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NON UNIFORM RATES OF CONVERGENCE TO
NORMALITY FOR STRONG MIXING PROCESSES

By RATAN DASGUPTA
Indian Statistical Institute

SUMMARY. YNon uniform rotes of convergence to normality of standardisod aampla mun
i studied for some non-atationary strong mixing process under suitablo mixing conditinnn,
including polynomial decay, whon all tho moments oxist but m.g.f may not exist; or tho m..f
may oxist bub the r.v's may not bo bounded.  Aldo tho caso wlon some finite moment of onler
highor than two oxist has been connilored.  Tho techniquo in based on estimating tho boumla
of moments for enmplo sum which has ita own importance.  As applicatian of thess non uniform
bounds probabilitiea of moderate and large doviatiane are computed. Tho bounds aro furthor
appliod to havo ralod of gonoral inoment canvergences af stendardised samplo suin to that of
normal distribution.

1. INTRODUCTION
Lot X,, » > 1 bo a non stationary strong mixing scquence of random
variables dofined on somo probability space. It is well known that if a
moment of order higher than two is uniformly bounded for the random vari-
ables X, then the distribution of standardised samplo sum converges to the
normal distribution. Moro explicitly, let EX,, = 0 %¢ n and sup E|X,|**<m
Iy

for somo &> 0, thon defining F, (t) = P(os! S, < () where S, = T Xy, 0
f=1

= V(8,),—0 <t <o wo have F, = ®, where ¢ i3 tho standard normal
distribution function. Uniform rates of such convergences are studied by
various authors, a sharp rosult is duo to Tikhomirov.

Thoe nonuniform rate of such convergences aro of great importance with
application to computation of probabilitics of deviation. An elegant idea to
study nonuniform rates i3 to break up tho positive axis into two parts and
then to obtain two different bounds for the differenco | F,(t)—®(t)] depending
on tho region where 2 belongs. This idea was possibly implicit in Esscen
(1945) but was explored very effectively by Miche! (1976).

The doviation results when some finite moraent of order higher than two
exist were proved by Rubin and Scthuraman (1965) and then these results
wero gencralised and extended by Michel (1976), Ghosh and Babu (1977),
Ghosh and Dasgupta (1978), Ghosh, Babu and Singh (1978), Babu and Singh
(1978) (to be reforred GBS and BS later), ete. under different sct up.

AMS (1080) subject clasaiflcation : ROFD0.
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In this paper, the case when somo finite order moment higher than two
exist aud tho strong mixing decaying coefficients aro of polynomial typo is
considered. A moment incquality on sum of truncated random variables is
proved in Scction 2 along the lines of Doob and Ibragimov (1962). Subsequent
deviation results arc also proved.

The present prpor also deals with the cuse when all the moments of the
r.v’s exist and tho strong mixing decay coofficionts are general in nature.
In iid set up Cramér (1938) showed if the m.g.f of tho r.v exist in a neighbour-
hood of origin then 1—F (t)~®(—t,} ~ F,(—ts), fort, = o(rV%). Latler
theso typo of deviation results wero obtained under relaxed assumptions by
different authors, see Linnik (1961, 1062) Nagnov (1065), Dasgupta (1089) cte.
In tho last mentioned paper it was also shown that the necessary and sufficient
conditions coincido for some spccial type large doviations even for triangular
array of independent r.v's. Statulavicius (1066) has some results in general
sct up based on cummulants of tho sum of r.v’s, but it ia not clear how theso
are depondent on tho specifi t b s of cach random variablo
in mixing procosses.

The situation when all tho moments of the strong mixing radom variables
exist are troated in Sections 3-5°of tho present paper. We compute m-th
absolute moment of §,, the sample sum, in terms of the corresponding indi-
vidual momonts of X, in Section 3. For computing nonuniform rates apocifi-
colly we consider B|X|™ < f(m) m =1, 2,3 ... whero

J(m) = Lmgmlam » > 1 for some L > 1. (L))

Ono may noto that » = 0 implies that the random variables are bounded and
v =1 implies that m.g.f of X, oxists we also considor f of following typo.

f(m) = Lm exp(m") for some L > 0 and v > 1 . (L2)

which is of quite higher order than tho former. It is shown in appendix Al
that thess aro implied by some other condition which can bo interpreted as
m.g.f of some function of X. Although the non uniform rates aro computed
for f of tho above two types, the technique adopted may be followed for f of
more general form.

