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CRAMER-RAO TYPE INTEGRAL INEQUALITIES
FOR ESTIMATORS OF FUNCTIONS OF
MULTIDIMENSIONAL PARAMETER

By B. L. S. PRAKASA RAO
Indian Statistical Institute

SUMMARY. Cramer-Rao type integral inequalities for the integrated risk for estimators
of functions of multidimensional parameter are derived extending the work of Borovkov
(1984). As an application, & lower bound for the local asymptotic minimax risk of an estimator
i3 obtained when the components of the parameter are orthogonal. Several examples are
presented illustrating the results. The problem of estimation of function of mean vector and
covariance matrix of a multivariate normal distribution is discussed.

1. INTRODUOTION

Let X,, X,, ..., be independent and identically distributed random vari-
ables with values in a measurable space (¥, &) endowed with a probability
measure Py, ¢ ® open C Em. Suppose that {P,, 0 ¢ @} are dominated by a

o-finite measure x and f(0, x) = —2¢ (z).

We are inferested in the problem of estimation of g(6), where g(.) is &
measurable function defined on R™, based on the sample X = (X, ..., X )
when @ is the true but unknown parameter. Let £ ,(.) denote the expectation
under §. Suppose g(f) is a prior probability density for 6 such that 8,(C ©
where 8, denotes the support of ¢(.). We denote the expectation over the
space x®X ® with respect to the density f,(60, ®) ¢(6) by E. Here

1.(6), x) = i 16, ). (L)

Qur aim is to obtain lower bounds for the integrated risk, namely,
R(0%) = E[g(6°)—g(O)F o (L2)

where 6° is any estimator of 6. For earlier work in this direction, see
Borovk (1984) and Borovkov and Sakhanenko (1980) for case m — 1 and
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9(6) = @ and Shemyakin (1987) for the case m > 1 and ¢g(0) = 0. In fac,
Shemyakin (1987) obtained lower bound for the matrix of the integrated risk

namely,
R(6*) = E(6*—6)(6"—0) . (L3)

where a? denotes the transpose of column vector a.

Section 2 contains Cramer-Rao type integral inequalities for the inge-
grated risk for estimators g(6*) of a parametric function g(0) of a multidimen-
sional parameter #. Some special cases of resuls in Section 2 are derived in
Section 3. As a consequence, a lower bound for the local asymptotic minimax
risk for the estimator g(6*) is derived. It was shown that the lower bounds
for the integrated risk and the local asymptotic minimax risk are sharp when
the components of 6 are orthogonal. Several examples illustrating the
resulte derived earlier are presented in Section 5. The problems of estimation
of linear function of mean and variance and the estimation of the ratio of mean
and variance for a normal distribution and the problem of estimation of rafio
of mean of two independent exponential random variables are discussed.
The problems of estimation of functions of the form af f a--y¥ ()8, where
a, y and § are known k-dimensional vectors, fa and V() are the mean vector
and covariance matrix respectively of a k-variate normal distribution, with
B and ¢ unknown scalar parameters and V(.) has a known functional form,
has been investigated in Section 6. Special case of the problem when V(j) =
A v where A is known is studied in detail. Some remarks are made In

Section, 7.

2. MAIN RESULT
We first state a well-known result.

Lemma 2.1. Let Z=(%Z, ..., Zn) be a random wvector such that
B(Z2) < 0,1 <t < mand Y be another random variable such that B(Y?) < oo.
Let y4 =Cov(Z;, Y),1 <1< m. Let Z denote the covariance malrix of
Z. Suppose & is pogitwve definite. Then

Var (Y) > y¢ 21y .. (2.1)
where Yt = (V15 .oer VYm)-
In particular, if A is the largest eigen value of Z, then
2 73
Var(Y) 2 1 % vE > et (2.2)
AT (&)
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where #r(Z) denotes the trace of the matrix . If £ is a diagonal matrix with
m
entries o2, then Var (Y) > X y?/o?.
fm]

Proof. The first part is & consequence of Cauchy-Schwartz inequality
and the second part is an easy consequence of properties of positive definite
matrices.

We assume that the following regularity conditions hold.

