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Abstract. The problem of internal wave scattering by the edge of a semi-infinite inertial surface partly
covering an exponentially stratified incompreasible liquid of infinite depth is investigated in this paper. Assuming
linear theory the problem is formulated in terms of a function related to the stream function describing the
motion in the liguid. The related boundary value problem involves the Klein-Gordon equation which is a PDE
of hyperbolic type. The BVP is solved with the aid of Wiener Hopf technique applied to a slightly more general
problem and passing on to the limit in a manner so as to obtain the solution of the original problem. The
scattered feld is obtained in terms of integrals which are evaluated asymptotically in different regions for large
distance from the edge. The asymptotic form of the wave field iz plotted graphically for various cases to visualize
the nature of the scattered wave field.

1. Introduction. In the mathematical modelling of wave phenomena in a deep liquid, a
part of which is covered by an inertial surface composed of a thin but uniform distribution of
non-interacting floating particles (e.g., broken ice, floating mat on water) while the remaining
part is free, the surface boundary condition becomes discontinuous in the sense that there is one
condition at the inertial surface and another condition at the free surface. For a homogeneous
liquid (e.g. water), Peters (1950), Weitz and Keller (1950) developed mathematical models to
investigate scattering of surface waves travelling from the free surface region and normally or
obliquely incident on the line separating the free surface and the inertial surface. Gabov et.
al. (1989} generalised these problems for two immiscible homogeneous liquids for which half
the interface is covered by an inertial surface and the other half is a free separating boundary
of the two liquids. Recently Kanoria et al. (1999) investigated two mixed boundary value
problems involving surface water wave in deep water (or interface wave in two superposed
homogeneous liquids) arising due to one or two discontinuities in the surface (or interface)
boundary conditions. The governing partial differential equation in these problems is the
Laplace equation which, together with the boundary conditions, is generalised to the Helmholtz
equation alongwith slightly different boundry conditions by introducing a complex parameter
to facilitate the use of Wiener-Hopf techique in the mathematical analysis. Ultimately this
parameter is made to tend to zero to obtain the solutions of the original problems.

Instead of a homogeneous liquid, if we have a stratified liquid in which the density varies
exponentially aleng the vertical direction, then the governing PDE describing the propagation
of steady state internal waves becomes the Klein-Gordon equation (Gabov and Sveshnikov,
1982 and Varlamov, 1983, 1985). Let the stratified liquid occupy the region y < 0 when at
rest, wherein the y-axis is chosen vertically upwards so that the upper surface of the liquid
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at the rest position coincides with the plane y = 0. The liquid is exponentially stratifieq
along the y-direction so that its density in the unperturbed state is assumed to be of the form
po(0) exp(—28y) (B > 0) where po(0) is the density at the top of the liquid.

Writing the stream functior

¥(z,9,t) = u(z,y, t) exp(By), (1.1)
it can be shown that u satisfies the PDE
%(vzu — fPu) + wgg:—; =0, (1.2)

where V2 denotes the two-dimensional Laplacian, and wo = (289)Y/2 is the so-called Brunt
Vaisala frequency.

Fer plane wave solutions, the time dependence can be chosen to be harmonic so that u(z, y, t)
can be written as Re{u(z,y) exp(—iwt)} where u(z,y) is now complex valued, w is the circular
frequency, and the same notation u is used without any confusion. If exp(ik,x + ikqy — iwt)
represents a plane wave solution of the PDE (1.2), then the dispersion relation is

w = m. (13)

The group velocity vy = (gf—:, gﬁ) is then obtained as

k
Vg = a%ﬂk% + B2, —k1k3). (14)

Thus the directions of the wave vector k = (ki, k) and the group velocity vector v, do not
coincide unless k3 = 0. Since the direction of v, determines the direction of energy flow in the
wave, the direction of wave propagation is to be taken as the direction of v, rather than that of
k. Also, the dispersion relation (1.3) ensures that plane wave type solutions are possible only
when w < wp, and this will be assumed all throughout here.