As already stated wo break up the positive axis into two parts and find
the non uniform rates of convergence of F,(¢) to @ (t) depending on the region
where {2 belongs. In the first zono we use the non uniform bounds to obtain
8 region of ¢ for which 1—F {{;)~® ()~ F (—1,), L.~ 0 ns n—c0.
This gives us & clear picture of tho variation of the normal approximation
0ne as v varies in both the cases of f(m). We also show that these results
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can bo sharponded under additional rostriction EX{ = 0. Noxt, combining
the results of non uniform bounds in both parts of positive axis we find
an overall non uniform bound and use this to have rates of convergonco
of Eg(a;'S,) to Eg(T), for somo functions g, whoro T is N(0, 1) variablo.

Tho last scction indicates how the results can bo extonded for genoral
deeaying strong mixing cooflicients including polynomial decay.

2. DEVIATION RESULTS WHEN SOME FINTTE ORDER MOMENT EXIST

Below we state & lemma on moments for the sum of the truncated random
variablos.

Lemma 2.1: Let X, be a non slationary slrong mixing process with poly-
nomial decay ; a(t) < t=*, A > 0 and var (‘g‘.l X“-;,) <u for any h > 0. Let
EX, =0, E| X *** <N where § > 2, 0<e¢* <2 Fizavyy»2 LA
be 8o large that vy def 14-Dyflog 2 == l+10(2'°—2) (vot¢*)/(Ae® (log 2)%) < 8/2.

Let {)1<d <™, for some 7> 0 and Y= Yo = X¢ (| Xil < d).
Then for any v & vy, 3 D{v) > 0 not dependent on d such that for all u @2,

E Ié:l Yial® < D(v) (u%24u"R(v)) where R(v) = d°~, 1 <v & v ... (21)

(This means, for a fixed v, if tho polynomial power A is large cnough such
vo & 8/2( > 1), then (2.1) holds for v  v,. Observe that v,—» 1 and therefore
v= 1 a3 21— c0))

Proof : The lemma can be proved using the general idea of the proof
of lemma 2.2 of BS(1978). However more precise estimates ate nceded here
ag the lerama is stated under polynomisl decay for the mixing function
a. For each iteration of u of tho form 27 a crucial choice of constant is
g, =¢°[r, 80 that the accumulated effect in moment power is ¢*, a finite
quantity.

Remark 2.1: Lemma 2.1 holds in the rango d < u/? (logu)¥ for every
fixed k> 0, even if R(v) is redefined as R(v) = dv--** and v is replaced by
v* = v+€*[2+4¢” whero € > 0 is arbitrarily small and if v is stricly less than
82,

We now proceed to prove deviation results whon some finito moment of
order greater than two exist and tho decaying co-officienta satiafy

a{n) < exp (—n*) for some ¢ > 0 o (22)
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which is higher than any polynomial decay but lower than oxponontial decay.
In thia case vy of Lomma 2.1 can bo takon to be arbitrary near to one, for
every fixed vy and ¢®. Following Remark 2.1 v* can bo taken arbitrary near
to 1 with arbitrary small choice of ¢*. Thercforo, from Lemma 2.1 and
Romark 2.1, we have

Proposition 2.1: Under (2.2) and EX, = 0, E[X,[%**" < N; (8+¢*)> 2,
defining Y= Y4a = Xd(| X4| <d) we have, for any v, @ D(v) > 0, not
dependent on d, such that for all u < d?

E| ‘i‘. Ye,a]0 & D(v) (u¥34+u"R(v)) where R(v) = dv-t4+t9 o (23)
-]

and v can be taken orbitrarily near to 1, provided d ! (logu)* for sore
k>0

Since (84+¢*) > 2 for simplicity in notation we shall write §4¢* = 2+c.
Reesll that S, = 3 X, 0% = V(S,), Fo(t) = Pl S, < f) and assumo that

=1
lim 21 gt > 0. e (24)

We now atate

Theorom 2.1: Let {X,} be a non stationary strong mizing sequence salis
Jying (2.2), (2.4) and EX, = 0, E| X |** < N for some real N. Then for all
8 < M logn where M may be arbitrary large but fixed, we have

[P(Sn < 10,)=0 ()] < kn~? exp(—2[2)+O(~ (14 |1])-249), ... (2.5)
where k> 0, 8 > are constants.

Proof of the above is by usual blocking procedure on the truncated r.v's
Xi= Xil(X,| < in??), application of Prop. 2.1 and exponential centering.
See also BGS (1978), BS (1078). The remark 4.1 of BGS (1978) holds in this

case, Conscquently we have the following two thoorems on probabilitics of
deviations.

