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SOME INVARIANT SEQUENTIAL AND NONSEQUENTIAL
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By ATASI RAY CHAUDHURI
Indian Statistical Institute

SUMMARY. Tho problem conzidorod hero is an identification problom, whero the popu-
)ations aro multiverinte normal differing in their unknown means and the commeon variance-
covarianco matrix £ may bo known or unknown. A samnplo of fixed sizo ia given from the popu-
lation o which is to bo identified with onoe of tho two othor populations m, ond m,, from which
sampling can bo done sequentially or non.scquontially. This is an extension of tho univariate
version of tho problem taken up by Ghosh and Ray Chaudhuri (1984) whero a truncoted invariant
SPRT was proposed as a solution. Tho ono sided univarinto version of tho problom was olso
considered by Ghosh and Mukhopadhysy (1980). Horv tho invariant SPRT for the multivariate
caso ia studicd and it i3 scen that the error probabilitica can bo bounded as in tho univariate caso,
A general theorem regarding osymptotie distribution of o class of stopping time is given, from
which the asymptotia distribution of tha stopping time of the invariant SPRT for the known I
caso, follows. Termination propertioz are olso studied for the proposed invariant SPRT,

1. INTRODUCTION

Let X, Y, Z with suffixes denote random variables associated with 7, m,
and m, respectively. Each of tho populations m, , and =, are p-variato
(p » 2) normal with mean g, s, and g, respectively and the common varianee-
covariance matrix I which may be known or unknown.

The problem can bo formulated in the following way :
Test Hy:po = peyversus = iy
s.t. I’Ho(Rejchion of ) =a
(L1)
P"l(checl.ion of II))= 8
A parameter A, is introduced (as in the univariate case) to specify the
indifferenco zono and tho following hypotheses are tested,
Iyt pp=py o 2 polliy—ity s = B }
i o =t g —pally = B
whero Ny —palle = ((y—pt2)’ Tty — )2 e (L3)

(1.2)

AMS (1085) subject claasifications : Drimary 62L10; Sceondary 62H30, 621115,
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invariant.
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It is natural to expeet that any reasonablo procedure for testing the hypothe-
ses described in (1.2) will also work (in fact in a better way perhaps) when
tho truo ljz,—p,lle > A, Somo practical motivation is provided in Ghosh
and Mukhopadhyay (1980) and Schoofsma and Van Vark (1977).

The following threo schomes are considered here :

S1: Three fixed samplos of size X, (pro-determined, k> k,) nyand n, are taken
from ,, m, and m, respectively. Here ky denatea the minimum sample
size from m,, necded for the indentification problem subject to condi-
tion (1.1) (vide Scction 2.1 of Ghosh and Mukhopadhyay, 1080). Clearly
k, dopends on @, # and A,

S2: A samplo of fixed size k{k > k, aa given in S1) is taken from 7, where
m, and 7, aro sampled sequentially.

S3: All the three populations aro sampled scquentially.

Under sampling schome S, the best inveriant fixed sample procedure is con-
sidered. This proceduro has error probabilitics monotonically decreasing as
llgy— gVl increases (vide Dasgupta, 1974) when the cutoff constant ¢ is one
ie. when o = f.

Under sampling scheme S2 and S3, (for the known X case) the invariant
SPRT’s based on the maximal invariant are considercd onco with (Xx, ¥, Z,)
and onco with (X,, ¥, Z,) os sufficicnt statistics for (g, g, ;). The eror
probabilities of both these SPRT's can be bounded as in tho univariate
caso vido Ghosh and Ray Chaudhuri (1984).* The termination properties
aro studied in Section 4. In Section 5, a general theorem is given to study
the asymptotic behavior of a class of stopping times. The asymptotic distri-
bution of the stopping time of tho invariant SPRT for schemo S2 for
tho known I case, follows from this general theorem. The effect of trunca-
tion on the stoppinz time is also discussed.

2. PROCEDURES FOR ENOWN ¥ OASE
If % i3 known, it may be assumed to be Iy without loss of generality.
Now the hypotheses described in (1.2) can bo restated as
,:0 = (8, 8p 1)
H,:0=(A, A, —1) }

s (21

*Thoso rosults aro disoussod in Sostion 2, and Soction 3 doals with similar reaults with the
anknown X.
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(20 —=pty =) {1 —113)
0 = (l12—piy—ptll, Wty—prgll, St ) S Ha).
whero (|| ==\l g — gl ||2I‘—l‘1—.“z”-||!‘1—l‘t”)

(22)
and X = X}

Hero (X, P, 2,) is sufficient for (g, jt;, #,) with & and »n defined as follows
for different schomes. TFor scheme S1, k 3 ko, n = ny where both k and =,
aro fixed, k is predetermined and 7, is determined subject to (1.1). Here
such a choico of n, is possible as k > k,, ¥, as described in S1, For schemo
82, k is prodetermined and k > kyasin §2 snd n = 1, 2, 3, ... and for schome
83, k=n=12,...