(C1) Let K0, 2),1 < t < m be functions jointly measurable in (6, )
and absolutely integrable with respect to A X u# such that

J Ke(0,2)d0 = 0,1 < & < m, xexh . (2.3)
o

Hence A is the Lebesgue measure on Rm, Define
Ki(as w)
fﬂ(ei w) Q(ﬁ) ’

(02) For simplicity, we assume that S8, = @. It can be checked that
all the following arguments hold if S, is a proper subset of ®. Hence ¢(@) > 0

for all 6 @ = Sy C R™.

(C3) Let g(0*) be an estimator of g(@) and suppose that g(0°) Ky(0, )
is jointly measurable in (4, 2) and absolutely integrable with respect o A X u#
on ® X y».

(C4) Let h(d) be a measurable function of & such that fu(6, @) 2 (0) 19
differentiable with respect to 6 componentwise. Let

K0, 2) = “£} [£.(6, &) h(6)].

Suppose K;(f, ) is absolutely integrable with respect to AXu®* on @ x x"®.
Furthermore suppose that, for every @ ¢ y®
f.(0, 28) k(0)> 0 as |6;] — boundary of @ for all 1,1 Lt < m

where ©; is the range of the ¢-th component.

Ci0, @) = 1<t maeexd, 0ely. .. (2.4)

(C5) Suppose that differentiation componentwisg with respect to 0
under the integral sign, is valid in the equation

{' [n(0, ) pH(de) = 1.

3
(C68) I,(0) = % Eﬂ[czlogaj;X_, 6)] is continuous in 6.
=1 t

Let
Y = g(0*)—g(0) and Z; = Gy(0, X). oo (2.5)
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Observe that
E(Zq) = E(Es(Gi(0, X))
= B{f (0, %) f4(6, ) pr(der)]}

= £ {j‘“ G4(0, ) £, (0, x)un(dee)} q(0) A6

= £ § K0, @) ur(da) do

i

= I [ Kd6,@)do] pr(da) = 0 . (2.8)

y 4

by Fubini’s theorem. Furthermore
E[Y Zs) = E[(9(6)*—g(0)) G4(0, X)] = —E[g(0) G«(8, X)] e (2.7)

gince, by Fubini’s theorem,

Elg(6*) G«(0, X)] = I g(0% (%)) G+(0, ) fu(0, ) ¢(6) p™(dx)dl

x5

|

g J  g(0%x)) K0, ®) pn(dae)db

= L g(0*(a)) [£ Ky(0, &) d0] pn(de) = 0. e (2.8)
Note that
Cov(Y, Z;) = B[YZ)—E(Y)E(Zs) = —E[g(6) G4(6, X)] .. (2.9)

from (2.6) and (2.7) and
Cov(Zs, Zg) = E(Z; Z5)—E(Z;) E(Z;) = E[Gy(6, X) G4(6, X)]. ... (2.10)

Hence, by Lemma 2.1, it follows that

Var[Y] > yt Z-1y o (2.11)
where
( —E[g(6) G40, X)) )
Y = . (2.12)
—~E[9(0) G(0, X)) /' mx1
and
Z = ((E[G4(6, X) G4(0, X)1))mn xm- e (2.13)

We have now the following vesult.
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Theorem 2.1. Suppose the conditions (C1) to (C3) hold. Then

S (B[g(0) G4(6, X)])?
Blg@*)—g0)P >t — 4 (B[g(6*)—g@)]R. ... (2.14)

fm]

Let us now consider a special case of the inequality (2.14). Suppose the
conditions (C4) and (C5) hold and (C3) is satisfied for K¢(6, &) specified in
(C4). Then

K0, ®) = -3%; [fn(6, &) h(6)] o (2.15)

and

§ Kd0,®)d0 = | - [1,(6, @) (o)} do

— f { i -5‘3_‘. [£2(6, ®) W(O)}d.) dby...d6_004s... dOm

Oy X oo X0y XOspy .o. X0

(by Fubini’s theorem)

~ f 1  dilfuo, )h(6)]} b ... dBs_ydBt4 ... b

01)( ves XG‘_,,)(OH.IX vos Xﬂg
(2.16)

where dy denotes the differential with respect to 6; (keeping 6, ..., 6y,
O¢py ..., O fixed).

