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TAIL BEHAVIOUR OF DISTRIBUTIONS IN THE DOMAIN
OF PARTIAL ATTRACTION AND SOME RELATED
ITERATED LOGARITHM LAWS
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SUMMARY. Let F be a distribution function and let (S,) be a partial sum sequence of
ii.d. random variables with the common distribution #. F is said to be in the domain of partigl
attraction iff there exists an integer sequence (1) such that (Sy ;)* properly normalized, converges

to a non degenerate random variable. Under certain assumptions on the sequence (n;) we

oharacterize the tail of F' and obtain iterated logarithm laws for (S,) and ( ’ m:.f‘ 18k!).
S n

1. INTRODUOTION

Let (X,) be a sequence of independent identically distributed (i.i.d.)
random variables (r.v.) defined over a common probability space (Q, &, P)
and let S, = S X $»n 2> 1. Let F denote the distribution funetion (d.f.)

Jeu]
of X,. Let (n;) be an integer subsequence and let (aﬂj) and (B”j) be sequences
of constants (Bﬂj—-zr o0 a8 j—» 00). Set Z”j = B;;Snj—a”j. When (n;) coin-
cides with the sequence of natural numbers (n), for proper selection of (a,)
and (B,), if (Z,) converges weakly, then it is wellknown that the limit law
i3 stable (or possibly degenerate). For some subsequence (n;) and for proper
selection of (a “5) and (B _n’), if (7 ﬂ’) converges weakly, then the limit law is

known to be an infinitely divisible law (see, ex. Gnedenko and Kolmo-
gorov (1954)). Kruglov (1972) considered sequences (n;) satisfying (i) ny <

Ny ) 2 1, and (ii)jlim Niwqfns = r( > 1), and characterized the class #
- X

of all infinitely divisible distributions which are limit laws of (Z “j) . He
found that the members of ¢ have many properties of stable laws.

It may be noted that the class of all stable laws is included in &. In
particular, if lim ny,/n; = 1, Kruglov (1972) established that (i) the
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limit law of ( Zﬂy) is a stable law and (ii) the sequence (Z,), properly norma-

lized, will itself converge to the same stable law. Consequently, the sub-
sequences of our interest under Kruglov’s setup are those subsequences (ny)

with lim 7nyq/ns =7, r > 1. Here Kruglov has characterized the limit
j— @

distribution G as either normal or as an infinitely divisible distribution with
the characteristic function ¢ of the form
log (t) = iyt+ [ (s —1- l'ﬁa
where 7y is some real constant and H is a spectral function with H(—z)
=20, (logz), x>0, Hx)= —2* Oy(log 2), >0, 0 <a <2 and 6,
and 6, are periodic functions with a common period such that for all x> 0
and b > 0, e*® Oi(x—h)—e™® Gi(x+h) 20, s < Q) < dy, 2> 0, ¢ =1, 2,
¢y tcy > 0.
When the d.f. G¢ & is non-normal we denote it by G,, 0 < a < 2.
Throughout this paper, F is in the domain of partial attraction of G, means

that the sequence (Z ﬂj) converges in distribution to @,, where (n;) satisfies

) dH(@),

the conditions ny <my,, j=1,2,... a.ndjlim Nyfny = r( > 1). This is
— o
denoted by F e DP (), 0 < a < 2.

In the next section we obtain an asymptotic expression for the tail of F
when F ¢ DP(x). Assuming that @, =0, in Z“j, 3 2 1, we establish a law

of the iterated logarithm (1.1.1.) for (S,), which is similar to Chover (1966).
Under a further assumption that X, is symmetric about zero, we prove a 1.i.1.

for A, = max |Sg|, n > 1, which is of the form of Theorem 1, Jain and
IS ksn

Pruitt (1973). Even though the weak convergence is available only over the
subsequence (ng), the iterated logarithm results have been obtained for the
sequences (S,) and (4,).

For any u > 0, by [4] we mean the greatest integer < u. 1i.0. and a.s.
stand for infinitely often and almost surely. Throughout the paper, ¢, e,
J (integer) and N (integer), with or without a suffix, stand for positive
constants.

2. TAIL BEHAVIOUR OF F

Theorem 1: Let FeDP(a), 0<a<<2 Then there exists o slowly
varying function L and a function 0 bounded in between two positive numbers
bl’ bﬂ: 0<bl< b3<00, mhtkart

lim ZU—F@)+F(—2)

S0 T 0@) -
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Proof : From the fact that F ¢ DP(x), by Gnedenko, and Kolmogoroy,
(18054) we have for any y > 0,

; I_Ti (¥ (“'Bn,?/) = y~*0, (log ¥)

and 51_1'3 (F(Bpy)—1) = —y*0,(log y).

