TAIL BEHAVIOUR OF DISTRIBUTIONS IN THE DOMAIN OF PARTIAL ATTRACTION AND SOME RELATED ITERATED LOGARITHM LAWS

By G. DIVANJI* and R. VASUDEVA University of Mysore, India

SUMMARY. Let F be a distribution function and let (S_n) be a partial sum sequence of i.i.d. random variables with the common distribution F. F is said to be in the domain of partial attraction iff there exists an integer sequence (n_j) such that (S_{n_j}) , properly normalized, converges to a non degenerate random variable. Under certain assumptions on the sequence (n_j) we characterize the tail of F and obtain iterated logarithm laws for (S_n) and $(\max_{1 \le k \le n} |S_k|)$.

1. Introduction

Let (X_n) be a sequence of independent identically distributed (i.i.d.) random variables (r.v.) defined over a common probability space (Ω, \mathcal{F}, P) and let $S_n = \sum X_j$, $n \ge 1$. Let F denote the distribution function (d.f.) of X_1 . Let (n_j) be an integer subsequence and let (a_{n_j}) and (B_{n_j}) be sequences of constants $(B_{n_j} \to \infty \text{ as } j \to \infty)$. Set $Z_{n_j} = B_{n_j}^{-1} S_{n_j} - a_{n_j}$. When (n_j) coincides with the sequence of natural numbers (n), for proper selection of (a_n) and (B_n) , if (Z_n) converges weakly, then it is wellknown that the limit law is stable (or possibly degenerate). For some subsequence (n_j) and for proper selection of (a_{n_i}) and (B_{n_i}) , if (Z_{n_i}) converges weakly, then the limit law is known to be an infinitely divisible law (see, ex. Gnedenko and Kolmogorov (1954)). Kruglov (1972) considered sequences (n_i) satisfying (i) $n_i <$ n_{j+1} , $j \ge 1$, and (ii) $\lim_{n_{j+1}/n_j} = r(\ge 1)$, and characterized the class \mathcal{U} of all infinitely divisible distributions which are limit laws of (Z_n) . found that the members of & have many properties of stable laws. It may be noted that the class of all stable laws is included in U. In particular, if $\lim n_{j+1}/n_j = 1$, Kruglov (1972) established that (i) the

^{*}Research supported by University of Mysore Junior Research Fellowship and C.S.I.R.S.R. Fellowship.

AMS (1980) subject classification: Primary 60F15, Secondary 60E99.

Key words and phrases: Domain of partial attraction, Iterated logarithm laws, Slowly varying functions.

limit law of (Z_{n_j}) is a stable law and (ii) the sequence (Z_n) , properly normalized, will itself converge to the same stable law. Consequently, the subsequences of our interest under Kruglov's setup are those subsequences (n_j) with $\lim_{j\to\infty} n_{j+1}/n_j = r$, r > 1. Here Kruglov has characterized the limit distribution G as either normal or as an infinitely divisible distribution with the characteristic function ϕ of the form

$$\log \phi(t) = i\gamma t + \int \left(e^{itx} - 1 - \frac{itx}{1+x^2}\right) dH(x),$$

where γ is some real constant and H is a spectral function with $H(-x) = x^{-\alpha} \theta_1$ (log x), x > 0, $H(x) = -x^{-\alpha} \theta_2(\log x)$, x > 0, $0 < \alpha < 2$ and θ_1 and θ_2 are periodic functions with a common period such that for all x > 0 and $h \ge 0$, $e^{\alpha h} \theta_i(x-h) - e^{-\alpha h} \theta_i(x+h) \ge 0$, $c_i \le \theta_i(x) \le d_i$, x > 0, i = 1, 2, $c_1 + c_2 > 0$.

When the d.f. $G \in \mathcal{U}$ is non-normal we denote it by G_{α} , $0 < \alpha < 2$. Throughout this paper, F is in the domain of partial attraction of G_{α} means that the sequence (Z_{n_j}) converges in distribution to G_{α} , where (n_j) satisfies the conditions $n_j < n_{j+1}$, $j = 1, 2, \ldots$ and $\lim_{j \to \infty} n_{j+1}/n_j = r(>1)$. This is denoted by $F \in DP(\alpha)$, $0 < \alpha < 2$.