Hence, by (C4), it follows that
é[ K0, ®)d0 =0 for 1 < © < m and for every xex®. ... (2.17)

Note that
Gy (0, @)
9
_ K@) g UG@ROT g ) nia)+1.0, 20 (6)
fn(0, @) q(6) Ju(0,2)q(6) [0, =) q(6)

o (2.18)
where f*) (0, ) and A9 (0) denote the partial derivatives of f.(0, @) and A(6)
respectively with respect to 6;. Hence

_ WG, ) RO) , BN6) _ dlogf,0,%) k) , kW ()
(0, @) Jn10, @) q(6) + q0) 96, q(6) T q(6)
(2.14)

Al-8
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Now
Blg(6)Gy(6, X)] = | | {9(60) G«(0, ®) [,(0, ) ¢(0)} pu*(dax)dd

e x»

I I g(O) [f$ (8, ®) h(B)+1,(6, @) h¥(0)] pn(da)d6

=] I 9(0) 5 [fm,(8 &) h(0)] p*(dx)dd

ll

—J | 9% (0)1x(0, @) H(0) p™(dw)dl
@

—§ § 99(0) f.(0, ®)h(0) pr(dx)dl
e x»

— E[ g'}(0)h(0) ]

70 . (2.10)

where ¢g*(0) denotes the derivative of g(f) with respect to 6;. Furthermore

miale, 01 = B [ L2 000 ) "5 [ 220 ) o | L2 TMOMTO)

fa(6, X) q(6) q0) Ia(0, X) ¢%(6)
_ [ 906, X) KO) h(6) ..
=550 o) 5 o) - (221)
Observe that E, [%] = 0 from (C5). Hence
- h3(6) h{$)(6) ® (9, X
BlG: (6, X)] = & {1(2(6) qﬂ(e)]'w [ g(6) ] where I%(6) = E, HF,.(; X))]
. (2.22)

Hence we have the following result from Theorem 2.1.

Theorem 2.2. Suppose the condition (C3) to (C5) hold. Then

S Z (B[ 990 mex®)))’
[9(6")—9(0)1* 2> W"{W+E(9(e*) —g(0)]*.

] 70) ' w1 L q(6) .. (2.23)
In particular,
% T g'9()h(6) o
E{g(0*)—g0)1 > — ""( [ 2(9) ]) .. (2.24)

EC T 7 N I e Y e
ZE (190 F(('é'))‘ ] +2 E'[h;;(:)) h
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3. SPECIAL OASES

Let us now congider further special cases of (2.24) which are useful. In

the following discussion, we assume that appropriate special cases of condi-
tions (C2) to (C5) hold.

3.1. Suppose h(8) = IQ((%)) Note that
N

B _ dlog £,(0, X) 42 -
1,(6) = 31 I9(6) 31 E, [*—-—-—-———-—-—-—-----a > | =n10

under (C5) and hence from (2.24),

: (7'%@ )

E{g(0*—g(0))? 2> Ti"h_i_—?*hw]l""_?ﬂ*(é'j"—_
E Iﬂ(9)1+ = E\- q(0)
_]L._. m g(i((ﬁ)
=T_M (3.1)
1 (0) S
w B 11(6)]+,§1E 4(0) ]

m
3.2. Suppose h(0) = q(6). Let I (0) = X I®(B). Then

$=1

S (Blg®(0)])
E[g(6*)—g(0)]t > =1

BIL(0)+ 2 E [ q“(’g’]

E (Blg(0)])?

- .. (3.2)
0 log q(6)
n BLOH 2 B | 20T

3.3. Suppose ¢ > 0 exists such that J = {0: |6;—6,| <e,1 <t < m}
is contained in @ (C Bn. Then

Sup Ey[g(6*)—g(0))? > ; E,[9(6%*)—g(6))® q(6)d6 e (3.3)

where ¢(.) is a prior on J. Let us choose

m (] -
WOy = q(6) = 11 (- coe? ”-‘612 ;‘—*'-)}, fed. . (3.4)
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We have seen, from results in 3.2, that
= (Bl (6N
Efg(0*)—9(0)1 2>
iw1 00y
It is easy to check that (cf. Borovkov, 1984, p. 189)

