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ABSTRACT

For the mean of a finite population, a bounded risk estima­

tion problem is considered for both the situations Where the

population variance mayor may not be known. In this context,

three popular (equal probability) sampling strategies are con­

sidered. These are the analogues of (i) simple random sampling

with replacement, mean per unit estimation, (ii) simple random

sampling with replacement, mean per distinct unit estimation, and

(iii) simple random sampling without replacement, mean per unit

estimation. It is well known that in the conventional fixed­

sample size scheme, (iii) fares better than (ii) and (ii) better

than (i). However, in the current context, the sample sizes are

dictated by (possibly, degenerate) stopping times, and visualizing

the cost (due to measurements/recording, etc.) as a function of

the number of distinct units in the sample (as pertinent to

schemes (i) and (ii»and identifying that in scheme (iii), the

number of distinct units is equal to the sample size itself, we

are able to show that the second strategy still fares better than

the first, although the third strategy may not perform better

than the second one. Actually, in the case of known population

variance, it is shown that in the light of the number of

distinct units, the ASN (average sample number) for the second

strategy can never be greater than two plus the ASN for the third

strategy and can never be less than the latter minus one. A

similar relationship also holds in the case of unknown
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population variance When we define the stopping rules in a

coherent manner. Interestingly enough, this is quite contrary

to our age-old belief that simple random sampling with replacement

can never perform better than simple random sampling without

replacement. Our theoretical results are backed up by numerical

examples, too. Also, dominance of Strategy (ii) over (i) in a

general sequential setup constitutes an important task of the

current study. Finally, to reconcile Strategies (ii) and (iii)

in a general sequential setup, the coherence of the associated

stopping times has also been discussed thoroughly.

KEY WORDS: ASN; Distinct units; Minimum risk; Sequential

estimation; Simple random sampling; With replacement; Without

replacement.
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1. INTRODUCTION

We consider a finite (labelled) population of N units,

serially numbered 1, .•• ,N. Denote by Y the study-variate which

assumes values Y1 ' •.• 'YN on the units 1, ••• ,N, respectively. The

finite population mean (y)

-1 N
Y = N l:i=lY i

and variance (02 ) are defined by

and (1.1)

Also, for later use, we write

-1
(= N(N-l) 0 2). (1.2)

We are primarily interested in the estimation of Y (i.e.,

the finite population mean) with a bounded risk. In this

problem, 0
2 mayor may not be known. Also, for this problem, we

may consider the following sampling strategies (as extended to

the sequential case, whenever needed):

(i) Simple random sampling with replacement (SRSWR), mean

per unit estimation;

(ii) SRSWR, mean per distinct unit estimation;

(iii) Simple random sampling without replacement (SRSWOR),

mean per unit estimation.

In the conventional fixed-sample case, a relative comparison

of the above strategies is' well known [viz., Basu (1958), Raj

and Khamis (1958) and Asok (1980), among others]. The strategies

are known to be progressively better. However, in the current

context, the results seem to indicate that while the ordering
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between the analogues of the first and second strategies remains

the same, the ordering between the analogues of the second and

third strategies may change in some cases. This is contrary to

the popular belief that SRSWOR always performs at least as good

as, or better than, the SRSWR.

To set our analysis in the proper perspective, in a SRSWR,

we denote the random variables and indexes associated with the

successive drawings by (Yk,rk ), k ~ 1, so that for each k(~ 1),

r
k

takes on the values 1,.:.,N with equal probability N-l and

Yk = Y , k > 1.
r

k
(based on a sample of size n) is given by

-1 n= n L. 1Y.
1= 1

It is well known that Yn is an unbiased estimator of Yand

(1.3)

(1.4)

Let us then consider a sequence {~; k > 1} of indicator

variables, where

I =k {

1'

0, otherwise; k > 1 (1.5)

with 11 = 1.