The complex valued function u(z, ), which is related to the stream function, now satisfies
the Klein-Gordon equation

J%u 1 8%u
"3'? G .3211 —_ 5-2--5;, (1'5)
where \
%:%_, (1.6)

Thus the governing differential equation (1.5) here is a PDE of hyperbolic type in contrast
to PDEs of elliptic type encountered in the classical diffraction theory.

Gabov (1982), Gabov and Sveshnikov (1982) investigated scattering of two-dimensional
steady-state internal waves in an exponentially stratified incompressible liquid by the boundary
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of a solid half plane. This models interaction of waves with a rigid ice field covering half
the surface of an infinitely deep ocean whose density varies along the vertical direction in
an exponential manner. They used the Wiener-Hopf technique in the mathematical analysis.
Several researchers, mostly Russians, soon afterwards investigated a number of variations of
these problems by using the same technique. For example, Varlamov (1983, 1985) investigated
internal wave scattering by a semi-infinite horizontal wall present inside the liquid and by a
semi-infinite elastic half plate present on the surface of the liquid.

In the present paper, the problem of internal wave scattering by a semi-infinite inertial
surface partly covering an exponentially stratified liquid is investigated. This may be regarded
as a generation of the classical scattering problem considered by Peters (1950) for surface
water waves in the presence of an inertial surface (e.g., broken ice, floating mat) to internal
wave scattering by an inertial surface covering an exponentially stratified liquid. Assuming
linear theory and under Boussinesq approximation with constant Brunt Vaisala frequency, the
problem is formulated as a boundary value problem involving the Klein-Gordon equation wth
discontinuous surface boundary conditions. The problem is handled for its solution with the aid
of Wiener-Hopf technique after introducing a small positive imaginary part in the parameter a
defined by the relation (1.6), as well as by slightly generalising the surface boundary conditions,
the edge conditions and the infinity requirements, and ultimately passing on to the limit as this
small imaginary part of a tends to zero. The diffracted field is obtained in terms of integrals
which are evaluated asymptotically for large distances from the edge of the inertial surface by
the method of steepest descent and interpreted physically. The asymptotic form of the wave
field is plotted graphically for various cases to visualize the nature of the scattered wave field.

2. Formulation of the Problem. Let an incompressible inviscid exponentially stratified
liquid occupy the half space y < 0 when at rest, and the half-plane ¥ = 0, £ < 0 be the rest
position of the free surface while the remaining half plane y = 0, > 0 be the rest position of
the inertial surface with area density o.

The linearised free surface condition for the complex valued function %(x,y) is

2
gggﬁ..{.%.yﬁu:o on y=0, 2 <0. (2.1)

while the linearised condition at the inertial surface can be obtained as (cf. Peters (1950))

c 0%u Ou
pow2-5;2-+5§+ﬁu-—0 on y=0, x>0, (2.2)
where pg = po(0) and
c = gpp — ow>. (2.3)

We can assume that the constant c¢ is a positive quantity so long as w < wg. This is due
to the fact that under actual conditions concerning a stratified ocean, w$ =~ 10~* Hz? and
when the ocean is covered with ice which is modelled as a thin elastic plate of surface density
0,2 ~ 10Hz? (cf. Varlamov 1985). In the present case when the ocean is covered with broken
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ice (inertial surface) we can assume that 482 js also in the same range. Thus w2 < 2

hence ¢ > 0 since w < wp has already been assumed. o+ and
Let from the region z < 0, y < 0, a plane wave field represented by
where
k= a7+ ), (2.5)

and b and k are taken to be positive, propagate from infinity and be incident on the edge of the
inertial surface separating the free surface. The group velocity, given by the relation (1.4), for
this wave is directed towards the edge of the inertial surface while the phase velocity is directeq
away from it. The total wave field u can be represented in the form

w(z,y) = do(x,y) + ¢1(z,y) + (2, ), (2.6)
where
¢1(z,y) = Rexp(iby + ikz), (2.7)
with -
Cib-f4 P
R"mfbw—-ﬂﬁ}’ (2.8)