In the next section we obtain an asymptotic expression for the tail of F when $F \in DP(\alpha)$. Assuming that $a_{n_j} = 0$, in Z_{n_j} , $j \ge 1$, we establish a law of the iterated logarithm (1.i.1.) for (S_n) , which is similar to Chover (1966). Under a further assumption that X_1 is symmetric about zero, we prove a 1.i.1. for $A_n = \max_{1 \le k \le n} |S_k|$, $n \ge 1$, which is of the form of Theorem 1, Jain and Pruitt (1973). Even though the weak convergence is available only over the subsequence (n_j) , the iterated logarithm results have been obtained for the sequences (S_n) and (A_n) .

For any u > 0, by [u] we mean the greatest integer $\leq u$. i.o. and a.s. stand for infinitely often and almost surely. Throughout the paper, c, ε , J (integer) and N (integer), with or without a suffix, stand for positive constants.

2. TAIL BEHAVIOUR OF F

Theorem 1: Let $F \in DP(\alpha)$, $0 < \alpha < 2$. Then there exists a slowly varying function L and a function θ bounded in between two positive numbers $b_1, b_2, 0 < b_1 \leq b_2 < \infty$, such that

$$\lim_{x\to\infty}\frac{x^{\alpha}(1-F(x)+F(-x)}{L(x)\;\theta(x)}=1.$$

Proof: From the fact that $F \in DP(\alpha)$, by Gnedenko, and Kolmogorov, (1954) we have for any y > 0,

$$\lim_{j\to\infty} n_j F(-B_{n_j} y) = y^{-\alpha} \theta_1 (\log y)$$

and

$$\lim_{j\to\infty} n_j(F(B_{n_j}y)-1) = -y^{-\alpha}\theta_2(\log y).$$

For x > 0, which is large, choose an integer j and a fixed positive number y such that $B_{n,j}y \leqslant x \leqslant B_{n,j+1}y$. Define T(x) = 1 - F(x) + F(-x) and $\phi_k(y)$

$$= \frac{\theta_1(\log y) + \theta_2(\log y)}{\theta_1(\log ky) + \theta_2(\log ky)} \text{ for any } k > 0. \text{ We have for any } k > 0,$$

$$\frac{T(B_{n_{j+1}}y)}{\overline{T(kB_{n_{i}}y)}} \leqslant \frac{T(x)}{\overline{T(kx)}} \leqslant \frac{T(B_{n_{j}}y)}{\overline{T(kB_{n_{i+1}}y)}}$$

so that

$$\frac{n_{j}}{n_{j+1}} \cdot \frac{n_{j+1}T(B_{n_{j+1}}y)}{n_{j}T(kB_{n_{j}}y)} \leqslant \frac{T(x)}{T(kx)} \leqslant \frac{n_{j+1}}{n_{j}} \cdot \frac{n_{j}T(B_{n_{j}}y)}{n_{j+1}T(kB_{n_{j+1}}y)}.$$

Using the fact that $n_{j+1}/n_j \to r$ as $j \to \infty$, as $x \to \infty$ $(j \to \infty)$, one gets

$$\frac{k^{\alpha}\phi_{k}(y)}{r} \leqslant \liminf_{x \to \infty} \frac{T(x)}{T(kx)} \leqslant \limsup_{x \to \infty} \frac{T(x)}{T(kx)} \leqslant rk^{\alpha}\phi_{k}(y).$$

Since $c_i \leqslant \theta_i(x) \leqslant d_i$, x > 0, i = 1, 2, we have

$$k^{\alpha}c^{-1} \leqslant \liminf_{x \to \infty} \frac{T(x)}{T(kx)} \leqslant \limsup_{x \to \infty} \frac{T(x)}{T(kx)} \leqslant k^{\alpha}c,$$

where $c = r(d_1+d_2)/(c_1+c_2)$.