Theorem 2.2: Under the assumptions of Theorem 2.1, for a sequence
,— 00 in such a way that

12—c logn—(c+1) log logn = —c0 as n— o0 o (2.8)
we have
P(8, > 1,0,) ~O(=1)~P(S, < ~t o )asn—>c0. .. (2.7)

Theorem 2.3: If (X,} is stationary or {| X,|2*¢} is uniformly tnlegrable
then under the assumplion of Theorem 2.1 ; (2.7) holds even if r.h.s of (2.6) is
bounded above.
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3. NON UNIFORM RATES OF COVERUENCE OF STRONG MIXING 8EQUENCE
WHEN ALL THE MOMENTS EXISTS

Wao next considor tho caso when all tho momonts of X, exists but the
moment gonorating function of X, may not exist or m.g.f exists but the r.v’s
aro not necessarily bounded. Let X, Lo o non stationary strong mixing
sequence and

EX,=0 for all n > 1 . (30)

a(n) <€ oxp(—An) for somo A > 0 . (3.2)
s‘up E1X(|m & fim)m = 1,2, ... whero f: (0, 00)— (0, c0) ... (3.3)
a1l

is nondecreasing aatis{lying . sup S+ 1)f(m+2—1) < f(2)f(m+1).
-1..m

Now wo provoe a lemma, stating tho order of m-th absolute moment of
S, in terms of f(m).

Lemma 3.1: Lel X, be a non slalionary slrong mizing process salisfying
(3.1)—(3.3). Then there exist a conslant L(> 1) depending on {a(t)} and
{f(1), ... f0ny)} Jor some fixed my such that for all posilive integer wand b > O

E| _EZI Xea ™ K um2m! Lmfim+1); 1 € m < 1%(log )~ for some § > 0

i o (3.4)

and E| ‘i Xtsn|™ < wn2ml (log mynLnf(m+1), ¥ m > 1. ... (3.5)
-1

u
Proof : Fix an integer k> 0, define Zy = 2 Xqpp, Zut = Zouyt~Zunt
-1

t
Syt = I Xunypr clu, m, k) = E|Zy|™ and c(u, m) = sup c(u, m, k) As all
i=1 A0

the moments exist, it follows from Lemma 2.1 that c(u, m) & u™/2k(m) since

tho deeay is exponential. Hence, tho lemma is true for any m  m, where

m, may be taken sufficiently largo by adjusting L with K(m,). Specifically

we take L = max [I, n;uﬁ {0m! fim+1)-YmK¥m(;m)}] By Davydov’s (1970)
mem

inoquality with ¢, is to bo chosen later, ono gots,
| E| Zu|m41~8| Ziuy 4| = E | Zu| PV IE| Zu, o)1)

0 /tm414ey) (mt 11/ 4 1Hy)

< 10(a(t) [c(u, m+1+¢,)] e (3.6)
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Hence

) Zut Z ) < 2041027600 ™ )t mot 14ey)

+ 5 (MBS maetB| Sl
FER
s0n1+y)
< 21410.2m(a(t) Yelu, m4-1+£,)
Hutmt020n 4 1) | Lmtinf(2)f(m+2) . (37
from 2nd part of (3.3).

Lot ¢, = log 2/(log u) then
10.2m(a@y™ ™" < 1 log 104 mlogz+ —18 2 (_ay <o,

(m+2)log u
asa(l) < e, for somo A > 0 which is truo if ¢ = A®m? log u for somo large A°.
With this choico of ¢ wo have

o2, m+1) < 8up B| Zut Zu, 1+ Sus 1= Sy | ™
20
< [{4e(u, m+1+¢,)+utmt 2 (m41) | Lm41mf(2)f(m 4 2)) im0
+ 2t sup EMimtd | X | mi1)mi1
(a1
< Helt, mA 14 )4 um 05 {mt-1) | Lm4mf(2)f(m+2)]
(14t e (38)
=2 ‘gup E‘""’“)IXl]"'"l['l‘/’L{f(m+2) (m+1) ]}mmﬂ)]
»1

where

& au='m logu L for somo a > 0. . (3.9)
So €* ean be mado arbitrarily near to zero for w=22m log u € 1 with a large

choic of L. Now write b = (14¢*)m+.. Let ry bo such (2"')"m log 20,
Ropeating (3.8), (r—r,) times wo havo, when r > r,,

e(2r, m4-1) € 4be(2r-1, m+1+e)+H(2r-1)mYS (m4-1) . (3.10)

whero
Silm41) = (n4-1) | Lmimf(2)f(im+2)