8o that it represents the wave reflected from the free surface, and ¢(z,y) is the diffracted
field. ¢(z,y) satisfies the boundary value problem described by the Klein-Gorden equation

¢ ,. 18%
o P = ag V<O (29)
and the boundary conditions
g ¢ 8¢
wigzi T, HAP=00ny=0, <0 (2.10)
c P¢ 8 |
pow? 022 + '53 + ¢ = Aexp(ikz) on y =0, z > 0, (2.11)
where 2

po(‘ib'l'ﬁ—%f;)-

To apply the Wiener-Hopf technique for finding the solution for ¢, we assume that the
constant a occuring in the PDE (2.9) has a small positive imaginary part € so that the constant

k defined by (2.5) has a positive imaginary part 8(¢) = (b2 + 82)!/2¢ which tends to zero &s
€ — 0+.
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Also ¢ satisfies the edge conditions
¢l = O(1), |Vé] =0(1), [V?¢] =0(1) as r = (z*+3*)/2 0, (2.13)
and,the condition at infinity, as given by
191+ V61 + | 28] < const. exp(—x(elr) o8 r= (a7 4372 200, (214)

where 0 < x(¢) < min(ef3, 8(c)) = € so that x(c) — 0 as £ — 0+.

The condition (2.13) follow from the fact that the energy flux through an arbitrary closed
surface encompassing the edge of the inertial surface is equal to zero while the condition (2.14)
follows from the requirement that the diffracted waves carry energy away to infinity.

~In the next section, the Wiener-Hopf technique is applied to the generalized BVP satisfying
the Klein-Gordon equation (2.9) involving the complex parameter a = a; + i¢, the surface
boundary conditions (2.10) and {(2.11), the edge conditions (2.13) and the infinity requirement
(2.14).

3. Solution of the Problem. Let ®(a,y) denote the Fourier transform of ¢(z,y) defined
by

00

O(a,y) = d(z,y) exp(iaz)ds

—0Q0

where a = o + i7, 0 and 7 being real. Then
®(a,y) = 2-(o,y) + 24 (ayy),

where . »
By, &_ = jo | #(z,y) expliaz)ds. (3.)

-0

Now using the condition (2.14) we find that ®,(a,y) is regular in the upper half plane
T > —x(¢) and ®_(a,y) is regular in the lower half plane T < x(¢) of the complex a-plane.

The edge conditions (2.13) alongwith the Abelian'theorem {(cf. Nobel (1958)) ensure that

|9+ (,0)] = O(la|™") as |al = o0 in 72 Fx(e). (3.2)
To use the Wiener-Hopf procedure, the boundary conditions (2.10) and (2.11) are rewritten

as
gﬂ ?_QE - 0 on y=0,z<0, a3
w23m2+3y+ﬁ¢-{f(x) on y=0, x>0, (3:3)

pow? 9z2 i oy Aexp(ikz) on y=0, x>0,
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where f(z) (for £ > 0) and g(z) (for z < 0) are unknown functions. The edge conditions (2.13)

ensure that
|f(z)| = O(1) as ¢ — 0+,
lg(z)| = O(1) asz — O_. (3.5)
Now, use of Fourier transform to the PDE (2.9) produces the ODE
d*®  ~*(a) ~
'&;‘f"l‘ 32 @=0, y<0, (36)

where
7*(a) = a® - a?A?,

and we choose that branch of the function y(a) = (a? — a?6%)!/2 for which ¥(0) = —ia8 in
the complex a-plane cut along the line joining the points —(a; + i€)B and (a; + ic)3 through
infinity.