Then, for every n ~ 1,

n
vn = rk=l~ denotes the number of distinct units

in the sample of size n. (1.6)
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Note that vl • 1 v is 1 in n, and, n

E(v ) = N{l - (1 - l/N)n), Y n > 1.
n U.7>

The mean per distinct unit (in the sample of size n) is given by

Note that y(v ) is also unbiased for Yand
n

U.8)

2 N 1 1• a (-){E(-) - -N},N-1 v
n

(1. 9)

In SRSWOR, for n sample units, the indices are denoted by R1 ,

..• ,R, so that R = (Rl, ... ,R ) takes on any (unordered) subsetn -n n

of n out of N numbers {l, •.. ,N} with the same probability

N-[n] = {N .•. (N - n + l)}-l, and the sample random variables
,

Yl'···'Yn are given by Yk = y~, k =l, ... ,n. The mean per unit

estimator is
,.

-' -1 n '
Yn = n Li=lYi ' n ~ 1. (1.10)

Like the other two estimators, Yn is also unbiased for Y and

-' - 2 2 1 1E(y - y) = S (- - -).
n n N 0.11)

•

Note that in the SRSWR, whenever a unit is chosen in the

sample for the second time (or later), we do not incur any cost

for its measurement (or recording), and, hence, it seems quite

plausible to have a cost function c(n) = cv , n > 1, where c(> 0)
n -

is a constant. Thus, c(n) is stochastic in nature and
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In SRSWOR, v = n, and hence, c(n) = cn is non-stochastic.
n

(1.12)

This

difference in the nature of the cost function plays a basic role

in the sequential schemes to be considered here.

We may consider, for an arbitrary estimator T of Y, the
n

usual squared error loss function A (T - y)2, where A(> 0) is
n

a given positive constant. Then corresponding to a ~iven upper

bound We> 0) to the risk of any estimator of Y, we may define

- 2nO = min{n ~ 1 : AE(Tn - y) ~ W}. (1.13)

We may then compare the Ec(n
O

) for different sampling strategies.

This is what we may call the bounded risk approach for the

comparison of the different sampling strategies. It may be

noted that generally E(T - y)2 involves the unknown 0 2 (or S2),
n

and, hence, we may need to consider suitably modified stopping

rules which, of course, would generally make the analysis more

complicated. This aspect will be studied in detail in Section 3.

An alternative approach to (1.13) would be to consider the risk

function

- -2p (T ,Y) = AE(T - y) + Ec(n)
n n n

(1.14)

and to determine n in such a way that (1.14) is a ~inimum.

Then, it seems quite plausible to compare these "minimum risks"

for the different strategies. Here also a "stopping rule"

approach is needed when 0 2 (or S2) is not known. We shall

•
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mainly confine ourselves to the first (i.e., bounded risk) approach,

and indicate how parallel results hold for the "minimum risk"

approach.

2. BOUNDED RISK ESTIMATION OF Y: 0 2 KNOWN

Consider the following strategies:

Strategy I: Keep in mind (1.3) - (1.4). Adopt (SRSWR, nO)

sampling and use Yn as an estimator of Y, where nO is so chosen
o

that

AW-l 0 2 ~ nO < 1 + AW-l
0 2.

Note that by virtue of (1.7), fo~ this strategy, we have

-1 nO
Ec(nO) = cE(v ) = cN{l - (1 - N ) }.

nO

(2.1)

(2.2)

• J

Strategy II: Adopt (SRSWR, n*) sampling and use y(v
n
*) as

an estimator of Y, where y(v ) is defined by (1.8) and n* is so
n

chosen that

E{__l__} < ! +~ < E{ 1 } (2.3)
vn* - N AS2 vn*-l

the motivation for this choice of n* is derived from (1.9). For

this strategy, we have

Strategy III: Keep in mind (1.10) - (1.11). Adopt
,

(SRSWOR, n**) sampling and use Yn** as an estimator of Y, where

n** is so chosen that

1 Wl/n** < - + --- < l/(n**-l).
- N AS2

(2.5)
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In this case. we have

Ec(n**) ... cn'ir*. (2.6)