E[alogQ(ﬁ)] =me?1<i<m

T
Hence
Z (E[g® (6)])
sup Eg(0*)—g(0)]* > E[IW
S (Elgo(0))
tm]
> n"‘ozu_"‘“g LG Fmaie?
In particular,

n Z (E(Q“’ (3)])2

3 (Elg0O))
map 1,0 T e

Let ep—> 0 a8 n—> oo such that ¢;272"'—> 0 and J, = {6 :

n B0+ £ £ | 2B LO]

(3.5)

(3.6)

(3.9)

: |0s—04| < €3,

1< 1< m)p. For instance eg = n‘“ where 0 < a << 1/2 will be such a

sequence. Note that

5 (Blg® (6))

sup Ey [v/7(g (0°)—g(D))P > W‘_‘—W

and taking limit as n— oo, we have
% (g (6)F
lim inf sup E,[v/% (9(6*)—g(O)P > =
1(6o)

N—) x® OGJ“

The last relation follows from the observation

B9 (O)] = | 99(0) 466 = I . | 99(0) n cost T9—%) 49

e::' e,

(3.8)

(3.9)

(3.10)
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and, a8 n— 00,

E(g® (6)]-> g (6,) o (8.11)
since eu— 0. Furthermore by (C8),

sup I,(0)— I1,(6,). e (3.12)

0eJ,

The lower bound in (3.9) is not sharp as we have taken a weak lower bound
in (2.2). However, it is easily computable. The lower bounds cobtained in
this section as well as throughout this paper are valid for all estimators
g* of g(@) and not necessarily for those of the form g(6*).

4. ORTHOGONAL PARAMETERS

Suppose the components of 8 = (6,, 0,, ..., 6,;) are orthogonal in the
sense that

dlogf(6,X) dlogf6,X) 1 -
Eo["—'—-'—a'a;--— T— -—0, ].é@#‘?ém oas (4.1)

(cf. Cox and Reid, 1987). Let A(f) = q(f) as in 3.3. Note that, for ¢ # 3,
K0, x) K4(0, x) ]

E[G4(6, =) G4(6, x)) = B

 F2(6, x) ¢%(0)
7,
[fn(ﬁ ®) ()55~ [fn(@ ) q(0)]
xr o .f n(e: w) q(a)

3 log [£,(6,) q(0 ,
= g UL 4ON 2208 U020 (9 2)g(6) pniayit = o
X" @ J

from (4.1), (C5), independence of X, 1 <7< n and the choice of ¢(f) as in (3.4).

Hence the matrix Z defined by (2.13) is a diagonal matrix and it can be
checked that

Blg(6*)—g(O)F > T P (Blg(0n) g0
S % (B O

fel “)(3) 2
BU6)+B| o ]

==§ _____g..[gﬁ“_).(.g_)]_f___.____ . (4‘2)

= uBapE)+E | 5L
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It is easy to see that the above inequality holds for any prior density of
0 of the form q(0) = ﬁ qi(6;) where gqi(6¢) is a prior density of 6; and
f=1

dlog f(0,X)
06,

vt B-ly = 2 (vi|o?) where o3, ..., 0, denote the diagonal elements of X,

10 (6) = B, | |. The lower bound is sharp here since

Chooaing q(ﬁ) = ﬁ' { — com2 _"_'(?_‘ — 910)}

. S , @€ J as before as prior density,
f=1

it can be checked that

. 4 (&lg'? (9)])°
93‘:?’ Eolg(0%)—9(0)) 2 X oo sup I$(6)+n e2m o (4.3)

Let e4—> 0 such that €;2n-1— 0 as n—> 00. Then it follows that

.. = [0
hm inf sup F [v/7(g(0%)—g@))] 2> 2 Suoyv— o (4.4)
n—-ro feJ, =1 11%(6y)
where Jy = {0 : |0;1—04| < €,,1 < © < m}. If the equality is obtained in
(4.4) for every 0, € 0, then, g(0*) is a locally asymptotically minimazx estimator
of g(6).

5. ExaMPLES

We now illustrate our results. Detalled calculations are omitted.
Example 5.1. Let X3, 1 <+ < n be iid. random variables N(u, o?).

It can be checked that 4 and o? are orthogonal parameters and a locally
asymptotic minimax estimator of g(f) = u--bo® where-b is a known constant 1s

X) =X+ p _1 (X.;—-X)ﬂ

+1

The problem of estimation of linear function of the normal mean and variance
has been studied recently by Rukhin (1987) among others. He showed that
the estimator (X ) is inadmissible for g(8) for loss function of the form

L{g, o, 8) = (8—pu)t/o*.