A solution of the equation (3.6) is

®(a,y) = D(a)exp (ﬁia)y) , ¥<0, (3.7)

where D(a) is an arbitrary function of a. Using Fourier transform to the conditions (3.3) and
(3.4) we find that P(a, y) must satisfy

2
(6-%5) #@.0) + T(@,0) = Fi(a), (3.8)
o oo io A
(8- 2) #0.0)+ £0.0) = A + G- (39)
where the unknown functions
00 0
Fi(a) = ./o. f(x)exp(iaz)dz and G-_(a) = g{x) exp(iazx)dr

are regular in the two overlapping half planes 7 > —x(¢) and 7 < x{e) respectively with
|F4(a)] = O(la|™?) as la] — oo in 7 > —x{e) and |G-(a)| = O(|a|™!) as |a] — oo in T < x(e).
Using (3.7) in the conditions (3.8) and (3.9) and eliminating D{a), we obtain the following
Wiener-Hopf relation, for the determination of the two functions Fy(a) and G- (a), as given

by

Fi(a) A
Ko - = mre -

valid in the strip 7 < 7 < 74 where 71 are chosen such that —x{€) < 7- < 0 < 74 < x(#),
and

K(a) = M = _B;Po___“f_(f)_:i‘.‘ﬂi.ﬁi___ (3.11)

oy — - 2 ¢ y(a) - iafeeg=titee
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To solve the Wiener-Hopf problem. described by the equation (3.10), it is necessary to
factorize the function K(a) as K{a) = K..{a)K_(«a) where K, (a) is regular in the half plane
'r>'r_. and K_ (o) is regular in the half plane 7 < 7. Fort}uspurpme,thecma <1 and
a® > 1 are to be considered separately. Here of course a? is considered as a real quantity. We
note that for a? < 1, w < wp/4/2 = w,. In the case the quantity 2p9g — (1 + a*)¢ occurring in
the denominator in (3.11) is always positive. However, for a? > 1, 2099 — (1 + a?)c is positive
so long 838 w, < w < w, where

2 2 ‘-"’"-'2)
W, = wl 1 — em—— 3.12
g ( 2p09 3.12)
and this is negative when w > w,. These observations are to be kept is mind while factorizing

K(a).

(a)0<a? <1
K(a) can be expressed as
o) =~ 2225,
where
L(o) = 7(a) — iaﬁi . 2: (3.13)
and
N(a) = ~(a) — iag 2922 — (1 %) (3.14)

(1+a?)c

It is obvious that for the above choice of the branch of ¥(«), both L{a) and N(a) have no
zeros in the strip 7— < 7 < 74, and these can be factorised as (cf. Noble (1958))

L{a) = Ly(a)L-(a), N(a)=N,(a)N_(a), (3.15)

whete L_(0) = Li(~a), N_(@) = Ny(-a), [L+()] = O(jal"") po o] + oo In 7 >
r_,|Ny(a)| = O(|a]*/2) as ja] — oo in T < 74, and

9 1/2
L.|.(CI) = (—-—1 ffz)

<o | [ ((52+ o e n @) -0 ©)) gogs] . 010

.|.
2igaﬂpo i L 2900 = (1 +a%)e
N.(a) = ("‘ 1+ a3)c [ { (1+ az)c

X{oo Ay (o) — E A4 (f))}gfiéa?} , (3.17)
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%m0 ° 4a4g2
aid [1 -{i- o) ] S (8.18)
and
Y SN L1 5 S
_l,.(f).- m ,7(a) —£+aﬂ ) == - +(-€). (3.19)
Thus
900\Y/? L;(a)
Ki(a) = (-7 N (o)
and

K_(a) = K;(-a), |K(a)l=0(1) as laj —+ 00 in 7> 7_.
Now the relation (3.10) is rewritten as

Fi(a) _ AK_(a)
K:.(a) = —K_(a)G-(a) + i(a T k) :
which is further rewritten as
f_'_';(_‘_'.). - ."l_K.:_(:i). = -K_(a)G_(a) + <. (K-(a) — K_(~k)), 7-<7<74. (3.21)

t{a + k)