For z > 0, which is large, choose an integer j and a fixed positive number g
such that B, Y Lz <& B”j_l_ly. Define T(x) = 1—F(x)+F(—=x) and ¢(y)

__ __Oi(log y)+-6,(log y)
0,(log ky)+6,(log ky)

T(Bn_,,,,,l?l) T(x) T'(Byy)
T(EB,y) ~ Tlkw) < T(kB,,, 9)

for any & > 0. We have for any k > 0,

80 that

nyy (kB y) T(kx) ~ ng Mgy T (kBp, ) -

Using the fact that n; ,/n; — » as j — 00, as £ —» o0 () — o0), one gets

Kory) < lim inf T(x) < lim sup 2{z)

= minf mon < lUmsup grps < rkdey).

Since ¢¢ < Gi(x)  dg, x > 0,1 = 1, 2, we have

. . T(x) : T(x)
_1 L -
ket € I:m Tf Tez) < 1:211 SUp 7 %)

where ¢ = r(d;+dj)/(c1+C5).

< K,

Now set T'(x) = «—= H(x). Then we have the relation

. . H(zx) : H(x)
I e < AP e <° - 0

By Drasin, and Seneta, (1986) one now finds that

: H(x)
2 L@0w)
both 8(x) and 1/0(x) are bounded for large x. Hence we have 7'(x) = o
L(z) 6(z) and the proof of the theorem is complete.

= 1, where L is slowly varying (s.v) at co and @ is such that
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3. ITERATED LOGARITHM LAWS

In this section we obtain two 1.1.1. results. For Theorem 2 below we

assume that a, = 0 in an. When a < 1, @y, can always be chosen to be

zero. When a > 1, a, becomes n;EX,. Hence one can make @y, =0 by
shifting EX, to zero. Consequently the condition Ay, = 0 18 no condition

at all when ¢ # 1, 0 < a < 2. However when a = 1, this assumption res-
tricts only to symmetric d.f.s F ¢ DP(1). For Theorem 3 below we further
assume that the d.f. F' is symmetric about zero. We first prove a lemma
needed in presenting our main results.

Lemma : Lel B, be the smallest root of the equation : nT(x) = 1. Then
B, =~ 0% l(n)n(n), where l is a function s.v. at o0 and. 9 is a function such that
both 7 and 1|y are bounded.

Proof : For z large, we have by Theorem 1,
T(x) ~ x—*L(x) 0 (x), b; < 0(x) < b,.
Hence there exists a X, such that for all x > X,
byx*L{z) < T'(z) < byx*L(x) e (2)

Let B,, and B,, be respectively the smallest roots of nb,x*L(x) =1 and
nb o *L(x) = 1. Then by the properties of regularly varying functions,
one gets By = bllanlitl(n) ¢ = 1, 2, where I is s.v. at oo. Relation (2) im-
plies that B,, < B, < B,,. Hence B, = n1/%l (n)y(n) where g(n) is bounded
between blle and b}/s.

Theorem 2 : Let FeDP(a), 0 < a < 2. Then

P (lim sup|Bo18, | 1109 tog 8 = ew) =1 . (3)

7 ==) @0

Proof : In order to establish the theorem, equivalently we show that
for any ¢ with 0 < < 1,

P(|8,] > B,(log n)1+%.0.) = 0 . (4)
and
(z—1)
P(]18,] > B,(logn) = t0.)=1 ... (B)

By Feller (1946) and by Kruglov (1972), (4) and (5) hold once we show

that

- P(1X, | > B,(log n)}+*V% 10.) = 0 .. (6)
P(|X,| > B,(log n) §.0) = 1 e ()
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From Theorem 1 above, one can find an integer N, such that for all n > N

1

P(|X,| > B,(log n)*+/) < cyL(B, (log n)3+9/%)B (log n)+

Using the fact that L((log»).1+/2B,) = 0((log n)** L(B,)) and L(B,)
I~* (n)=0 (1) which follows by the properties of s.v functions (see Feller, (1966)
or Seneta (1976)) one can show that

lim sup nlog n)4+/» P(| X,,| > B,(log n)**/) < co.
# =)

Consequently, > P(|X,| > B, (log n)3+/%) < o0, which in turn establishes
Ne=}
(6) by Borel-Cantelli lemma.

Again by Theorem 1, there exists a N, such that for all n > N,,
P(]|X,] > B,(log n)*~*/%) > ¢,L(B,(log n)3—*/2)/Bs (log n)*-*
By arguments similar to the above, one can show that

lim n(log n)*~*2 P(| X,| > B,(log n)#—*/%) = oo, e (8)
N ~—p

Now (7) follows from (8) again by appealing to Borel-Cantelli lemma.

Theorem 3 : Let F be a d.f. symmelric about zero and let F ¢ DP(x),

O0<a<2. Let ¥p=DBugrgny ® > 3. Then there evists a finite positive
constant ¢ such that

im inf Yyt A, = ¢ a.s.