2Clearly, for known 0 2 (or S ), each of the strategies leads

to an unbiased estimator of Ywith "bounded risk", and hence a

comparison of (2.2), (2.4). and (2.6) would reveal the relative

efficiencies of these strategies. We term (2.2). (2.4). and (2.6)

as the Average Cost Funation of Strategies I, II, and Ill,

respectively, and denote them by ACF (I), ACF(II), and ACF(III)

in that order. Note that these are all functions of A, W, 0 2 and

N.

Theorem 2.1. Unifo1'17lZy in A~ W~ N~ and 0 2 ,

Proof·

so that

ACF(II) < ACF(I).

First. we may note that [c.f., Asok (1980)]

E(l.) 1 N-1
- - < --- , Y n _> 1,v N - Nn

n

1 N+n*-2
E{v } ~ N(n*-l) •

n*-l

(2.7)

(2.8)

(2.9)

Writing B -1 2 -1= N + W(AS) ,we have from (2.3) and (2.9),

B < (N+n*-2)/{N(n*-1)}. (2.10)

Since S2 = N(N - 1)-102 , (2.10) and some routine steps lead us to

-1 2n* < 1 + AW 0 .

Thus, by (2.1) and (2.11), we have

n* < nO + 1. '

(2.11 )

(2.12)
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and as n* and nO are both positive integers. we have. therefore,

Consequently, by (2.2) and (2.4). we have Ev * < Ev
n - nO

and this implies (2.7). Q.E.D.

Theorem 2.2. Unif01'1TlZy in A~ W~ N and 0 2 •

- c < ACF(II) - ACF(III) < 2c. (2.13)

Before we proceed to prove this theorem. we may note that

(2.13) actually relates to the inequality:

. 2
-1 < E(Vn*) - n** < 2, uniformly in A. W. Nand 0 .

Or, in other words. E(Vn*) cannot be smaller than n** - 1

(2.14)

and also it cannot exceed n** + 2. We shall show by some

numerical examples that EVn* may be sometimes less than n**.

while it may also be greater than n**. The major implication of

this theorem is that Strategy III may not always perform better

than Strategy II; they are generally very "close" in their per-

formance characteristics. In this context. we need the following.

Lemma 2.3. For SRSWR (N.n),

(Ev )-1 < E(V-l )
n - n

for every n > 2

-1< (EV
n

_
l

) . (2.15)

Proof. Note that [viz., Chakrabarti (1965), Korwar and

Serfling (1970), Pathak (1961)]

E(v-l ) N-nL~ ,n-1 N-1l:~ ('/N)n-1= J =n J=1 J=1 J

= N-1{1 + L~-1('/N)n-1}
J=l J

"
.. N-1U + L::~(l-k/N)n-l} • (2.16)
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On the other hand, by (1.7),

Ev ~ N{l - (1 - l/N)n-l}, n > 2.
n-l

Therefore,

(2.17)

> N-l{l + EN-l(l _ N- l )k(N-1)}
k=l •

Again, it follows easily (by induction on k ~ 1) that

(2.18)

(2.19)

By (2.16), (2.18), and (2.20), we immediately get that

-1 -1(EV
n

_
l

) > EV
n

•

-1
On the other hand, E(v )E(v ) > 1, so that

n n -

-1 -1E(v ) > (Ev) .
n - n

Thus, (2.15) follows from (2.21) and (2.22).

Proof of Theorem 2.2. By (2.3) and (2.5),

while by (2.15) and (2.23),

Note that (2.24) ensures that

EVn*_2 < n**.

(2.21)

(2.22)

(2.23 )

(2.24)

(2.25)
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EVn = 1 + (1 - ~)
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1 2+ (l - -) EvN n-2' (2.26)

so that by (2.25) and (2.26), we have

Evn* < 1 + (1 - ~) + (1 _~)2n**

= n** + (1 - N-1n**)(2 - N- 1).