The left side of (3.21) is analytic in the half plane 7 > 7.. and the right side is analytic in
the half plane 7 < 74, and as ja] — oo in the respective half planes, each side is of the order
O(laf™}). Applying the principle of analytic continuation and Liouvill’s theorem, we find that
each side of (3.21) vanishes identically. Thus we find the unknown function F (o) as given by

AK_(-k)
i(a + k)

Fi(a)= Ky(a) (3.22)

Now the use of (3.7) in (3.8) gives D(a) as

e Bl 3.23
e a1 {7(a) — iaf}L(c) -
BK, (k) (3.24)

~ (a+ k) {7(@) —iaB}L_(a)Ny(a)’
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with -
B=— (29-) w?A.
gc
Thus by Fourier inversion, ¢(x, y)(y < 0) is obtained in this case as

o), _;
BK, (k) P (___.....__..____...." * v m) da, 0<w<w,, (3.25)
2r Jr (a+k){v(a) - iaB}L_(a)N;(a)
where I' is a line parallel to the real axis lying in the strip 7. < 7 < 7.
(b) a? > 1 (w > w,)

For the choice of the branch of 4(a) made here, the function L{a) has zeros at a = +a, for
a? > 1 where a, is defined in (3.18) while the function N(a) has zeros at a = *ay, ap being
defined also in (3.18), only when

¢(z,y) =

(1 4+ a?)c > 29p0,

i.e., only when w > wy, where
g\ -1
2 _,2fq_ 9%
wy = W (1 29#0) (3.26)

Thus it follows that for a? > 1, two situations arise according as w < w, and w > w,. These
are also dealt with separately.

(i) ws <w < wy

In this case L(a) has zeros at a = +a, while N(a) does not have any zero in the strip
T- < 7 < 74 for the aforesaid choice of the branch of y(a). We write K(a) in this case as

__9m _a’-—aj
K(a) = ~== M{@N(a) (3.27)
where \
M(a) = () ~ iaB 35—, (3:28)

We note that M(a) is analytic in the strip 7. < 7 < 74 and can be factorized as
M(a) = M {(a)M_(a),

where

%a3 1/2
M () = ('1Tai)

o [ [ (552 + S (o0 s (@) A +O)) g (329)
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M_(a) = My(—a), |Mg(a)| = O(jof*/?)

AR M w007 5 T, M,;_.(a) 18 ma.lytlc in the ha.l.f-plane T 2 Tx. Fma]ly, K.,.(a) in this case
ie:abtained as

ooy (34 ad¥){a+al)
— —— 2 .
o[- [ {E5% + 2B o p+ (a0) - 64 60
2
<o [ {552+ e M @) - em ) g 2]
¢#{x;3) n this case is found to be

_ BK.(k) [ M-(o)exp(2y —iaz)
oz, y) = TLEWW
where T is the same contour as in (3.25).
(H) wp <w < 1wy

In this ease L{a) has zeros at a = t+a, and N(a) has zeros at a = *ap in the strip 7_ <
T < Ti, #0 that KX (o) can be written as

da, w, <w < wy, (3.31)

_gpo (a? — a3) P(a)

K (a) . M i, (a) (332)
where
P(e) = 1(a) — iap 1t 3)c — 2900 (3.33)

which Is analytic in the strip 7. < 7 < 7. P(a) can be factorized as

P(a) = P, (a)P-(a),

P = {1 22 )} e [ {552

(ij_(—l_'—zfa—-—‘n:gm(ao At (ag) — A4 (6))} Ei'%%g]'* (3.34)
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and P_(a) = Pi(—a), |Pr{a)] = O(|a]'/?) as |a| — o0 in 7 2 75, Py(a) is analytic for 7 >
7~ while P_(a) is analytic for 7 < 7;. Thus, we find that in this case

v1+al ata,
Hpi) =3 E'?' a (l“ﬁ%) :-I-ao
xexp[f: {‘?“"%}?ﬂ(aom (a0) —§ Ay (E))} a;%g] ($.35)

exp [f: {{-_-22._ + 'E;'I_i(aa A-I- (h"l) = f A+ (E))} E"‘Zl.%?]
Finally, ¢(z,y) in this case is obtained as

B, (k) [ Pr@M_(o)exp (edy — iaz)
2 Jr (a+k)(a—a,)(@+ao){7(a) —iaB}

where I' is the same contour mentioned earlier.