As far as we know, multivariate version of this problem has not been discussed
in the literature. We investigatie this question in Section 6.
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Example 5.2 (Continuation of Example 5.1). Suppose X;, X, ..., Xn

are iid. N(g, 0®). Let 6 = ( c%’ ﬂ2+-0'2). It is known that this reparametri-

zation also gives an orthogonal parametrization of the normal density (cf. Cox
and Reid, 1987). It can be shown that

8(X) =

¥l

where 8% = — f‘: (X¢—2X)? is & locally asymptotic minimax estimator of
- =1

g(9) =£ -

Example 5.3. Suppose X and Y are independent exponential random
variables with means A and ¥ respectively. Let Z = (X, Y) and suppose
we are Interested in the estimation of the ratio {/A based on an i.i.d. sample
Zi, 1 € + < n. A convenient reparametrization, of the family of distributions
of (X, Y) in terms of orthogonal parameters 6,, 0, is given by A = 4, 6;* and
Y = 6,60} Then

g0y, 03) = O,=Yy|A
and it can be proved that

n—1 i)-?ly‘
X, ¥) = (—) g
¢

s ]l

18 & locally asymptotic minimax estimator of y/A.

6. ESTIMATION PROBLEM FOR MULTIVARIATE NORMAL DISTRIBUTION

Let us now consider a multidimensional version of Example 5.1. As
far as we are aware, this problem has not been discussed in the literature.

Suppose Xy, 1 < 7 n are i.i.d. k-dimensional random vectors with
multivariate normal distribution with mean vector f@& and covariance matrix
V(y) where £ and i are unknown scalar parameters and @ and V(.) are
known k-dimensional vector and %Xk matrix respectively. Further suppose
that # and ¢ are not functionally related. Then it follows that £ and i are

orthogonal parameters (cf. Cox and Reid, 1987). We are interested in the
problem of estimating

9B, V) = Bt at+Y'V(¥)b ... (6.1)
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where a, y and 8§ are known k-dimensional vectors. Note that this is g
generalization of the problem of estimating linear function of mean x and
variance o2 in Example 5.1 to the multivariate case. Let 0 = (8,
Observe that

g(@) = at @ and g¥(0) = yt V()8 ..o (6.2)

where ¥V’ () denotes the matrix obtained by taking the derivatives of ele-
ments of V() with respect to ¥ and forming the matrix of such derivatives,
Here we assume that the elements of V(y) are differentiable with respect

to .

Observing that # and ¥ are orthogonal parameters, from results proved
earlier, it follows that

(Eg'0)))*
Efg(6*)—g(0)) 2 2 ~ AT (6.3)
Ly B(I$(6))+ E[ _Q_!___og_g_g_ﬁ_)_ ]
where 8, = # and 6, = ¥,
IP6) = E, | 35’%———;“——’9’ Li=12, o (84)
q(0) is a prior density of # as given by (3.4) with m = 2 and
f(@, 0) = Wﬁ!‘l‘z—rr exp {-—-é—-(a:-—p.)‘ Z"l(w-——p.)} ... (6.5)
with g = f @ and £ = V(y). Furthermore,
" (g (6,)12
h.f'i inf Sup E,[v/7(g(6*)—g(0) > El 0@,
_ (cfa@)® 4 YV Y)0F [y'V'(V)8F e (6.6)

IP0,) " IP6,)
where J, ={0: |0+0p| < €r,t=1,2} and 622150 as n—oo. In
order to obtain the lower bound in a more explicit form, we have to compute
I@),+ = 1,2. Note that
k 1 1
log f(®, 0) = — - log(2m)— - log|&| —5- (®—p)t - (X—p)

= —-£ log(2fr)+ - log|&~H —— (w-lt)‘z"‘(w—-u) . (67)
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It can be ckecked that

1
: ;ﬁ f _ syp—p) .. (6.8)
and hence
a!_g_%_.f_ = af Y (e—p). .. (6.9)
Therefore
100) = By | 23811 = Byl 22X —p) (X—p) Za]

=@ 1 Bf@—p) (X—p)t]E @
=qt Z1EZZla=a Za=aViy)la. ... (6.10)