< (4b)H°c(r°,m+ 1 (r—ro)ey)Hfy(m+ 1)b2ir-1tme 121 —gb g-(mym)-1

if4b2-tme2 o 1, In ordor that the above is less than or equal to uimttn
L7+ (m+1) 1 fim+2) first we may nced

(45)70 efrg, mA 14 (r—rey) < ; ortmbV [t (1 1) 1 f(m4+2). ... (3.11)
A3-20
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Now using the trivial bound
Ao met Lk (r—rge) < @7 sup B| x| T @0 fimg )
(3.12)
a8 r¢, =1, we have (3.11), if
(4b)H° (2'o)mn & Jormis [mil (ip 1) | . (313)

2'0("‘4-1)"

Now from our choice of ry, 2 mtm) (log 20+ and r, = 0, (logm).

Therefore (3.13) is true if

™" glalmedit (rog2)mit & § anmis Lmtt for somo L> 1 ... (3.14)
ie. if

7 [ (e (e )uu.m )M*I]Ho In¥tasr, =0, (ogm) ... (3.13)

Since €* is arbitrarily small r.h.s of (3.15) goos to ¢o i.e, (3.15) holds if

r:,l('-"’)—)l < (v/2—38) for somo § > 0 (r—» c0)

i.e. if (r—rg) > At log r, where ) = log (y/2—8) = } log 2—8&', for some
8 > 0. Sincer, = O, (logm) this is true if 27 > oot M~ loglogm using the
definition of r, this is true if u > m?(logm)¥, k = 2(144) for some &> 0
ie. if

m < ut (logu)~t+ for somo & > 0, .. (3.10)
which we assumed in (3.4). Consider the last term of r.h.s. of (3.10), note that
4b2~tm 1)/ 2 1 if 4(14£°%)m+D 2~ (m4-1)/2 < 1 which is truo as ¢* is snall
enough for r > r,. Hence {1—4b2-1m+12)=1 = ) < e0. Therefore,

AflmA4-10 20r— 1)(mA4-1)[2 < § 2rmeVELAY (g 1) 1 f(m+2)
if A f(2) < (2m)~2 (/2/(1+e*))m*! which is again true for small choice of ¢*
83 r.h.8.— 00 83 m— 0. Honco (3.4) for u = 27 ; as for r < r,, (3.16) is viola-

ted, we need to show (3.5). To prove (3.5), note that if r < 7, we have to
show (from 3.12)

(2yHef(m 42) & 2rmRLmA Gy 1) | (log(m 1))+ n42). ... (3.17)

This is true if,
212rtm 02  Im31 (logm)m+t (m4-1) | ... (3.18)

Sinco in that case 272 € 2702 =~ rim log 2, (3.18) is true if

2o ¥t mmH(log2)m+t & Ln+ilogm)n+ (m+-1) | o (3.19)
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Since ry = O, (logm) the above is truc for all large m, choosing L large. For
£ > ry note that in placo of (3.13) wo have to show (-lb)'_"’(2"‘)"ﬂvz g § 2riminna
Latt (m4-1) | (logm)»+! which is truo if (40)"" 20 r;”’l'm”“'1 (log2)m+! )
2D pmy (logm)m+1(m+4-1) | procceding as in (3.19). This is true for
all sufficiontly largo m in view of the fuct that ry = O, (logm). Hence the

lemma holds for intoger of the form 27, For genoral u, ono uses binary
decomposition of u.

4. RATES OF CONVEROENCE
We now proceed to study tho rates of convergoncoes for different choices
of f of tho typo (1.1) and (1.2). It is easy to check that bounds of the above
typo satisfy tho condition in (3.3) viz. sup f(i4+1)f(m+42—i) < f(2)f(m+1)
[ty

i.0 supremum of tho product is obtained at tho end points. This is quite
intuitivo to expect. Doscribo the following blocking procedure to bo adopted
fator. Let

P = pla. n) =[], ¢ = (B, n) = [»*],

k = Kz, B, 1) = [nf(p+)} and } = n—k(p+9)
where 0 < 8 < & <1 will bo chosen accordingly. Let

2 [} . .
E=Eu= ’El X-nwsareh T = Tnt =;21 Xip+H(i—-1)7+j
Et1 = En kg = ZXiiprares OF 0 according ns I > 1 or not.
k k
Alsolot U, = ﬁlil U= X o ond ¢, = ((+n4) where A >0 to bo
=1 =1

chosen later.  First consider the moment bound (1.1). The following theorem
states non uniform rates of convorgence in an interval containing the origin.
Note that since k = O, (n!~7) the result is for the large deviation zone.