Proof : We now establish that for some constants ¢; and cg 0 < cs
< Og << 0,

cs < Iminf y;1 4, < ce as. .. (9)
n =) w

In view of Hewitt-Savage zero-one law (9) implies that lim inf 14, is
i =) @

a.8. & finite pogitive constant. The proof is on the lines of Jain and Pruitt
(1973.) First we prove that

P74, < c5i0.) =0 ... (10)
Since F ¢ DP(x), we know that for all 2 e(—oo, 00),
lim P(S B )=@ .. (1
i e ( s <@ “J) () (th

where ny < 14,4, 5 = 1, 2, ... and nyy,/ny—> r a8 j—> 0.
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Let my be an integer sequence such that n; = [my/log logm,). Set N;
= [my/ng), =1, 2, ... Then for any ¢; > 0,

Ny
(A"'J S % ;{rm’_l) C ;E.l (|S‘“f_-8(‘-llﬁjl <26 '/""'1-1)'
Therefore N,

P(4m < cs¥m_) < (P(181 <20m ))

i1

Now proceeding as in Jain and Pruitt (1973) one gets for all j > J,,
—ON

P(Am, < '#mj_l) e

where 6§ > 1 is some constant. By Kruglov (1972) we have
ny = ri%) e (12)

where £ is a s.v. function such that f(j)—» 1 as j— 0. Consequently one
gots N;~ loglog n;~log j. One can find & J, such that for all § > J,,

P(A <Y

1—1) ST

Now 6> 1, implies that 3 P(A m, <Y, m, ) < 0. By Borel-Cantelli
=1 -1

lemma one gets
P(Amj < o5 ¥m i.o.) = 0. .. (18)

Notice that for my_ < nmy, j =1, 2,..., 4 ¥, < Awlwm,__l. Hence
(13) implies that
P4, < ¢g¥,10.) =0 o (14)

To prove the other half of the theorem we proceed as follows. Let

be an integer sequence such that ny = [2#/loglog ¢}, § > 1 and let M; = [i;/n4]

DeﬁneA k = INax Ig e :k=0: 1:2!-":M'
() 1<s<ﬂ,| kgt kn,l ’

For any ¢ > 0 and A > 0, let
k R {'S(Hnﬂ ' sllft y A (k) Q A‘b‘tj} —_— 0, 1, 2, “se) Mj-

Then we have

ol
() B C {4, < c+A, ) . (15)

A 2-11
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Using (15) we now obtain a lower bound for P(At,- < (e:-l-ﬂ)gbtj). Using the

technique of iterated conditional expectations as in Jain and Pruitt (1973),
one gets for all

E>81,A>A1&ndj> Ja
P(4, < +2)g,) > (/4™ - (16)

Observe that M;~ (loglog ny)/2. Hence for a > 1, but sufficiently close
to one, there exists a J, such that for all j > Jg3, e > ¢, and A > A,

P(A‘j é (B+A)¢"j) } (1/4)(ﬁ103 logny)/2 _— (log ,n’)—é . (17)

where 8 = (f log 4)/2. Note that § << 1. Choose 7y e(l, &-1).

Define ¢; = t_.. and observe the relation

[47]

4y S dy it DT 158,

. .. (18)

Using (17) and proceeding as in Jain and Pruitt (1973) one can show that for
some J,; and ¢; > g,-A,,

P{ max Si— S < 6 > (log n
(QI-1<"'<QJ | qj_ll wqj) ( ’

whenever 5 > J,.

From (12), there exists a Jg such that for all § > J,

— 18
P(q:-:léa:iiqfl . Saj-1| S cz'ﬁe;) 2 cqlj™(log 7y - ({19)

Since 1 < y < -1 (i.e., y0 < 1), we find that s 7% = o0.
J=al

By appealing to Borel-Cantelli lemma, (19) implies that

P max 18,—8 | < ey io) =1 .. (20)
(Qi..; <i<9i| i qj_ll %%&qj )

We now show that for any constant ¢y > 0,

P4, > op,io) =0 .. (@1)
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Qince F is symmetric about zero, we have by weak symmetrization inequality

I:’(xilq:,_1 2 Oswq, ) < 2P(|qu_1| > cgwqjﬂ).
Let 23 = c,;[rq, /2B, . and observe that z; — co as j — o0. Then we have
P(4, > o) <2P(18, | >4B, ) o (22)

From Heyde, (1967) one gets that

lim su —— . <
je P qj—F ( | X1 2 zJqu_l')

By Theorem 1 and by some elementary properties of a s.v. function,
we got

P(|8y,| > By ) < e

Observing that X z3(=€) < oo, by Borel-Canfelli lemma and by (22) one gets

j=1

P(4, >y, io) =0 .. (28)

and the proof of the theorem is complete.

Remark : As in Jain and Pruitt (1973) the exact value of lim inf 4
is not available here also.
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