Now by passing on to the limit as £ — 40 in the results (3.25), (3.31) and (3.36), we obtain
the final result in the compact form

¢(z,y) = da, wp<w<wy  (3.36)

BK+(k) o0 ﬂl(&) exp (57;(‘5'5)-1; = ia:c)

M) == | G e — B} () &30
where
1, 0 <w < w,,
hia) = { M_(a), w, <w < wy, (3.38)
Pila)M_(a), wp <w < wy,
L_(a)Ni{a), 0 <w S w,,
(2{a) = ¢ (a—a,)Ni(a), tw, <w < Wy, (3.39)

and K, (k) having appropriate values in the different ranges of w. The integration in (3.37) is
taken along the real axis of the a-plane with indentation above the negative poles and below
the positive poles. In the next section we analyse the solutions (3.37) asymptotically.

4. Asymptotic Analysis of the Solutions. For asymptotic analysis of the integral in
(3.37), we intraduce the polar co-ordinates (r,8) defined by T = rcos#, y = —rsin8,0 < 8 < =,
where € is measured in a clockwise sense from the z-axis. We note that the characteristic
equations of the PDE (2.9) represent a pair of straight lines y = Xax passing through the
origin and form a characteristic cone. These straight lines are inclined at angles 8, and 7 — 8,
with the z-axis where 0, is defined by tanf, = a. Let 8 be defined by tanfy = %2, then 6y is
the angle which the group velocity vector of the incident wave field ¢9 makes with the z-axis.
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From the representation (3.37) it follows that ¢(z,y) is continuous in the region y < @
together with its gradient, but the second order derivatives are logarithmically divergent
everywhere on the boundaries of the characteristic cone given by the lines § = ¢
which pass through the origin. This means that the logarithmic singularity of the secong
order derivatives of the diffracted fields on the edge of the inertial surface propagates along the
characteristics of the governing PDE.

Asymptotic estimates of the integral in the representations (3.37) in different regions are

obtaihed by the method of streepest descent. The final result for the total wave field 1 is
obtained in the fallowing form

C19=7r_9u

¢2 +¢¢(11) +¢IS: 0<58< 901
61+ 6% + 15, B0 <0 <8,

4 ¢0 ¥ ¢1 +¢(2): ec <f<m- acr (4‘1)
¢1+¢¢({l)+¢ﬂ W—9c<95ﬂ'a
where ¢, is given by (2.7),

K 4pwi(ib-8) .
P = "= g ) )

_ {BK (k)4 (—~ao) B{(1 +a%)c—2gp0} .

b = T arton —aBa 0 (v Y )
— iBK (k) () B _ o

b = e e — e = (@ (e - D - 2d'a}).

o) - BK ., (k) (a") 1
. (k + otV ){7(&9’) - iaﬁ}ng(ag)) {2xprP(6)}1/2

Gﬁ sin @ . T 1
<p- o (om0 + 7} [1 e (3-)]) :
6P o BE () 1
(k + @) {7(a®) - iaf}0(a®) (27BrQ(8)}172

X azii;)a exp (—ﬁrQ(G) [1 +0 ('ﬁ{;)]) ,

P(0) = (a®cos® 6 —sin?0)Y/?, 0<0<8,, n—-6,<0<m,
Q(0) = (sin®0 — a?cos?9)Y/2, 9, <@ < n 8.,