Thoorom 4.1 : Let {X,, n > 1} be a nonslationary sirong mizing process
eddisfying (3.1)-(3.3), (2.4) and (1.1). Then for
8 & M min(kVarh, p08-1) M 5 0 e (41)

with |t| < e k'3, ¢ > 0 small, there exist constant b > 0 (depending on M)
such that for any A > 0 and some a > 0 (depending on v and a(t))

1F,0—20)] < bY¢] = exp(—1)2)] exp(O(]¢]%-11)—1] +bn~"exp(—#[2)
+-b oxp[—af|¢| nt=-#-tnPATN]L b exp[—a(] | p-2uBUID],
v (42)
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Skeltch of the proof :  w.ol.g.lot ¢ > 0. The theorom follows if ono shows
|O(t)—0(t)| < bn-2exp(—i2/2) for &y = (¢£n-*) which is trivial and

P(|U,| > tn~*a,) € boxp[—aftnte-a-2jpinen), o {4.3)
and
|P(Up > t,0,)—O(—1,)| < b~ oxp(—1*)/2) oxp (O(k-12))—1) |
+b expl—aftnt1=o/u/esn] e (44)
Now
P(UL| > tn1a,) < (0o, ) mE | Uy | & £ gsimtorm
(4.5)

from (3.4). Putting tho appropriate value of m viz. m = [nfe-f-2012
¢ L1)1/#0e=t 8o that r.h.s of (4.5) is & minimum we obtain (4.3)

To show (4.4) wo dofine E; = p=1%%; and By = EiI(|8:] < 8ta(k+1)"2) whero
8> 0 to be choson accordingly., Thereforo

|P (2 6> hotn,) P (£ 1> gm0,

k41 .
< El P(|&] > s(k-41)22,) o (4.6)

< (k+1) exp{—a’(nt-a¥2)Uv+8) for some o’ > 0, following (4.5)
< oxp(—a(init-212) Ui*+3)} for gome a > 0, which is 2nd part in
r.h.s. of (4.4).

‘I‘}ow, on the main part, with r.v's £, we uso exponential contering, Sce
Dasgupta (1089). Also sce BGS (1978) and BS (1978).

As an application of Theorem 4.1, wo have the following theorem on
normal approximation zone, with appropriate choice of @, # and 2,
(A = (2(2v+9)"? for v < 1 and A = (2(6v+5)) for » > 1).

Theorom 4.2: Under the assumption of Theorem 4.1, we have 1—F,
(4) ~ O(—4,), Fo(—=t)~B(—1,), t,=>m, for t, = o(n(logn)=t"+D) wchere
¢* = min{1/(2(6v+5)), 1/(2(2v+9)).)

The next theorem states tho rates of convergenco in the complementary
zone of Theorem 4.1.

Thoorom 4.3 : Under the assumplion of Theorem 4.1 for 13 > ¢ RV/v+25-1)
¢, > 0 we have | F (t)—O(t)] < b exp{— |¢|/*+5+1q%3} for some €, a > 0+

Proof : With the blocking procedure stated in the beginning of this

1] k
section, define U, = ‘zl & U, = ‘E M Ty =Ex,y. wlog take >0, We
o £39
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shall bo using the moment inequality (3.5) here, as we nced the lemma for
all values of m. Since (logr)™ = o(m 1), wo havo m ! (logm)™ = o({dm] ! )
where ¢ > 1 may bo taken arbitrary eloso to 1. Proceeding as in (4.5) with
the abovo observation wo have

P(|Ty| > trM*) £ boxp[—a(tutt-112)1arid], e (47)
Dofino y = §~V'n=242202v428-0 0 < @' < 1 to Lo chosen later, Y ES1]]

3
<yt and Uy = ‘}JlE;. Then

1
|P(Up > ) —=P(Ug > )| £ S P(1%] > yY)
1=t
< b oxp{—a(tnt-2n-au-any-uj

along tho lines of (4.7). Also
P(UL > ') £ e-y'"mE(eyU;) § oxp(~{ 1-VLrRE-) B (’Ik] ew;)
1
where tho last expectation is cstimated by a strightforward modification of
Lemma 2.2 of BS (1978) to non stationary procoss. log E(ﬁ‘ e“;) =O0(1+kpy?)
whero kpy? = O,(ny) = O t-2kt/@v+t4-11 = O(1), Henee the theorom.
Obsorve that for (4.1), KA+ & n248=1 §f (o) 2+ 1)/(2v+1) < Al{1—a).