Further, by (2.3), (2.5), and (2.22),

so that

Ev > n** - 1.n*

Combining (2.27) and (2.29), we have

(2.27)

(2.28)

(2.29)

n** - 1 < Ev < n** + (l-N-1n**)(2-N-1) < n** +2 (2.30)
n*

for every N, W, A, and S2. This completes the proof of Theorem

2.2. Q.E.D.

Remark 1: It may be noted that in the above analysis, choice

of W is quite arbitrary and it is generally left to the experi-

menter. Two particular choices based on cost considerations may

be suggested.

(a) 2 -1 -1Choose n** beforehand and set Wl =AS {(n**) - N }

'"

-'= risk attained by the use of {SRSWOR(N,n**), Yn**} strategy.

For the competing strategy {SRSWR(N,n*), Y(v
n
*)} with the same

bound Wl to the risk, the expected sample size E(Vn*) satisfies

the inequality
n** -1n** < E(Vn*) < n** + (1 - ~)(2 - N ).



13

(b) Choose n* beforehand and set W
2

= AS 2{E«V
n
*)-l) - N- l }

~ risk attained by the use of {SRSWR(N,n*), y(v *)} strategy.
n I

Then determine n** such that the use of {SRSWOR(N,n**), Yn**}

strategy yields the same bound W2 to the risk. This time we can

prove a slightly improved version of (2.30), viz.,

n** - 1 < E(V
n
*) < 1 + (1 - N-1)n** < n** + 1.

Next, recall that B = 1 + W so that if B-1 is an integer,
N AS2

-1then, of course, n** = B ,and hence E(v ) > n**.
n* -

h h d h B-1. .
On the ot er an, w en 1S not an 1nteger, let us set

-1 o < 1, [B-1], the integral part of -1
B = ex + S, S < ex = B •

I: 1 + ex while -1 Thus, leastThen, n** E(v *) > B = ex + s. at
n -

for small values of S, there is a possibility of E(Vn*) being

smaller than n**. This is indeed true in some cases as

evidenced by Table 1.

[Table 1 goes approximately here.]

Remark 2: -1If W~ 0 so that B ~ N, ex becomes large and,

hence, we can expect that for a wider range of S-va1ueA, E(v ~)
n"

would be smaller than n**.

We conclude this section with some CODDllents on the "minimum

yand, hence, noting that

(1.9), and (2.8),Note that by (1.4),

- 2 - - 2E(y(v ) - y) ~ E(Yn - y) , V n ~ 1,
n

Ec(n) is the same for both Strategies I and II, we conclude that

risk" approach.
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so that Strategy II fares better than I. To compare Strategies

II and III, we note that if n** is the specific value of n for

-'which p (y , Y) is a minimum, we have
n n

AS2(n**(~**+1» < c ~ AS2(n**(~**_1».

-' - 2 1 1On the other hand, inf Pn(Yn' y) = AS (n** - N) + cn**.

(2.B)

n

Therefore, we have

c(2n**-1) - N- l AS 2
< inf Pn(Y~'Y) ~ c(2n**+1) - N- l AS 2•

n
(2.e)

On the other hand, suppose that Pn*(Y(v )'Y)
n*

Then

(2.D)

where Evn* need not be a (positive) integer, while n** is so.