Tho group of transformation applied hero is (Xx, ¥,, Z,)- (BXix+C,
BY,+C, BZ,+C) whero B is pxp orthogonal and € is px1 sealar vector.
Tho maximal invariant under this transformation is 4,=(2Xx—¥,—Z,|?
1Y, =2, (2Ze—Y,—Z,Y(¥,—Z,)). By the basic theorem of Hall et al
(1965) A, is invariantly sufficient for 6,  Let ¥pyp be orthogonal such that
Yliu—m) = (80, 0,0,...,0). Then S = /(2Xx—P,—2Z,) is normally distri-
buted with mean (A, 0, 0, ..., 0)’ under H,and (—A,, 0, 0, ..., 0) under H, and
variance-convarianco matrix (4#k-14-2a-YI,. And T = (¥,—2Z,) is inde-
pendent of S and is normally distributed with moan (A,, 0, 0..., 0)' and vari-
anco-covariance matrix 2a-17,.

Tho distribution of 4, = (IS}, |Tj?, §'T) is noncentral Wishart (vido
section 3 of Andorson and Girshick (1944)) with the density

2
a2t 2 87 -3 »-2

1651 © (kb

)

S 4p) = Iitp-pknv/bu), form =01

2p—|(p—z)"m[,(p_;l)
whero 1% = A}(05'4o7'),0s = 4k~ 42071, op = 207}
m__ [ OT o o5 m - 0 -1
0= (g2 S8+ o5 TTH=1" 28 T) (os+07)

b = ((~1)"HopS S+ (op—05)ST+(— V)osT'T)os+or)osor)
b = (S'SH(=1ym128"T4-T'T) (os+0or)* under I,y for m = 0, 1

1031 = b1 bR— (0
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i . L 2
I(p—2) is the Bessol function of imaginary argument. Thetrace X b7 and | 6]
1

both remain unchanged under tho two hypotheses.

Dofine Zm = k,(b7)"

88, T 28'T (vt
=A, (—J—Q +—J’r—+(—l)m v ) form=0,1, ... .. (23
Then the tost statistics reduces to
Sufdn)
Warldy) =0
Sir{4n) .24
i+
V/ _
= ﬁm . (25)
Zo : I"p—Z)(ZB)
= wp(zy) 2.6
250z e
1 e
where wy{z) = [ cosh (z 1) (1—13) ~ dt . (23
o

The equality of (2.5) and (2.6) is an easy consequence of the series represen-
tation of cosh (z) and Ip . (@) (vido Whittaker and Watson, 1958, page 373).

2
Remark 1: One may obtain this form of density ratio (as in (2.6)) of
maximal invariant 4,, by integrating over tho group of transformation (vide
Wijsman (1967, 1979)). Ono can evoid the complicated scries expansion by
adopting this tochnique.
For Schome S1, tho procedure is ag follows :

Reject I, if Wnok (44) > 0 whore & and », are chosen to satisfy (I.1). When
o =fl, we have ¢ =1 and
Wax(dy) > 1 & 03'0738'T < 0 . (28)

By Theorem 2.1 of Dasgupta (1074), both types of error probabilitics can be
shown to bo monotonieally decreasing functions of |lu,—p,)l. However, the
monotonicity could not bo shown for ¢ # 1.

Now to implement S1, ono nceds the valuo of %, or at least an
upper bound of %, Derivation of an exact valuo of k, involves tedious
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numarical ealeulation as tho distribution of IV, (4,) is extremely complicated,
whereas an upper bound of &, can be obtained by a much simplor method
as given below.

If @ # 1, consider the harder problem with ' =f' =aAf (ifa=f
thon &’ = /' = a). Drobability of correct identification for this harder

. ST A, %
st Py, ( 7o >0) > (@ (G )
(nsing independence of § and 7' and @(.) denotes the normal cd.f.).

Nox for having a solution in » for

A L '
(*(‘paEg ey )" =1-a . (29)
ono needs to have
k> d4r%,p A5t e (2.10)

where 7,, is 8.t. O(r, ;) = (1—a')?2,

Define k, = [472,pA5?] = tho smallest integer greater than or equal to
473,pA5%.  Now ono can take & > k, to implement Scheme SI.

A
21, p
Then u, works as an upper bound of #,.

For scheme $2, the truncated invariant SPRT with test statistio 17, 1(A,)
is considered with the usual boundaries. Here the untruncated SPRT docs
not terminate with probability one (sco Theorem 1 in Seetion 4), which em-
phasises the need for a truncation point. Ono can choose the truncation
point mg = 2n;, 7, a3 given in (2.11).

For schemo 83, tho inveriant SPRT with usua) boundaries is studied.
The test statistic in this case is 1, (A,). This SPRT terminates with pro-
bability one which is ensured by Theorem 2 in Section 4.

Let = —~2i)” | fork> b . (21

Both kinds of error probabilitics of tho invariant SPRT’s for schemes
$2 and S3, can be Dounded as given in Proposition 2 of Ghosh and
Ray Chaudhuri (1084). Yor applying Proposition 2 the following Lemma 1
is needed.

Lemmal: For A<, B>1 and A* > A, >0,

(i) Waildy) A== Wpi(A*) < Aand

() Wonldo) > B== Wa(8%) > B.

Tho proof of Lemma 1 follows in oxactly similar lines as tho proof of Lomma 2
of Ghosh and Ray Chaudhuri (1984). Thus Lemma 1 ensures the fulfilment
A2-9
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of condition (2.21) of Proposition 2 of the above mentioned paper and the
following bounds can bo obtained.