Since &> 1, tho zone in Theorem 4.3 covers the complomentary zono of
Theorom 4.1 provided (s) holds.

Combining Theorem 4.1 and 4.3 wo may have a overall nonuniform bound
for —o0 <t < 0. Take Sf(1—a) = 2(o+1)/(2+1) = 8° (say), @ = (36°+1)/
(3(148°)+1) and A = (1—a)/6 = (2(3(14+8°)+1))"1, to have the following
theorem.,

Thoorem 4.4 : Under the assumplion of Theorem 4.1 one has for any
>0 and §>1

| Fo(t)=® (8)] o bn=240 exp(—A® | ] Viosdey o (4.8)
where A = (2(3(146°)+1)7,v* = 2(»+1)/(2v+1) and € > 0 is arbilrary.

Remark 4.1: Since this nonuniform bound is sharper than any uniform
bound (the ideal being O(n~1%)) for suficiently large ¢, one may uso the uniform
bound by Tikhomirov near origin and Theorom 4.4 for ¢ away from origin.
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Tho above nonuniform bound may bo utilised to havo tho following theo-
rem on peneral moment typo convergonces, noting that Eh(X) = ;I»'(I)I’
(1X] > tydi, h{0) = 0.

Theorem 4.5: Let g: (—00,00)—(0,c0) be even with g'(X) = Olexp

(A°x (04 8+0)) for some A® > 0, 0 < z < 0, g(0) = 0. Then under the assump-
tions of Theorem 4.1 one has, for T ~ N(0, 1)

| Eg(o;'8,)—Eg(T)| = O(n-2+'), € > 0 arbitrary. . (4.9)

Next consider tho moment bound (1.2).  Hero wo may use the moment
inoquality (3.5), a3 fin (1.2) is of quite high ordor compared to m !.  The proof
of tho following theorem is similar to that of Theorem 5.1, tho restriction
a+f—1> 0 is requircd to show that tho oxpectation of tho product of ex-
ponentially centred r.v's Eiy differs slightly from the product of oxpectation
of centred r.v's.

Thoorem 4.6 : Let X, be a non slutionary strong mizing sequence satisfy-
ing (3.1)=(3.3), (2.4) and (1.2). Then for 3 M(logn)?t°-V, there exisls
constant b > 0 depending on M such that for any A > 0, ¢ > Oand a+f—1> 0

I Fu)—00)] < b|¢|~"| exp(—12/2) exp(O(|}3/k12))—1 | +bn~exp(—12f2)

b exp ~ =) {152 (5@ p—20) logn-+lagt) Jore-n)

1—e¢

+boxp[—-1{ 23 (%(l—a)logn+logt)]°“°‘”].... (4.10)

As a conscquenco of the above theorom wo may obtain a normal spproxima-
tion zone, oquating 1—a = a—p, letting A— 0 and a+4+p—1 0.

Theorom 4.7: Under the assumption of Theorem 4.6 we have
1=F ()~ ® (—t,) ~ F(—t,), t,—> o if

12 & 2v—1) (1—e) ((Go)-Yogn)Phto-1), v > 1 e (4.11)

where € > 0 can be made arbitrarily small.
Remark 4.2 : Tho zono (4.11) is larger than moderate doviation zono
a3 oxpected, sinco all the moments exist and have bound of tho type (1.2).
\Wo may also have non uniform rates in tho complomentary zono of
Theorem 4.6. ‘Tho proof of the following theorem is similar to that of
Theorom 4.3.
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Theorom 4.8 : Under the assumplions of Theorem 4.6, for 11 > ¢,
(logn)c/tw+1) ¢ > 0 and for any ¢ > 0 and a4f—1> 0, there exist b( > 0)
depending on ¢, and ¢ such that

1— 1
I 0—00)] < b ezp[ —to—{ L=V (1 log ntlogt] ) Jore-n] .. (112)
It is possiblo to have a overall nonuniform bound combining (4.10) and

1
($.12). For that take a o~ f ~ 3 A~ 1—12, to havo tho following theorom.