Now set $T(x) = x^{-\alpha} H(x)$. Then we have the relation

$$c^{-1} \leqslant \liminf_{x \to \infty} \frac{H(x)}{H(kx)} \leqslant \limsup_{x \to \infty} \frac{H(x)}{H(kx)} \leqslant c \qquad \dots (1)$$

By Drasin, and Seneta, (1986) one now finds that

 $\lim_{x\to\infty}\frac{H(x)}{L(x)\theta(x)}=1$, where L is slowly varying (s.v) at ∞ and θ is such that both $\theta(x)$ and $1/\theta(x)$ are bounded for large x. Hence we have $T(x)\simeq x^{-\theta}$ L(x) $\theta(x)$ and the proof of the theorem is complete.

3. ITERATED LOGARITHM LAWS

In this section we obtain two 1.i.1. results. For Theorem 2 below we assume that $a_{n_j} = 0$ in Z_{n_j} . When $\alpha < 1$, a_{n_j} can always be chosen to be zero. When $\alpha > 1$, a_{n_j} becomes $n_j E X_1$. Hence one can make $a_{n_j} = 0$ by shifting $E X_1$ to zero. Consequently the condition $a_{n_j} = 0$ is no condition at all when $\alpha \neq 1$, $0 < \alpha < 2$. However when $\alpha = 1$, this assumption restricts only to symmetric d.f.s $F \in DP(1)$. For Theorem 3 below we further assume that the d.f. F is symmetric about zero. We first prove a lemma needed in presenting our main results.

Lemma: Let B_n be the smallest root of the equation: nT(x) = 1. Then $B_n \simeq n^{1/\alpha} l(n)\eta(n)$, where l is a function s.v. at ∞ and η is a function such that both η and $1/\eta$ are bounded.

Proof: For x large, we have by Theorem 1,

$$T(x) \simeq x^{-\alpha}L(x) \theta(x), b_1 \leqslant \theta(x) \leqslant b_2.$$

Hence there exists a X_0 such that for all $x > X_0$,

$$b_1 x^{-\alpha} L(x) \leqslant T(x) \leqslant b_2 x^{-\alpha} L(x) \qquad \dots \qquad (2)$$

Let B_{1n} and B_{2n} be respectively the smallest roots of $nb_1x^{-a}L(x)=1$ and $nb_2x^{-a}L(x)=1$. Then by the properties of regularly varying functions, one gets $B_{in}=b_i^{1/a}n^{1/a}l(n)$ i=1,2, where l is s.v. at ∞ . Relation (2) implies that $B_{1n} \leq B_n \leq B_{2n}$. Hence $B_n=n^{1/a}l$ $(n)\eta(n)$ where $\eta(n)$ is bounded between $b_1^{1/a}$ and $b_2^{1/a}$.

Theorem 2: Let $F \in DP(\alpha)$, $0 < \alpha < 2$. Then

$$P\left(\lim_{n\to\infty}\sup|B_n^{-1}S_n|^{1/\log\log n}=e^{1/\alpha}\right)=1\qquad \dots (3)$$

Proof: In order to establish the theorem, equivalently we show that for any ϵ with $0 < \epsilon < 1$,

$$P(|S_n| > B_n(\log n)^{(1+\epsilon)/\alpha}i.o.) = 0$$
 ... (4)

and

$$P(|S_n| > B_n(\log n)^{\frac{(z-1)}{\alpha}} i.o.) = 1$$
 ... (5)

By Feller (1946) and by Kruglov (1972), (4) and (5) hold once we show that

$$P(|X_n| > B_n(\log n)^{(1+s)/\alpha} i.o.) = 0$$
 ... (6)

and

$$P(|X_n| > B_n(\log n)^{(1-\epsilon)/\alpha} i.o.) = 1$$
 ... (7)

From Theorem 1 above, one can find an integer N_1 such that for all $n \ge N_1$,

$$P(|X_n| > B_n(\log n)^{(1+\epsilon)/\alpha}) \leqslant c_3 L(B_n (\log n)^{(1+\epsilon)/\alpha})/B_n^{\alpha} (\log n)^{(1+\epsilon)}$$