For achemo S2, wo have

p(l_ﬂo P (V,)md. W, >0+, (N,)mn, Wu“ >1)

. o__B
£< (lf.a) (1—a )—ml’";(NQ Mor ""'l«-t < 1)+P":(N,>m°.ll’m‘.<|)

. (209
where N, is tho stopping timo of tho untruncated SPRT ]
Hy o= (A% A% 1), 017 : = (A% A%, —1) with A* > A,
6 as in (2.2) and m, tho truncation point,
a' = Pn; (Rejoction of I,),
A= PH; (Rejection of I1,).

For scheme S3, tho bounds are much simpler, (s in pago 46 of Wald, 1943),
Then

&< -, < L o-a
and thus a*+8° < atf.

3. PROCEDURES FOR UNRKNOWN I CASE
% being not known, the situation hero is more complicated. The hypo-
theses tested hero aro as follows :

Hy:0 = (Ag, Ay, 1)

. @)
1,10 = (Ag Ay —1) }
@p—p—p TN — 1ty 32!
W2 —=ses=pealiglisey—peglly * ~ 84
Noto (%1, Y. Z,. S,) hero is sufficient for (2, ,, 3, T) whero

where 0 = (I22—/t,—tallg, ity —stallr.

k L) _ n
S, = %:(X‘—Xx)(X‘—X.)%}l:( Yi—Y,XY—?, ,)’+!‘:(Z‘—Z,)(Z,—Z_)‘.
n and k for different schomes aro hero as defined in Section 2. The group of
transformation considered is
(X1, P,.Z,, 8,) » (BX:+C, BY,+C, BZ,+C, B3,B)
where B is pXp nonsingular and C is px 1 scalar vector.
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Now B, = (Y1, S;'Yy, Yiu S71Y,y,, Y1, S71Y,,) is maximal invariant
and by the basic thcorom of Hall ef al. (1965) B, is invariantly sufficient for
8 whero

Y.-2
Yo~2,), Yy = v,
Tho donsity of B, under both hypothescs aro given as follows (vido Sitgreaves,
(1952)

Y= Yuriper OB
r(FL) S gy
[-(”.__21’_‘*'2) p(".__zpil) (1‘“) I‘( )[I+B|( =)

P('n‘;-2+ )

/"' (Bu) =

Um = AYkbY A 2k kbl (—1)m 4 k3b3,) for m = 0, 1, . (35)
b = 5710y 45,050 —by) ]
bl = 5" by Dby — b

(;~ )'(U,.)l e (34)

Y]
bjs = b7%;,
b = 140, +bys+byybyy—byy
by = YiaS:1Y 4 byy = You 871 Yo byy = Yia S5 Yoy,
by b
B = ( " “), n® = 2n+k—3, Ay = fpty—ptalls
bya by
. (3.7)

V4L-i+2n-l ks \/Zn"

Tho test statistic reduces to
sy E (05510 (G 45)(3)
TudBa) l)-::ﬂ( r(" +2 +.7)/-7 ! P( L +])) (%)’(u‘,)l

Vaxl8y) =

2=y, -
cosh (lv 22 UM2) (1—v?) T 18%+le dudt

. (38)

1
- %]

;’ cosh (tv 212 UY3) (l—u’)"!z o ¢ duds

o

Sungloy
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Here also one may obtain tho density ratio V,,(A,) by integrating over the
group of transformation.

Tho procedures for Schemes S1, S2 and 83 for tho unknown ¥ caso aro
similar to those for tho known X enso with Vai(3,) in placo of W,,(a,).

For scheme St, Vﬂo. B> 10, <0 &3 Y, 85, <0,

Now Y1871 Yy, = Yy, I (72 S5t P-Y) PY,, whero Pis px p nonsingular
s.t. PLP' = Ip and P(y—p,) = (A, 0, ..., 0).  Invoking part (ii) of Theorem
2.2 of Dasgupta (1974), tho monotonicity of both types of error for a =
case, can bo obtained.

For schemo §3, tho usual invariant SPRT with test statistic ¥, ()
torminates with probability one (vide Remark 2).

Error probabilitics of both kinds of the truncated SPRT (for schemo §2)
as well as tho untruncated SPRT (for scheme $3) can be bounded as in the
known I caso. For that the fulfilment of condition 2.21 of proposition 2 of
Ghosh and Ray Chaudhuri (1984) is necessary, which is assured by tho follow-
ing Lemma 2.

Lomma2: For A <1,B>land A*> 8> 0.
(1) Varldg) € A== V,(A°) €
(i) VarlBo) > B==3 V,(A") > B.
Proof : Tho test statistic can be writton as
[‘cosh (w22 U2 f(u) du
0

Vasldo) = 25 —
oI cosh (u 23 UY?) f(u)de

whero f{u) 3 0 for 0 < u < co. The proof now follows in the exactly similar
lines as the proof of Lemma 2 of Ghosh and Ray Chaudhuri (1084).

4. TERMINATION PROPERTIES OF TiHE SPRT'S YOR VARIOUS SCIEMES

This section supplies tho proofs of two Theorema as mentioned in preceed-
ing sections. Let us first prove Theorem 1.