Thus, whenever n** - 1 < EVn* < n** + 1, but (A/c)~S is not an

integer, the right-hand side of (2.D) may actually be smaller than

Pn**(Y~**'Y). However, if n** = (A/C)\S, then (2.D) cannot be

smaller than Pn**(Y~**'Y)' the true minimum of AS2(~ - j) + cu,

over u > O. In other words, a lower bound for P *(Y( ),Y) may
n v *, n

not necessarily be greater than or equal to Pn**(Yn**, Y). On

-1
Evn* = 1 + (l-N )Evn*_l and by Lemma 2.3,

-1(EVn*_l) • Thus, we have

the other hand,

-1
Ev * <n -

"
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use a crude upper bound:

-'< P (y ,Y), for all m, we may evenm \I
m

-1c{E\I +(l-N E\I)}
m m (2.E)

for an arbitrary m. We choose m such that n** < E\I < n** + 1.
m

Then from (2.E), we have

(- -) 2 II} { _ ~}Pn* y(\I ),Y ~ AS {;i* - N + C n** + 1 + 1 N
n*

(2.F)

(2.F) is comparable to (2.30).

-' -
as c + 0, while Pn**(Yn**'Y)

conclude that as c + 0,

Note that by (2.B), n** = 0 (c-~)
e

= 0 (c~). Thus, by (2.F), we
e

(2.G)

This clearly depicts the "closeness" of the two minimum risks for

the Strategies II and III.

3. BOUNDED RISK ESTIMATION OF Y: 0 2 UNKNOWN

For the case of infinite population, sequential procedures

for this problem were considered by Robbins (1959), Chow and

Robbins (1965), Ghosh and Mukhopadhyay (1979) among others.

Along their lines, we may consider the following (modified)

strategies.

Strategy I': Sample units one by one at random and with

replacement, governed by the stopping rule:



0.1)

16

-1 2 -y
TO • min{n ~ 2: n ~ W A(sn + n )}.

Here, s2 = (n-l)-l r~ ley. - Y)2 for every n > 2 and y is an
n 1= 1 n -

arbitrary positive constant. Then, YT is the desired
o

(sequential) estimator of Y.

Strategy II': Sample units one by one at random and with

replacement, governed by the stopping rule:
N-\I

T* = min{\I > 2 : \I > W-1A( n s2(\1 ) + \In-Y)}.
n - n - N n

0.2)

Here,

(with

2
s(\I ) is the sample variance based on \In distinct units

n
division \I -1) and y is an arbitrary positive constant.

n

Consider Y(T*)' the mean per distinct units, as the (sequential)

estimator of Y.
Strategy III': Sample units one by one at random and with-

out replacement along the stopping rule:

0.3)

2Here, sand yare, respectively, the same as they were in (3.1).
n

Consider Y(T**) as the (sequential) estimator of Y.

In the case of 0 2 unknown, whichever strategy is adopted,

the sample size is a random variable, and, consequently, the

properties of the estimatQrs of Ymay change. As a matter of

fact, it is not difficult to verify that none of the above

estimators remain unbiased in a general setup. Thus, it may be

more pertinent to compare EC(T O)' CE(T*) and CE(T**) along with
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the mean squared errors (MSE) of the sequential estimators Y
T

'
o

Regarding Strategies I' and II', the former involves the

sample variance based on all the observations, while the latter

is based on s~v ) (i.e., on the distinct units only), although
n

both are adapted to the SRSWR. Bahadur (1954) has pointed out

that in sequential decision problems, attention can be confined

to sequential decision (including stopping/action) rules which

depend at each stage, n, on a transitive sufficient sub-sigma

*field B whenever the latter exists. We show in the Appendix
n

that under SRSWR (in a sequential setup) there exists a minimal

*sufficient transitive sequence {B , n > l} based on the distinct
n -

units in the sample. This means that in the definition of the

stopping rule, attention can be concentrated on the use of v
n

and s~v )' instead of the s~. Consequently, Strategy II' is
n

more relevant. Thus, we would advocate the use of II' instead

of I'.

Next, we come to the comparison of Strategy II' and III'.

Let us examine the two stopping rules T* and T** in (3.2) and

(3.3). Recall that v « n) is a positive integer valued random
n

variable (in a SRSWR), while n in a SRSWOR is non-random.