Theorem 4.9: Under the assumplions of Theorem 4.6, for any ¢ > 0
and A* > 0 there exisls a constant b > 0 depending on € and A* such that

[P ()—0)|  ba-inzse ezp[—(v—l){/\+l%c log(1+- |z|)]ww+n]
(4.13)
An analogous thoorem of Theorem 4.5 is possible to obtain, proof is similar.
The normal approximation zone of Theorem 4.2 can be sharpened further
if EX} = 0%ti. It follows from A2 that | E(p=Y/3)? | Lbp=V12+€if EXY = 04,
s0 | EZ})| = O(p~112t¢)4-0O(k-?). Honco expanding the expectation of the
expenentially centred r.v € , upto third term and proceeding as in Theorem
4.1 we have the following in place of (4.2). (sce also Dasgupta {1089)).
[F(0)—D()| < )t |exp(—12[2)] exp(O(|¢]3k-12p-tntey p4p-1))_y |
+bk—l/7exp(_12/2+0’;l:lk—llfp—u/l:)u_l_tlk-l))

+"b-le-12/2+b exp[—af | ¢|nte-s-2iuejirin)

+b exp[—af| ¢| nt-a1ZVIL), e (14)
The corresponding normal approximation zono becomes f, = O(nn*-*)
whero m® = max {(6—=52)/36 A A A (a+8—1)[2 A (1—a)[2(2v41)

0<B&a<lA>0
Ala—p=22)/22v+1)A(1—a)[#), z A y = min(z, y)
and e > 0 can be made arbitrarily small.
5. EXTENSIONS OF TEE RESULTS FOR OENERAL DECAY (WIIEN ALL
THE MOMENTS OF THE R.V’'S EXIST)

Since tho koy rolo to find the nonuniform rates are played by the moment
bounds of tho sample sum, wo shall gencralize Lomma 4.1 for decay other
than exponontial decay.

Let at) & =4, A> 150 that B [a(j)-¥9+) < oo implying E|Z Yeun|t <.
Ja1 (=1

Since all the moments oxists, & in Lemma 2.1 may bo taken arbitrary
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large. Honeo by Lemma 2.1, ¢(u, n) < u"%(m) for every fixed m. Now let

¢, = (c(u)loguflog 2)-* instoad of log2/logu in the proof of Lomma 3.1, then

10 2m(a(l))'l“""“"l) & & for some k, if ¢ = u™*"3 ychero L is independent of

m and w. \With this choico of ¢, ¢* in (3.9) becomes
¢ & aum A= 1n-1]-t for some a > 0 . (80)
which can bo made arbitrarily small uniformly in m and u if
e(u) € Af(2m?), . (5.2)

Now repeating (3.8) r timos (nof (r—r,) times as in Lemma 3.1), we have, in
place of (3.10), for u = 21, the following

(27, m1) & (KO)F el mo14re,)-Hfy(mA 1)b2lr-1m41/2(] — kpo~tms12)-1,

(5.3)
Now
e(1, mA14re) = o1, m4-1+(e(u)?) & fim+414(c(u))-?) < 2r-menn
(5.4)
if Sim+4(1e(n)) € uit-0ms2 .. (6.5)

for all sufficiently large m and # in the range (56.2), whero e > 0 is arbitrary
close to zero. Now proceeding as in Lemma 3.1, in view of (5.4), wo have
the following in place of (3.15)
1 1 \/’2‘ myler -
1< 7 [ {ggaaem )] 2 - 60

which is true for all sufficiently largo m and r sinee ¢* ean be mado arbitrary
closo to zero and sinee € > 0.

Tho caleulation for the second part of r.h.g in (5.3) romains the samo as
that followed in Temma 3.1,

Summarising the above wo stato tho following theorem :

Theorem 5.1: Let {X,} be a non slationary strong mizing sequence with
decaying coefficients a(t) < t=3, A > 1. Let (3.1), (3.3), (2.4) and (5.5) hold
Jor some sequence e(u) (— 0 as u—> 00). Then for all m satisfying (5.2) we have

E " L wmt L Im fim41), for some Lp 1. ... (5.7)