Theoroma 12 Let Ny = inf {n: Was(dg) > B or W, y(8y) < 4)
Then P,y (Vg = 00) > 0 for fized (2, py, pty).
1Y
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Proof 1 Let Way(8,) < 4

=Wl (8> 41>
1 7=3
[eosh (Z, 1) (1—) T dt
%\,_, > 41>1
nj cosh (Z,8) (1—12) T dt

== Z, > Z, where Z,, Z, are as given in (2.3)

=8§T>0.
_ss ,_TT . s1
Let o = o5 =g u= \/(S'S)(T'T)““‘l‘“”“““”°<“<’
. 1 cosh(Z, 1) N cosh (Z, 1) (1—¢* ) ’
Now { m)—ﬂl)dl > A= whero f(t) = —

[cosh (2, H0—)F di

cosh Z, cosh Z, ¢ . . . N
= i Z° > A-las coah Z:_l is an increasing function of ¢ for Z, > Z,.

cosh A, (u;+ug+2v/uyu,u)?
cosh Ag (i +11,—2/2,,.0)173

> 47

cosh A, (1, ++/u,) R
= ootk By (Vv > A7

_ cosh Ay (\/u1+‘\/'l:l -
Thus N‘—"acosh—A,(\/u,—\/u,) >B A 47!

=) 24,/ > log (B A\ A-Y) (following along similar lines as in proof of
Theorem 1 of Ghosh and Ray Chaudhuri,
1084)

l (9
Aty > (—2—]og (BAA-’))
2
=g %(-%—log(l?/\A“))‘for atloast one j, 1< j < p

2 §8=5 8
1
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Let ‘ll_mr{ __L > p('l‘l%'(ﬂ A A_l))’forn'. Icus'.onej}

My = inf {u ﬁ'->—(— log (B A A- l))'} for1 <j<p.

Then P(M = o0) = P(M, = 0, M, =0, ..., Mp=o0), with P = P(,.,l_,t,.
Now P(My=c0) > 04 j=1,2,..., p, by Theorem 2 of Ghosh and Mukho-
padhyay (1980). Also M;'s aro independently distributed which implies
P(M = c0) > 0 and N, » M gives tho roquired result.

Theorem 2: Let Ny = inf {n: W, (Ag) 2 Bor W, (8, < 4).

Then P‘,‘,l.,,z, (Ng < o) = 1 for fized (1, py, fta)-
Proof : Tt is enough to show P(""l"i)(A < Waaldg) < B)-» 0.
Theorem 3.7 of Ghosh (1970) says it is enough to have convergenco of

Va-llog IV, .(4,) to a continuous r.v. or to 400 or to —oo in probability.
For then y/n-! log A and 4/n! log B both go to zero and the convorgence

of Piyypupld < Wi, o (8) < B) to 210 is immediato.
Now IV,..(4p) = :ZE;;Z::; where wy( .) is as given in (2.7), and

Zin=mn"12Z; fori=0,1(with k = nin Z; defined in (2.3))
= Ay(6-2 §'S+2-3 T"T4(~1)! 6-1 STy . (D
with S = y(2X,— ¥, —2,) ~ Np(y(2n—pt,—1t3), n1 I)
T = (¥ o—Z,) ~ Npl (s, — pa), 20 Ip).
The approximation formula (3.3.4) of pago 235 of \Vijsman (1079) simpli-
fies the situation a8 follows,
log A <log W, ,.(4,) <log B

1+nZo,,

1Tz <]o«B+c o {13

= log A~c < n Z,,—nZy,+2"(p~1) log

with ¢ a positive real number.

Lot Zi,—ay 88 a3 2> for §=0,1. Thon tho possiblo cases aro
(1) gy #a, (2) @y = ay, 8inco Zyy » 04+ n, a4 PO fori =0, 1.
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If a, = 0, then a2 Z,, converges to n continuous distribution (precisely
to & normal distribution) and thus

a~¥log (14+n2,,) = n="2log nl/24-n-12 log (n-12 4+ 027, ) = 0,(1),
If ay > 0, then 222 log (14+nZy,)— 0 n.8. a9 n— co0. Similarly for
@ P 0, w7V og (14n7,,) = 0,(1)

Thus the large samplo behaviour of n'? (Z,,—Z,,) is of main interest,
We now take up two different cases.

Case 1: a, 5 ay = nV?| Z, —2Z,,|— 0 a8 83 n—>co, implying the
required result.
Case2a: a,=a, =0.

Here nV%(Z,,~Z,,) converges to o continuous distribution (note that in
this case the distribution of #V¥Z, —Z,,) is freo of n for each fixed n)
implying the required result,

Case 2b: ay=a, > 0a,=a, = (ES)'(ET) = 0.
Now Dy oy = (Zint-Zon)™ B3(ST)
a2 ST = p2 (S—ES)(T—ET)+nV? §'ET+nV? T"ES—n"*(ESY(ET).
Thus nV/? §7 is nsymptotically normal and Z;,+ Z,,— 2a,{ > 0) a.8. as n— 0.

Thus nV* (Z,,—2,,) converges to o continuous distribution, and thus the
proof of Theorom 2 is complete. O

Remark 2 : Results similar to Theorem 1 and Theorem 2 also hold for
the unknown X caso, but we omit the proof, to keep the paper in a conciso
form.