Using the fact that $L((\log n)^{(1+s)/\alpha}B_n) = 0$ $((\log n)^{s/2}$ $L(B_n))$ and $L(B_n)$ $l^{-\alpha}(n)=0$ (1) which follows by the properties of s.v functions (see Feller, (1966) or Seneta (1976)) one can show that

$$\lim_{n \to \infty} \sup_{n} n(\log n)^{(1+s/2)} P(|X_n| > B_n(\log n)^{(1+s)/a}) < \infty.$$

Consequently, $\sum_{n=1}^{\infty} P(|X_n| > B_n(\log n)^{(1+\epsilon)/\alpha}) < \infty$, which in turn establishes (6) by Borel-Cantelli lemma.

Again by Theorem 1, there exists a N_2 such that for all $n \ge N_2$,

$$P(|X_n| > B_n(\log n)^{(1-\epsilon)/\alpha}) \ge c_4 L(B_n(\log n)^{(1-\epsilon)/\alpha})/B_n^{\alpha}(\log n)^{(1-\epsilon)}.$$

By arguments similar to the above, one can show that

$$\lim_{n \to \infty} n(\log n)^{(1-\epsilon/2)} P(|X_n| > B_n(\log n)^{(1-\epsilon)/\alpha}) = \infty, \qquad \dots$$
 (8)

Now (7) follows from (8) again by appealing to Borel-Cantelli lemma.

Theorem 3: Let F be a d.f. symmetric about zero and let $F \in DP(\alpha)$, $0 < \alpha < 2$. Let $\psi_n = B_{[n/\log \log n]}$, $n \ge 3$. Then there exists a finite positive constant c such that

$$\lim\inf\,\psi_n^{-1}\,A_n=c\quad a.s.$$

Proof: We now establish that for some constants c_5 and c_6 , $0 < c_5 < c_6 < \infty$,

$$c_5 \leqslant \liminf_{n \to \infty} \psi_n^{-1} A_n \leqslant c_6 \text{ a.s.}$$
 ... (9)

In view of Hewitt-Savage zero-one law (9) implies that $\lim_{n\to\infty}\inf\psi_n^{-1}A_n$ is a.s. a finite positive constant. The proof is on the lines of Jain and Pruitt (1973.) First we prove that

$$P(\psi_n^{-1}A_n \le c_5 \text{ i.o.}) = 0$$
 ... (10)

Since $F \in DP(\alpha)$, we know that for all $x \in (-\infty, \infty)$,

$$\lim_{j \to \infty} P(S_{n_j} \leqslant x B_{n_j}) = G_a(x) \qquad \dots \tag{11}$$

where $n_j < n_{j+1}, j = 1, 2, ...$ and $n_{j+1}/n_j \rightarrow r$ as $j \rightarrow \infty$.

Let m_j be an integer sequence such that $n_j = [m_j/\log \log m_j]$. Set $N_j = [m_j/n_j]$, j = 1, 2, ... Then for any $c_5 > 0$,

$$\left(A_{m_{j}} \leqslant c_{5} \psi_{m_{j-1}}\right) \subset \bigcap_{i=1}^{N_{j}} \left(|S_{in_{j}} - S_{(i-1)n_{j}}| \leqslant 2 c_{5} \psi_{m_{j-1}}\right).$$

Therefore

$$P\left(A_{m_{j}} \leqslant c_{5} \psi_{m_{j-1}}\right) \leqslant \left(P\left(\left|S_{n_{j}}\right| \leqslant 2 c_{5} \psi_{m_{j-1}}\right)\right)^{N_{j}}$$