MO ~ a’Bcosf ol = iazﬁcosa'
P@) - Q(6)
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In (4.1), @ is the incident internal wave field, ¢; is the wave reflected from the free surface,
@2 is the wave reflected from the inertial interface, ¢;s is the wave due to inertial surface, which
exists only when w, < w < wy, ¢s is the surface wave which exists when w, < w < wyp, and

¢§1}. : ¢f,2) are contributions due to diffraction. This asymptotic analysis is consistent with a
similar analysis by Gabov and Sveshnikov (1982) and Varlamov (1985) in connection with their
studies on internal wave scattering by the edge of an ice field and an elastic plate in the form.
of a half space respectively.

9. Discussion. The terms ¢yq, ¢y, ¢2 represent the zeroth order approximation terms in the
representation (4.1) of the total wave field in the sense that they occur according to the laws
of geometrical optics and without considering diffiraction by the inertial surface. This becomes
obvious when the area density o of the inertial surface is made equal to zero. In that case,

¢ = ¢ and ¢f,l), E’), ¢1s and ¢g vanish identically as expected since no diffraction can occur
in the absence of the inertial surface.

Fig. 1. Waves reflected from the inertial surface
(%{b = 50, w‘f = 1‘5, EEQ' - 1011 E'{':'i = 01)

In fig. 1, ¢; i.e., the wave reflected from the inertial surface, is plotted against bz and by for
f‘% = 5.0, ¥ = 1.5, 22 = 1.01. It is observed that these waves propagate in the region under
the inertial surface without any decay of its amplitude.

The terms ¢} and ¢3 are due to scattering. ¢; arises when0 < 9 <8, and n ~ 6. <9< =
i.e., in the region within the characteristic cone. Fig. 2 depicts ¢} in the region 0 < 8 < @.
against br and fig. 3 depicts ¢} in the region 7 — 8. < 6 < 7 against br for ;'-;,9; = 5.0, ¥2 = 1.5,
2% —1.01, -‘1‘—;’3 = 0.01. From these figures it is observed that the diffracted waves in the region

0c< 8 < 0. decays faster than those in the region 7 — 8, < 8 < 7 far away from the edge of the
inertial surface.
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Fig. 2. Waves due to diffraction Fig. 3. Waves due to diffraction
infd< @<, inr—-0.<0<n
($=5-0,%=1*5! (ﬁg:so Eﬂ.=1_5,
@ = 101,22 = .01) % =1.01, 2 = 01)

The term ¢3 arises in the region 8. < 8 < 7 —8,, i.e., in the region outside the characteristic
cone. In fig. 4, @2 is plotted against br for & = 5.0, & = 1.3, 8 =1.01, 31;'—2 = 0.01. We
observe from this figure that ¢3 has no wave like character and it decays exponentially far away
from the edge of the inertial surface.

The term ¢, exists when w, < w < wy and arises in the region T — 0. < 6 < m. Fig. 9
depicts ¢, against bx and by for 25 = 5.0, ® 1.3, 22 = 1,01, 2_:5”_"1 — 0.01. It is observed
from this figure that the waves propagate under the free surface along the negative z direction
without any decay of its amplitude and decays exponentially with the depth of the liquid.
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Fig. 5. Waves under the free surfaceinr -0, <0 <

(% =50, =132 =10, = 01)

Finally, the term ¢;s exists when w, < w < wp and arises in the region 0 < 8 < 8, In Fig. 6,
¢1s is plotted against bx and by for ;}'} = 5.0, & = 1.3, & =101, —‘-’{’—3 = (0.01. It is observed
that the waves propagates under the inertial surface along the positive z-direction without any
decay of its amplitude and decays exponentially with the depth of the liquid.

388
488

(% =502 =132 =101, = 01)

2
! W C

From figs. 5 and 6, we also observe that the wave generated due to the presence of the inertial
surface is at higher frequencies than the wave generated on the free surface of the liquid.
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