5. ASYMPTOTIO DISTRIBUTIONS OF STOPPING TIMES

This section is devoted to the study of the asymptotic distribution of
tho stopping timo N, (truncated and untruncated). A general theorem ro-
garding asymptotic distribution of a given class of stopping time is given
first ; from which the limiting distribution of N, follows,

Theorem 3. Let {11}, 51 denole a sequence of random variables for r € [0, w0).



222 ATASI RAY CHAUDHURL
Let {b,) be a real sequence 8.L. by— 0 as r—>co. Lt

Te=1dnf{n:WI> b}
. (5.1)
= o0 otherwise.

Suppoase the following conditions hold :
(A1) 3> 08l b >V in Pasr— o,

For any sequence of positive inlegers {my} for which b7'm,— p~! as -5 0.
(A2) 3 a distribution function F(.) and a real scquence {yi;} converging lo j
(1t as given in (A1) as r— o0, suck thal the following holds for all continuity
points t of F,

P{b; 2 (ll’m'—m,/l,) & t}— F(t) as r— co. e (52)

(A3) For given any ¢ and 93 r, (large) and ¢, (small) such that 3 v > r,

“{

Then (2) P({r, > n,',)A(ll’;,' . < b)) 0 a3 r— 0 where n, , = [by;1—-b}1

Wi, W

my m’

| <em;V2apm’:|m'—m,| <comy }> I—p.. (53)

p7z], with x @ continuity point of F.

[y] denotes the smallest integer greater than or equal to y and AAB
denotes the symmelric difference of the sets A and B.

(6) oreover for all sequences (ns} 8.4 b7'ny = p~! as r— 0

1O (r=bept) = —b7VE (W, —naptr) +0,(2)

and hence the limiting distribution of —pub}*(r,—n,u,) is F.

Remark 3: In applications of Theorem 3, sy cannot bo replaced by p
in general.

Remark 4: Observe that if (A2) and (A3) are satisfied for one sequence
{ms} st. b 'my— p~! a3 r—»c0, then {A2) and (A3) are satisfied for
all sequencos {ny) s.t. b7 'ny— =1 as r—3 o, with tho same g and F.

Remark 6: Let 7, =inf {n:Wi+c> b} whero I, b, aro as in
Theorem 3 and ¢ is a real constant. Suppose (A1) (with 7, in plnce of 7).
(A2) and (A3) are satisfied. Then P({r; > n,,} A (I, < b})—>0 as
r— 0, Tho proof is along similar lines as the proof of Thcg;‘m 3.

We now proceed to tho proof of Theorem 3. Let us first stato a lemma,
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Lomma 3. Let (Uy, r €[0, co)} and (Vy, r €[0, o0)) be Lwo slochastic processes
salisfying the following conditions,

(1) PU, € > G(t)as r—> co,
Jor all continuity point t of G, where @ is a disiribution function.
(2) For all continuity point  of G and for all ¢ > 0,

im P{Ve <t—e, Up > 8} =10
e
tim P(Ve> 1, Up <t—t) =0
=211

Then Ve—Uy = 0p(1).
The proof of Lemma 3 follows from the proof of Lemma 1 of Ghosh (1871).
Proof of Theorem 3: Proof of Part (a) : For simplicity in notation let
us denote ny,z by n,, in the proof of Part (a).
Pfre > n} AQWS <br})
= P{ry <y, H';,’ < by} (By the definition of 7, given in (5.1)).
< Pl <y, ll'{,' < by |1 b7 pr—=1] < 2}

FP{| 1 b7 e —1| > )} e (5.4)
where 0 < ¢; < 1 i3 to be chosen suitably later.
For any fixed ¢, > 0, tho sccond term of (5.4) goes to zero as r— o (by
(A1) and tho fact that s — s us 7— o0).
Fix ¢, > 0. Let n, bo the smallest integer less than or equal to (1—¢))
beje 7Y Thus n, i3 less than n, for large r.

Now the first term on (5.4)
K Plny <1 <y Wi, < by}
r

&P { max W} > by, Wi < by—t, b;n}
m<i<n ‘

FP(lr—e i < Wyi < bi) e (5.5)

The sscond term of (5.5), can be made as small a3 wo please if ¢, > 0, ia chosen
sulliciontly small and then r—» oo (by using (A2) and the fact that z is a con-
tinvity point of F).

42-10
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Tho first term on (5.5) € 1’{ mex Wi—W, > .,b;n]
"<r<nr

s Wy, —neper
<P{ max j(-w—'.ﬂ——-)>:,b"’} (As n,> j and for

m<i<m large r, g, > 0)
W'
gy
= - W'— >, bt
P{ﬁ(ﬂ;ﬁ:ﬁ i 7 ) nf;l')( 1) >0
Wi we,
<P{b M omax  np| ot — — >:,/2}.
n<j<n 17
=11 r _J__.
+P{b, [ Wo —nul.| ,, s ("' 1)|>:,12} . (58)