Now proceeding as in Jain and Pruitt (1973) one gets for all $j > J_1$,

$$P\left(A_{m_j} \leqslant c_5 \, \psi_{m_{j-1}}\right) \leqslant e^{-\theta_{N_j}}$$

where $\theta > 1$ is some constant. By Kruglov (1972) we have

$$n_j = r^{j\beta(j)} \qquad \dots \qquad (12)$$

where β is a s.v. function such that $\beta(j) \to 1$ as $j \to \infty$. Consequently one gets $N_j \sim \log\log n_j \sim \log j$. One can find a J_2 such that for all $j \geqslant J_2$,

$$P\left(A_{m_j} < c_5 \, \psi_{m_{j-1}}\right) \leqslant j^{-\theta}.$$

Now $\theta > 1$, implies that $\sum_{j=1}^{\infty} P(A_{m_j} \leqslant c_5 \psi_{m_{j-1}}) < \infty$. By Borel-Cantelli lemma one gets

$$P(A_{m_j} \le c_5 \psi_{m_{j-1}} \text{ i.o.}) = 0.$$
 ... (13)

Notice that for $m_{j-1} \leqslant n \leqslant m_j$, $j=1,\ 2,...,\ A_n/\psi_n \leqslant A_{m_j}/\psi_{m_{j-1}}$. Hence (13) implies that

$$P(A_n \le c_5 \psi_n \text{ i.o.}) = 0$$
 ... (14)

To prove the other half of the theorem we proceed as follows. Let t_j be an integer sequence such that $n_j = [2t_j/\log\log t_j], j \ge 1$ and let $M_j = [t_j/n_j]$ Define $A_{n_j}(k) = \max_{1 \le i \le n_j} |S_{kn_j+i}-S_{kn_j}|, k = 0, 1, 2, ..., M_j$.

For any $\epsilon > 0$ and $\lambda > 0$, let

$$E_k = \left\{ |S_{(k+1)n_j}| \leqslant \varepsilon \psi_{t_j}, A_{n_j}(k) \leqslant \lambda \psi_{t_j} \right\}, k = 0, 1, 2, ..., M_j.$$

Then we have

$$\bigcap_{k=0}^{M_j} E_k \subset \left\{ A_{t_j} \leqslant (\varepsilon + \lambda) \psi_{t_j} \right\} \qquad \dots \qquad (15)$$

Using (15) we now obtain a lower bound for $P(A_{t_j} \leq (\varepsilon + \lambda) \psi_{t_j})$. Using the technique of iterated conditional expectations as in Jain and Pruitt (1973), one gets for all

$$\varepsilon > \varepsilon_1$$
, $\lambda > \lambda_1$ and $j \geqslant J_2$

$$P(A_{t_i} \leq (\varepsilon + \lambda)\psi_{t_i}) \geq (1/4)^{(M_j+1)}$$
 ... (16)

Observe that $M_j \sim (\log \log n_j)/2$. Hence for a $\beta > 1$, but sufficiently close to one, there exists a J_3 such that for all $j \ge J_3$, $\epsilon \ge \epsilon_1$ and $\lambda \ge \lambda_1$,

$$P\left(A_{t_j} \leqslant (\varepsilon + \lambda) \psi_{t_j}\right) \geqslant (1/4)^{(\beta \log \log n_j)/2} = (\log n_j)^{-\delta} \qquad \dots \qquad (17)$$

where $\delta = (\beta \log 4)/2$. Note that $\delta < 1$. Choose $\gamma \epsilon (1, \delta^{-1})$.

Define $q_j = t_{[j^{\gamma}]}$ and observe the relation

$$A_{q_{j}} \leqslant A_{q_{j-1}} + \max_{q_{j-1} \leqslant i \leqslant q_{j}} |S_{i} - S_{q_{j-1}}|. \qquad \dots (18)$$

Using (17) and proceeding as in Jain and Pruitt (1973) one can show that for some J_4 and $c_7 > \varepsilon_1 + \lambda_1$,

$$P\left(\max_{q_{j-1} < i < q_j} | S_i - S_{q_{j-1}}| \leq c_7 \psi_{q_j}\right) \geq \left(\log n_{[j^7]}\right)^{-\delta}$$

whenever $j \geqslant J_4$.