Computation of I{») (6) is much more difficuls. It is easy to check that
(cof. Anderson, 1958, p. 46)

aalg-{ 5 (&= (X—p)(X—p)) = -—(Z:—-Z) ... (6.11)

where Z = (X—pg) (X—pu).
Since X 21 = I, it follows that

dZ—l dX
— N 1=0
T a
and hence
[d 271d ] = —ZYd Z/dyr] Z1. ... (6.12)
Therefore

d log f _ [Vec (alogf)] Vec [d2—1]

EXY, oz U
A 1 -1 dz —1
= — - [Vec (B—2Z)}f Vec(z o )
—_— ] -1 dz -]
= o tr [(z—z:)z'. @ = ] ... (6.13)
by the relation (vec A) vec B = tr (4B). Hence
2008] _ L e [(Z—V)V-WVY .. (6.14)

Ty
A ]1-9
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where ¥ stands for £ = V() and V' =% — y'(y). Since E,(2) = p

ayr
it follows that

E, [ ag:[rgf] =0 o (6.25)
I (0) = E, [ " g‘:%f] Var, [ 0 logf] ... (6.16)

Var, {—;— tr [(Z ——V)V"‘-‘V’V-l]} = —% Var, [tr (ZV-1 V' V1))

1
4
1

Var, {tr [V V3 Z VViV-iV' V-4

¢ Vary {tr VEW Vi V-1 V'V-Y] = — Var, [tr (AW)]

where A = V-1 V'V and W has standard Wishart distribution. Note tha
AW =H HAH HW

where H is an orthogonal mafrix such that H A H' is a diagonal matrix A.
Hence

tr(AW) =tr (HHHAH HW) = t«(H A H* HW H)
= tr (AHW H). . (6.17)

Since H is an orthogonal matrix and W has the standard Wishart distribution
HWH! has also the :tandaid Wisbkart distribution. Therefore

Var, [tr (AW)] = Var, [tr A ﬁ)] ... (6.18)

where W has the standard Wishart distribution. Hence
k o~
V&I‘a [tr (AW)] = VM'B [ 2 A¢ Wu] ... (6.19)
f=1

where A,, ..., Ay are the diagonal elements in A which are the eigen values
of A and Wy, 1 < 2 k are independent random variables each with Chi-
square distribution with 1 degree of freedom. This in turn proves that

Var, [tr (AW)] = 2 z A2
§=1
= 2 tr (42
= 2 tr (V3 V'V V-ip'V-i)
= tr [(V-W’)?]. ... (6.20)
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Relations (6.16) and (6.20) show that

I (6) = E, [‘?_% ]’ - —;-tr[(V-lv’)ﬂ] .. (6.21)

Combining (6.2), (6. 6), (6.10) and (6.21). we have
liminf sup KE,[4/7%(g(6*)—g(0))]
n—>o® f¢gJ,

- _(_q_t.{')z_— + 2l V'(,) 817 . (6.22)

aV(Yo)a ' tr[(V(o) W (¥o)T

where J, = {0 : |01—0y| < €,,t=1,2} and ¢;2 n~2 > 0 a8 n— 0.

As a special case, suppose V(¢) is linear in 3 in the sense that V(¥) =
Ay +T, where I' is a known non-negative definite matrix, A is a known posi-
tive definite matrix and ¢ > 0. Then ¥V’ () = A and (6.22) reduces fo

lim inf sup E,[v/2(g(6")—g(0)F

n—>® GeJy

> _ (afa@)® 4 2(y* A b)
@ (AY,+T)ta  tr((Ay,+T)2A)

If A is positive definite and T’ = 0, then V() = Ay and (6.22) reduces 1o
lim inf sup K, [v/2(g(6*)—g(0))]

n—>o QGeJ,

taR | 2(yA )2
> ¥, a(tang%_ (Y*A 8)% Y3

(6.23)

tr (A1 A)?
_ (af @) | 2(Y*AS)* Y3
=V gpadig T % . (6.24)
A natural estimator of
g(0) = g8, V) =Beatatlyyt A ... (6.25)
is
5:(0") =t X+0yt A8 ... (8.26)
where
X=13%X, .. (8.27)
(X
Z == E—-% (Xg—-i) (X(-—i)‘, oo (6.28)