The first term n (5.6} goes to zero by (A3) and the fact b;! np— p-lae
r—> . The scec 1 term on (5.6) goes to zero by (A2) and the fact

that max (J —l) can bo made arbitrarily small by first making ¢,
"<y \Re

sufficiently small and then making r— 0. Thus Part (a) is proved.
Proof of Part (b): Observo

Plry » a2, W, > b} = 0 (by definition of 7,)

firs
= P(—;d)"m(r,_b, I‘y-l)<-"-'_l‘b,'mp
PURVY, ~nrapte) > ape i) = 0 - 5

Using Part (a),

P{ by ety >, 5T, ez ) <4 b 0

as r— 0. e (38)

Now condition (2) of Lemma 3, with U, = b,"l’(W;’—-n, e} and
Ve = —pb; (r,—bep; ') con be scen to be satisfied using (5.7) and (5.8), (42)
and the fact b2 (W:"—n,/t,)—b,'“’ (W;’ sz Jts) = 0p{1) (which follows
from (A2), (A3) and Remark 4). Condition (1) of Lemma 3 follows from
{A2) and thus the proof of Part (b) follows from Lemma 3. OO

To name a fow works in the area of asymptotic behaviour of a class of
stopping times we have Sicgmund (1068), Bhattacharya and Mallik (1973),
Ghosh and ) Mukhopadhyay (1975), Lai and Siegmund (1977, 1979) and Wood-
roofe (1082). The last two works deal with tho study of the second onler
ssymptotic- behaviour of & class of stopping times using the method of non-
linear renewal theory.  In this paper Theorem 3 ean bo thought of as n version
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of Theorem 2 of Bhattacharya and Mallik (1973), based on the ideas
of Anscombo (1952) suitable for the present context.

We now apply Theorem 3, for obtaining asymptotic distribution of N,
a8 k— co where £ is the size of tho fixed sample available from m,

and Ny =inf {n: |log Wn i (A)] > bs)
=00 otherwise. } ¢
by — 0 a3 k= 00 8.t k~1bp > a; > 0. .. (5.10)
Let v o= —Hs . (811)
Ok = Bgllvlj—2bsk o (512)
0 = AJM|—2a, . (5.13)
o = (2a; AJMDVE (All—2a,)"1 for A M —2a;, > 0. ... (5.14)

The distribution of N is obtained for the two cases, o = g, and p = p,.
As the original problem is an idontification problem these two cases are most
important.
Theorem 4 : For p = p, or p = pty, k~VY(Nip—Dby 07') s asymplotically
(a8 k —» c0) normal with mean zero and variance o2 if Ajivll > 2a,.
Proof of Theorem 4: TFor p = p,, it is enough to consider
N =inf {n:log Wy (A< —bi}
=0 otherwiso,
e Py, (Ne =N~ las koo

(5.15)

Wo now approximate N; by two other stopping times My and Ly which
are simplor to handlo.

. 1+Z7,
My =inf {n 1 Zy—Zy+21 (p~—1) log 1+Z: - —b.} 510

=0 otherwise,

. 1+2,
Ly = inf {n : Z,~Zy+4-2-}(p—1) lo * e br
{ =2t 27 £ 1+Z, } (5.17)
=00
whoero Z,, Z, aro as in (2.3).
My & N, € L by (5.15), (5.16), (5.17) and the approximation formula
3.3.4 of Wijsman (1079).
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Lot us first study My.
ll— Z,

M.‘mr{n (zl.-m+1)(zn 72~ ) ‘.‘L--’u(bk—c)>b,-:}

= olhen\'isc‘ e (318)
First we shall show (a) and (b) of Theorom 3 nre satislied with r =1t
by = b, = br—ec,

Wi=Wi= (24w 1) Zo= 2y b2 l(p—l)log”“l) —2ta

Tp=1r = M . (5.19)
e = e = O = Sll~2471 8
= 0 = B8llv||—2a, > 0 by hypothescs,
F(z) = O(z/Ay(07) (3a, 0-14+-2))2), (- ) denotes the normal ¢.d.f.
Now (A1) (with 7, = 7, = Afy), (A2) and (A3) with terms defined in
(5.19) are satisfied vido Lemma 4, Lemma 5 and Lemma 6, given below.

Thus (a) and (b) of Theorem 3 hold with terms as deseribed in (5.19).
Now from part (b) one gets, a3 k— o,
OO (M p—0by (6, Y== N (0, A20~ (da, 0-'42))
= Ok (My—bi(0,)) == N (0, Aay 0! (40, 0-1+2))
= k2 (M—bi0;") == N(0, A} a, 0 (4a, 0-142)) ... (5.20)
a3 k=172 (b,(0;) 1 —br05%)— 0 a3 k— o0,
Similarly one can show

E2 (Ly—bil5t) == N(0, Aty 02 (40, 0-14+2)) ... (321)
Observe, Aday 03 (day 0-14-2) = Afay (Blvli—2a,)~* (2A,]4])
=0t

Thus the proof for the case st = s, follows from (5.20), (5.21) and tho fact
that Mg  Ni € L.

The proof for the caso i = i, follows along similar lines. O

Let us now provido a motivation for tho lemnias (mentioned in the aboro
proof) suggested by tho rofereo

Let _ _ N
S= 2!,,—7,,—2,, =Y, = Z, e (32

(S—v+7'_—V) as a,.”’ e {529

for o5, op dofined as in Section 2, v as in (5.11) and Z, as in (2.3).