“- -
2‘ ‘\ teh
fe1

Vo cxplain tho abovo for some chuice of f 0.g. lot f(m) = e?miogm L¥ for v > 0
and L, > 1 then letting e~'(u) = (8/v)mlogu/loglogu, whero 8 < §, wo sco
that (5.5) is satisfied for large m and « in the range (5.2), which states

m § (A8/2v)logufloglogy, & < —;— .. (5.8)
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Hence with fof (1.1), we havo (5.7), in the range (5.8). When tho r.v's X;'s
aro bounded by L, thon v = 0. Take ¢~}(u) = dmloguflog L, § < §, which
satisfics (5.5) for large u. Also (5.2) states m 5 loguflogL, where | X¢| < L.
Honco tho following corollary.
Corollary G.1: If the strong mizing r.v's X('s are bounded, | X¢| < L),
(3.1) and (2.4) holds; a(t) S t™*, A> ), then for 1 m & %5 loguflog L,,
8 < § we have

o m
E'I Xl X'MI < untm L LmLo¥Y for some L>1. ... (6.9)
(=

For deeaying cooflicient a(f) < exp(—At"), A>0 and 0 <e¢ 1 wo may
take ¢ = A*(mlogu)V¢, so that wo may have 10 )" HY) € 1 with
= log 2/logu 8s in the proof of Lomma 3.1. Sco (3.7) and (3.8). Then

replacing m 1 by [e=1m] ! in tho r.h.s of (3.4) and (3.5) we may have ¢* in (3.9),
83 ¢ < auY(m logu)¥". Now define ry a3 (2°)V%(m log 27 ~ 1, Then
following the proof of Lemma 3.1 with this r,, wo have the following.

Theorem 5.2: If a(l) < exp(—Al), 0 <e <1 then under the assump-
tions (3.1), (3.3) and (2.4) we have (3.4) and (3.5) where m ! in the r.h.6 of (3.4)
and (3.6) is replaced by [e='m] |

As alrcady stated, using the above moment incqualitics one may obtain
non uniform rates in more general situations,

Beforo we conclude, let us examine tho sharpness of tho moment bounds.

In view of the fact that u-/2 ;‘. Xm.l) N(0,.) It is natural to expect that

woment bound of u~¥/3 }. X,» should bo free of 2 and m-th absolute moment

of this should bo closo enough to tha corresponding absolute normal moment
ie. € (mf2) L L™ for somo L. Tho moment bounds obtsined are similar to
that whore (m/2) ! is replaced by m 1 or [c='m] | depending on the decaying
coefficients.
Appendix
Al. The following assertions are true:
E oxp(s| X|1*) < oo for somo 8> 0 = E|X|m  Lmm™ ... ()
for some L > 0 whero v> 1, m=1,2,..., and
E expllog(l+ | X | - < o0 = E| X|m & Lme™ . (2)
for some L > 0, whero v>1, m=1,2,..,
43-21
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Proof: TFor (1), noto that

1 X
plep

oxp(s| X|¥7) € 'p= 1,2, ..

IXI”'
ple?

1 X|m

Now for|X]| > 1, ples

>

if plv > m,eg., if p=[vm]+1.

Therefore, with this choico of p
E|X|m=E|X|m|X| < D+E[X|mI{|X] >1)
§ 14([vm]41) 1stmit! E exp(s| X | V7). . (3)
Now E exp(s| X|V¥) < o and using Strirlings approxination for factorials,
([pm]+1) | = (fvm]4-1)[vm} | < Lmmm* for some L > 0. And henco
E|X|m  Lmm™ for some L > 0.
For (2), also note
expllog(14+ | X )01 = (14| X | yoso#10ne-n, . @)
Now
E|X|m < EQ4 | X|)™ = EQ+]| X )" (log¥*-(14 | X |) > m)
+E(14 | X[y I(logV* V(14 | X|) < m). ... (5)
The first torm of tho r.h.s of (5) is finite from Lh.s of (2) and from (4). Again
noto that
logVt*=2 (14| X|) < m = log(14+ | X|) < m*-? = m log(14+ [ X|) < m®

> (14X < ™
Hence the second term of the r.h.s of (5) is bounded above by exp(m*) and
therefore (2) follows.
A2. If EX}=0, then for the strong mixing process of Section 4,
E(n138,) = O(n-112+%), where ¢ > 0 can be made arbitrarily small.

Proof: Note that

E(nn 8,0 = { 2dF )+ | 2%F,(x) - (8)
? vy
Also T 2dFa(z) = z‘(l—F,,(z))I+ ;f 3541 —F, (x))dx
[}

= [ 321—F(x))dx from (4.13). -
[)
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Similarly

f 2dF(0) = — [ 300F (2)ds. . ®

From (4.13), noting that | 224 ® (x) = 0 we havo from (6)

| E(n=1nS, 3|  bn-tinss, - (9
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