N ¢}
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and O is a constant chosen so as to minimize the mean square error of 9:(6*).

e

Note that X and 7-@-”_% are unbiased estimators of g and Z. Furthermore X

and 4 are the maximum likelihood estimators of p and X for n > k. Since

X is an inadmissible estimator of p. when k > 3, it might be better to use the
James-Stein {ype estimator of the form

A r(Fp) A 1=
= (I — F:)A 1% .. (6.29)
as an estimator of w where
(a) ?'(Z) == mm(k"'2: z)& 0 < z < 00,
XtA2X
(-b) F n — %T ’
and
(c) 32 = [(n—1)k+2]2 }1 (X;—X)t A-(X;—X) (6.30)

as suggested by Berger (1976) or a further improvement given in Nickerson
(1988). In such an event

9:(0*) = atp+d yt A8 ... (6.31)
may be chosen as an estimatior of g(f) where d i3 a suitable constant. Itis
difficult to compute the mean square error of g,(6*) in view of the fact thet

. and A4 are dependent random vectors. However, one can compute the mean

square error of ¢,(6*%) given by (6.26) using the fact that X and A are indepen-
dent random vectors. In fact

By(0(0°)] = ot By(X)+ OB, (A8 = atpat-OyyA 8 (=) ... (639

Ea[ﬁw‘ )—g(0)F = Vara[91(9*)]+(Ea(91(5*)"‘9(5)))3

= Var,[g,(6%)]4(y*A §) ( O(n;l) -—-1)33&2. ... (6.33)

But;
Var,(g,(6")) = of Covar,(X)a-+C? Var,(yt48) (by independent of X and 4]

= l-f-;- ot a+C*? Vara(ytz d). .o (6.34)
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Let

S = 3 (X—X) (X—X} .. (6.35)

=1
Note that

Var, (yt A 9) = ;;5 Varg (y* S 9)
1
== Var, [tr(yt S 8)]
1
== iy Var, (tx( & y* S)]

o 1—;5' Var, [tr(BS)} ... (6.36)

where B — 8§ y¢ . Note that B is not a symmetric matrix. It can be
checked that

Var, (tr(DS)) = 2(n—1) tr(D Z D X) . (6.37)

for any symmetric matrix D and

Var, (tr(BS)] = Var, [ tr{ ( B—;T—Bt) S} ]

20 ] (2422 (B2

2 2
= 2(n—1) }tr(BSZ B I)+tx(BZ Bt Z)]. ... (6.38)
Combining (6.36) to (6.38) and observing that & = Ay, we have
Var, (v A 8) — (”"';2'1) J2 [tr(5y* A 6yF A)-+tr(5yt Ay8 A)]. ... (6.39)
Hence

('"’:1) Y2 [tr (y* A y* Ad)-tr(y® A y & Ad)]

Var, (y? A §) = -

__ !_n;;l) U2 [(y* A8)2+(yt Ay) (8¢ AS)). ... (6.40)

Therefore, from (6.34), it follows that

Var, [¢,(6*)] = 4 (af A a)- %:1) Y2 [(y¢ AS)24-(yt Ay) (8¢ AS)).

n n . (6.41)
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Combining (6.33) to (6.41), we have

02(n 1)

B, [02(67—g(O)F = & (ot Aa)+ Y(y* ABP-+(y* Ay) (8¢ Ad)]

+y2 (v aap( LD )

n

¢ (at Aa)-Ly*(y AB)2 {m(n_.l)a ~ 20(n—1) 1 }

nd n

+y8

C? (?:?;"‘1) [(v¢ A8)2_|_(Yt Ay) (&¢ AS)] (3.42)

The last expression as a function of C is minimized when €' = C* given by

rasy | O _Hol)y 2P0 (peasyyiay) 6:8))
. (6.43)
This implies
C*(n—-

—o L (=) (PRSP Hy BBy Ay) (BAB) = (" A8 . (644

or equivalently

n(y*AB)?
W(y'A8)*-(y'Ay) (6*A5)

. (6.45)
Let

95(6%) = atX+C*(y* 4 5) ... (6.46)

Then g4(6°) is an estimator of the type (6.26) of g(6) minimizing the mean
square error and the mean square error of gy(6*) is given by