Then Zo =
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For ¢ = puy, tho first term on the RHS of (5.23) is expected to be smaller
compared to the second for largo # and k. Thus making first order expansion
about v{oz'+a;1) and doing tho samo with Z,, wo get

T Zy = 287 =4 W7 S'v 4+ R . (5:24)
whero 235 R,y = U;.,xAu,k("'v+ﬂ»,r)'”2+2U;J(("'V+“n.t)'m_""”_l)
- n,an.t(VlV’i'bn,t)_”:""ZV;.l((”"’+bn.l')—”z—""”-l) e (8.25)
with Uasp = V+T—v Ver = S—v T
2 oy
1 1 3yt .
Ang= (;s+ . ) Unti @uy == Ocdni(dy e 42)
1 gye . (5.26)
B, = (a_f«r}) Voosi b = 083 By (Bay~2)

0< 0, <1 for j=1,2 (appears {rom the first order expansion)
If ny is & soquenco of positive integer s.t. k=1 my— a (‘a’ positivo real
number) ag k- co, then if is casy to sco from (5.25) and (5.26) that

R, ok = op(n}®) for g =, e (5.27)
Also for
= o (12 o :
o= pyand [}] > 0, log ( ¥z, )—) IOS(lIa)n's' k> ... (5.28)

whero Z;, Z, ag in (2.3), having ug in placo of .

Similar results as in (5.24—5.28) can also bo obtained for g = . Theso
facts will bo used in the proof of Lemma 5 and Lomma 6. Thoy also
motivato Lomma 4 but the proof of Lemma 4 runs along a different Jine.

Yemma 4: (b)) M- 0-1 a.s. as k— co0.

Proof of Lemma 4: Trocceding slong similur lines as in Theorem 1,
ono can show that ]/ docs not terminato with probability ono for fixed k.
However, (b)~! My does admit & limit as k— 0. To show that chooso e, and
¢, both positivo s.t.

2e,+ A0t ) < AglMI—2a, and €, < a, .. (5.29)

Dofine  Bi = (|ST—(2n—Y,—2,) (Yo,—2,)| <e¥kD ¥V} .. (5.30)
Then for given nny 7 and ¢, (as in (5.20)), we can choosa k; large s.t.

(B> 1—y o (5.31)
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Let k, be chosen using (5.10) s.t.
[-by—a | < 6, V &> Ky . (332

Let ky =k, V k. Then choosing suitable stopping times to bound Ay one
can show 3 as k-0 on lZl,0 and

P(B,, My <o VEkDk)>1-p . (5.33)
Thus, we now concentrate on B,o.

On B, ,
o
Wiy, > 0> Wi . (53

Now MW, _(2k-1+4\1")(Z, Zy+24(P—1) log 1EZ4 - +z )_u_lb.

where Z,, Z,, (defined in (2.3)) both have Jf} in place of n.
(MUY (20— 2)) = 27 05 24— 2y)

=21 4, ( “ S+ 01;3 T"—” S_:—:T“) . (535
=2AST (”‘; S+ ||+| o g ")" (5:30)

Expression in (5.36) is more convenient to handle as ‘;—: is bounded above by 1.

| or

=ior (S—9HT—n)+v (1422 )|

Now, “ 9T 847

h—s -T

HoE (s=i—T—nto (22| s
(forpp =1, ES = ET =)
— 2|lv|| &.8. 88 k= o0, . (5.38)

For (5.38) add and subtract 2 |\ to (5.37) and then break up —2M
= _( ( 1+ ”a_: ) ||v|]—( ‘;_: -1 ) Wi ) This expression of —2)] together

with (5.37) can bo shown to converge to zero a.8. as k— oo,
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Thus (24-14I51) (Ze—~ Z,)—> 28, v¥(2IW)! = A, IWl| 8.8, a8 k> 00, ... (5.30)
from (5.36) and (5.38). Now

(k127 tog 22 )| < @ log (1412,-2)

=22 257) log (K143 (141 Z,— 2, |))
—(2k2 43051 log (2K 4+ M1)> O as.,
a8 k— oo (using (5.30)). .. (5.40)
Thus from (5.39), (5.40), (6.10) and (5.19), we have
it wa‘ = 4, |V]] —2a, 8.8. 88 k— co. e (5.41)
Sirilarly
A “’;lk-l_’ A, [Ml—2a, on B'o a3 k- 0, e (5.42)
Thus from (6.34), (5.41) and (5.42), we have on B,o.
(b)™ M= (Ag—v—2a,) = 0t as ko o v (5.43)
Thus P/ lim (b))~ My = 6-'\ > P{ lim (b))~ Ay = 0-%, B, )\ > 1—pand
(l-—l - ) L X °)
the fact that 9 is arbitrary implies Lemma 4.

