above, (5.9) and (2.7), Theorem 2.1 holds for X4 with any
0 <I!< 2. It maybe mentioned here that we ersentially used (2.7) to obiain
Theorem 2.1.

Example 6. Linear combination of random variables satisfying Theorem
21: Let {Xni, Yui,2 2 1,1 < 4 < n} be two independent triangular array
of random variables satisfying the assumption of Theorem 2.1, then for any
fixed real co-efficients «; and a,, the theorem holds for Zy; = ot; X pi-+0g Y mi-
Now Xy; and Yu¢ have mean zero. Theorefore Zy also have zero expecta-
tion. Note that to prove Theorem 2.1 we used only the equaticn (2.7) i.e.,

Cliil Fs < exp(hPsyfl), % h € (—oo, o) ... (5.10)

where f = E exp(hXn(), &t = X EX3,

§=1
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Similarly for the second set of variables ¥y

n
I1 g7 < exp(h®s,2l) . (611)

=1

n
where Bi = E exp(hYni), 83° = ‘ZIE Ya:

Then denoting 87 = F exp(hZ;), one gets

n
[T gy = 1L B 1L B ™7™ < exp(i(odol-+ast)l
¢=1 {=1 §=1

from (5.10) and (5.11).

Now denotirg 8,2 == S E Z2,,

n n
5% =0} T EXk+a} S EYY = odel-+ode)?

=1 i=1
Hence

1 B < exp(hss2fl).

t=1
Therefore Theorem 2.1 holds for the random variables Z,;. Although shown
for the linear combination of two arrays of random variables it obviously

holds for arbitrary number of combinations of variables in t{rianguler arrays.
The proof is similar.

Since (2.1) with I = 2 is satisfied for N(0, o®) variables, one may take
N(0, 0%) variables in the linear combinations with other variables satisfying
{2.1). This makes the range of the combined variables unbounded in both

directions.
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