Bjlgs(6%)—g(O)F = ¥ (at A a)-+y%y A 8y

C¥(n—1)t _ 20%n—1)
+yt A | 2
+yo0* 20D (e A gy A y) (8¢ A B)

=¥ @t A aptyay Asp—0r B=1) yayrn g
=" @ Aty e oy {1 T

. . (647)
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where C° is as defined by (6.45). Hence

lim  Eyly/(g(6*)—g4(6)]"

= Yot A a)+P2{(y* A y) (8¢ A 8)-+(yt A 8)%). ... (8.48)

Obviously this limit is not the same as the lower bound in (6.24) when ¥ = ¥,.
Hence the estimator g4(0 ) of g(f) is not locally asymptotic minimax even-
though it is optimum in the sense of minimizing the mean square error. This
is unlike the result in Example 5.1 where the one-dimensional case was

discussed.
However, in view of the regression structure in the special case (X 1s

NS a, AyY) with known @ and A), one can obtain an estimator which attains
the lower bound (6.24) as shown by Dr. C. G. Bhattacharya in a private

communication. In fact
940*) = B of a+(yt A 8))

where B is the regression estimator of 8 and Jr is the estimator of ¥ based on
the error sum of squares is a locally asymptotic minimax estimator of

g(0) = & a+(y* A ) ¥.

7. REMARKS

After the original version of this paper was submitted for publication,
Professor J. K. Ghosh has informed the author that he and Dr. S. N. Joshi
have extended the Borovkov’s inequality to the special case g(0) = 6; in
an unpublished note in 1983. Babrovsky ef al. (1987) discussed global Cramer-
Rao type bounds for the estimation error of a parameter in a Bayesian set-up
both in the one-dimensional as well as in multidimensional case. In the one-

dimensional case, they obtain the inequality

E(—E(@6| X)) > __d.______@‘.@l“_______é . (1.1)
B| 2 [HO)La (X, 6)]/L(X, 0) ]

for any integrable A(.) (see Equation (24) of Babrovsky ef al. (1987)). The
corresponding inequality of Borovkov (1984) is

gON’
. (F20)
(O—E@| X)) > - ———- : . (1.2)
B| 2 (L(X, 6) WO))L (X, 6) g(6)]
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where ¢(f) is the prior density for 6 and 2(f) is a suitable function of 6. Hepe
LX, 0) is the joint density of X = (X,, ..., X,) given 6. If R(6) =1 ang
X4, 1 < ¢ < n are iid., then the inequality (7.1) reduces to

1
E(@-—E(GIX))’ > mﬁ- . (7.3)
where I\0) 18 the Fisher information. Choosing A6) = }qﬁ—gz, the inequality
(7.2) reduces to
J2 J H
E(6—E@0| X)) > 2T TH > Sreat o (7.4)

for some H > 0. From the elementary inequality
[B(X)] < B(X-Y)

for a positive random variable X, it follows that the inequality (7.4) gives a
better lower bound than that given by (7.3) upto terms of order o(n-!). One
might get a sharper lower bound than the one given by (7.3) by choosing a
suitable function % in (7.1) as pointed out by Babrovsky et al. (1987, p. 1428),
Similar comments are in order for the multidimensional case between Pro-

positions 2 and 4 of Babrovsky ef al. (1987) and Lemma 2 of Shemyakin (1987).

The lower bound given in (4.4) is obtained as an application of
the Cramer-Rao type integral inequality for the special case when the com-
ponents of the parameter are orthogonal, the observations are independent
and identically distributed (i.i.d.) and the loss funection is the squared error
loss. However stronger results can be derived for general parameters and
for subconvex loss functions when the observations need not be i.i.d. following
the general theory developed by Millar (1981, Chapter VII, Theorem 2.6).
This was shown by Samanta (1990) in a private communication to the author.

Apart from their applications to problems in checking local agsymptotic
minimaxity, integral inequalities are interesting in their own way (cf.
Babrovsky et al. (19§7)). It would be interesting to extend these integral
inequalities to the non-regular case. An attempt in this direction was made
by Babroveky ef al. (1987). However their discussion is incomplete.
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his help in computations in Section 6. Thanks are due to Professor J. K.
Ghosh for his pertinent comments on the earlier versions and for bringing
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work with Dr. S. N,Joshi to the author’s attention.
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