Lemma & :  Let {my} be any sequence of positive inlegers a.t. (b;)2 my— 01
a8 k> co0. Then (b)) W‘m.—mg&; ) is asymptotically normal with mean 0

and variance A} 0 (4a, 6-1+42).
Proof of Lemma 5 :
"oy M
(b ”( W,.‘ "'tok)

. —)’ ~1y, 1142
=y m,,%+(2L"lmg+I)Rm".+(2k-lm,,+l)(lz—-)log( li z:)

(by 5.19 and 5.24)

= (by)~Y2my % +op{1) (by (5.27), (5.28), (5.10) and the choice of my)

= N(O, AY0-'4a, 0-14-2))00

Lomma 6: For given ¢ and 9 3 k, (large) and c, (small) .8,

We, WE,
YE> ko.P{ m—':‘—l%|< em;Ry ' m'—mg | <¢'ovn.} > 1=y.. (5.44)
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where {my} denoles a sequence of positive integers 8.l bytmy — 0-t ag by oo,

W

Proofof Lemma 6 : Noto, —2* = A |1 (2Xy— P, —Zp, )

1+ 7,
+(2k'l+”’F')”mk,l"*'(k_l-l‘g_"";,)(p_l) log (Wl—‘) e (5.43)

Zo'mk
2X—Yn—"2: Yn—Zm . .
where Zim = I‘E'TX[T_:;‘,T-]”_ (=) Y_;:"-_r". fori=0,1 e (3.40)

For proving Lemma 6 it is enough to cheek (5.44) with #;, in place of m-1iE
for each j = 1, 2, 3 whero I; s denotes tho j-th term on tho RHS of (5.45).

Now (5.44) with f,m(in placo of m='T¥%) follows immediately from
Theorem 3 of Anscombo (1052).

(5.44) with 1, m (in place of m=tW%) follows from Lemma 7 (given below),
(5.26) and Theotem 3 of Anscombe (1932). For fy , once again Lemma 7
implies tho required condition,

Thus the proof of Lomma 6 follows. [

Lemma 7: Let {m} be a sequence of infeger s.t. my— 0 as k>
Let {‘\' ] , {Y } be tiwo sequences of random variable such that the follow-
Meleat L7 PP

ing conditions hold :
(1) For all § > 0, X (depending on ) s.t. P(|m{’2.'m] SA <N
(2) For given any ¢ and 3 (both positive real nwmbers) 3 k, (large) and ¢, (small)
sl N kD k.
r { l.\'mk—,\';l <enp'Atom’:|m'—my| < comg } > 11—y
(3) Y’"L-—) constant a.s. as k— co.
Then for given any e and 7 (both positive real numbers) 3k, (large) and
¢ (smalt) 8.t kD> Ky
P { |.\',,k Ym“—.\',',I Yol <empqtam’: m'—mg| < 6y nu} > 11—y
Proof of Lemma 7 ;
].\'m" Y'”L-_‘\-"' Yo| =| ‘\-'"L- Ym._‘\'m,‘ Y»"+-Ym,. Yoo — X Yul

- » . . - - 547
<l ‘\mk | | )m‘_ 1 M'l 1Yo ' |“\m‘:_‘\"'l - )
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Now for givon ¢ andl 3, 3 kp and ey 8.t 3 & > &y,
P{ I"""gl | Y’"k— Yol <% mpl A sl —mg | <ey m,,}> 1—3/2... (5.48)
{by (1) and (2)), and
P { | ¥orl I'\"”k_'\—"" | <2 Vempl2 ' [m'—mp| < camg} > 1—yf2
(5.49)
(by (2) and (3)). The proof now follows from (5.47), (5.48) and (5.49).

Theorem 5:  Let Ny be a stopping time such that k=% (Ny—vy) converges
in distribution to F(F a distribution function). Lel moy denole a real sequence
sl k-tmgy —> a (@ > o) and k7 Np— b(b > 0) a.s. as k> 0. Then for b < a,
Ne A moe has the same limiting distribution F hile for b > a, Ny A\ moy 18
asymplotically degenerate at myy.

Proof of Theorem5: Case 1: a>Db: In this caso, we shall
show Np Amgy—Ni = op(1).

For that, P(Ng—Ni A mo > 0)
= P(N¢ Amg < Ny)
= P(mg; < Ni)
= P(k* (Ng—n) > k2 (mor—v1))
— 0 a3 k=12 (mgy~v;)—» oo (for @ > b)
and kY2 (Ng—ve) = F a3 k— 0.
Thua k=2 (Ng A mop—vr) == F ns k— c0.
Case 2:a <b: In this caso wo shall show Ng A mg = 0p(1).
For that, Plmge—Ng A mor > 0)
=p(Ve A mye < mu)
= P(Nx <mqr)
= P12 (Np—) < kY2 (moy—wa))
— 0 as k=2 (mgr—vi) - o (for @ < 1)
and k172 (N —vg) == F a3 k- oo,

Thus Ne A mgy is asymptotically degonerato at mg.
A2-11
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Remark 6 ; Thoorem § gives us tho asymptotic behaviour of N, when
truncatod. The case a = b(a, b aro as in Theorom 5) remains open. Theorem
4 gives tho asymptotic distribution of N (untruncated) for the caso a =g,
For @ 3t # ono can obtain o similar result.

Remark 7: TFor the univariato caso, ono can obtain a aimilar asymptotic
distribution of tho stopping times of tho invariant SPRT's proposed by Ghosh
and Mukhopadhyay (1080) (for the one-sided ease) and Ghosh and Ray
Chaudhuri (1084) (for the two-sided case).
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