From (12), there exists a J_5 such that for all $j \geqslant J_5$,

$$P\left(\max_{q_{j-1} \le i \le q_i} |S_i - S_{q_{j-1}}| \le c_i \psi_{q_j}\right) \ge c_8/j^{\gamma\delta} (\log r)^{\delta} \qquad \dots \tag{19}$$

Since $1 < \gamma < \delta^{-1}$ (i.e., $\gamma \delta < 1$), we find that $\sum_{j=1}^{\infty} j^{-\gamma \delta} = \infty$.

By appealing to Borel-Cantelli lemma, (19) implies that

$$P\left(\max_{q_{j-1} < i < q_j} | S_i - S_{q_{j-1}} | \le c_i \psi_{q_j} \text{i.o.}\right) = 1 \qquad \dots (20)$$

We now show that for any constant $c_9 > 0$,

$$P(A_{q_{i-1}} \ge c_9 \psi_{q_i} i.o.) = 0$$
 ... (21)

Since F is symmetric about zero, we have by weak symmetrization inequality

$$P(A_{q_{j-1}} \ge c_9 \psi_{q_j}) \le 2P(|S_{q_{j-1}}| \ge c_9 \psi_{q_j}/2).$$

Let $z_j = c_0 \psi_{q_j}/2B_{q_{j-1}}$ and observe that $z_j \to \infty$ as $j \to \infty$. Then we have

$$P(A_{q_{i-1}} \geqslant c_9 \psi_{q_i}) \leqslant 2P(|S_{q_{i-1}}| \geqslant z_j B_{q_{i-1}}) \qquad \dots (22)$$

From Heyde, (1967) one gets that

$$\limsup_{j\to\infty}\frac{P\left(\left|S_{q_{j-1}}\right|\geqslant z_{j}B_{q_{j-1}}\right)}{q_{j-1}P\left(\left|X_{1}\right|\geqslant z_{j}B_{q_{j-1}}\right)}<\infty.$$

By Theorem 1 and by some elementary properties of a s.v. function, we get

$$P\left(\left|S_{q_{j-1}}\right| \geqslant z_j B_{q_{j-1}}\right) \leqslant c_{10} z_j^{-(\alpha-\epsilon)}.$$

Observing that $\sum_{j=1}^{\infty} z_{j}^{-(a-\epsilon)} < \infty$, by Borel-Cantelli lemma and by (22) one gets

$$P(A_{q_{i-1}} \ge c_9 \psi_{q_i} \text{ i.o.}) = 0 ... (23)$$

and the proof of the theorem is complete.

Remark: As in Jain and Pruitt (1973) the exact value of $\lim\inf A_n$ is not available here also.

Acknowledgement. The authors thank the referee for his valuable comments.

REFERENCES

Chover J. (1966): A law of the iterated logarithm for stable summands. Proc. Amer. math. Soc., 17, 441-443.

DRASIN, D. and Seneta E. (1986): A generalization of slowly varying functions. *Proc. Amer. Math. Soc.*, 96, 470-472.

FELLER, W. (1946): A limit theorem for random variables with infinite moments. Amer. J. Math., 68, 257-262.

FELLER, W. (1988): An Introduction to Probability Theory and its Applications, 2, Wiley.

- GNEDENKO, B. V. and KOLMOGOROV, A. N. (1954): Limit Distribution of Sums of Independent Random Variables, Addison-Wesley, Cambridge, Mass.
- HEYDE, C. C. (1967): On large deviation problems for sums of random variables which are not attracted to the normal law. Ann. Math. Stat., 38, 1575-1578.
- JAIN, N. C. and PRUITT, W. E. (1973): Maximum of partial sums of independent random variables, Z. Wahrscheinlichkeits-theorie Verw. Gab., 27, 141-151.
- KRUGLOV, V. M. (1972): On the extension of the class of stable distributions. Theor. Probab. Appln., 17, 685-694.
- SENETA, E. (1976): Regularly varying functions. Lecture notes in Mathematics: No. 508, Springer, Berlin.

Paper received: June, 1986.

Revised: April, 1988.