However, using Hajek's (1964) rejective sampling (equal probability)

scheme, we may equivalently reduce the SRSWOR to SRSWR with distinct units
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only if we consider a sequence {M , n > I} of integer valued
n

random variables, defined by

M = min{k > 1
n

\l
k

= n}, n > 1. (3.4)

• -' -As such, we may write y D y( ) for all n > 1. Here, wen.... \I -
M

n

write U ~ V to mean that the random variables U and V have

identical distributions. A similar distributional identity

holds for s~ (in SRSWOR) and S~\lM). Consequently, by (3.2) and

n

(3.3), we may conclude readily that

-'T* D T** and y D y= (.*) = (.**)' (3.5)

•

so that Strategy II' and III' share the common properties. This

feature is not surprising, as in (3.2) and (3.3) we have used

essentially the same stopping rule. In the case of 0 2 known,

the situation was slightly different [as \I was random while
n

\1M = n was not]. Looking at (2.3) [and (2.16)], we may as well
n

consider a modified stopping rule

0.6)

and propose the distinct mean estimator y(.*) for Y. The stopping
o

rule in (3.6) may still be motivated by the transitive sufficiency

*of {B , n ~ I} based on the distinct units (in SRSWR) and,
n

apparently, this is more in line with (2.3) [than (3.2)]. With

this stopping rule in (3.6), the distributional equivalence results

*in (3.5) do not hold (when .* is replaced by '0). However, as in
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-'the case of 0 2 known, here also .** (or y.**) may not aLways

dominate '*0 (or y *). Towards this, we consider the following
'0

numerical example which shows that we can simultaneously realize

(i) E(v *) < E(.**) and (ii)
'0

In other

words, we demonstrate that .~ may indeed be better than .** in

some cases.

ExampLe: We take N = 5 and choose A = W, Y = 1. Let the

variate values be Y1 = 0, Y2 = 1, Y3 = 1.2, Y4 = 1.4, Y5 = 2.5

so that Y = 1.22.

Strategy III': Stopping RuLe .* in (3.3). Samples:

{(i j)!l ~ i r j ~ S except (IS) and (51)}, (lS2), (lS3), (154),

(S12), (S13) and (S14) where i,j, etc., refer to the labels of

the sampled units. Now E(.**) = 2.10, E(Y~**) = 1.2183 and

- -2
E(y~** - y) = .240814.

Strategy II': Stopping RuLe '0 in (3.6). Samples:

{(i j),(iij),(iiij), ..• for all (ij), 1 r j, except (S 1) and

(1 S)}; (1 S 1), (1 S 2), (1 S 3), (1 S 4), (1 5 5), (S 1 1),

(5 1 2), (S I 3), (5 1 4) and (5 1 5). Now, E('~) = 2.048,

E(y *) = 1.2192 and E(y * - y)2 = .240697.
'0 '0

We hereby conclude that .~ provides smaller Bias, ASN and MSE

compared to .**.
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APPENDIX: MINIMAL SUFFICIENCY AND TRANSITIVITY IN SRSWR

Let N

-1 f ~f of times the index i appears inYn = n 1:. Nf •Y. , =u: n1 1 ni the sample S = (sl,··o,sn)n

n = r. Nf ., A = A ( fn1 ' 0 • 0 , f nN) , n > 1 ( increas ing) .
1£ n1 n

Let

of' if fni
> 1

1 < i < Ngni ,
0, if f = 0ni

" = Ei£JIlgni « n) B = B(gnl,···,gnN)' n > 1 (,)
n n

-1 B (. A ltd 1.y(" ) = " 1:. Ng .Y. n' n >n 1,£ n1 1 nn

N =N U Nnl (E. N f. = n)nO 1£ n1 n1

• N
nO

= {i £ N g = OJ,ni

Cardinality of N 1 = " , Cardinality of N 0 = N - " .n n n n

*B = B(" ,N 1,N 0) (<:: B c. A ).n n n n n n

*Note that conditional on B , the joint probability function of
n

fn = (fnl,o.o,fnN) remains invariant under any permutation of the

"n indices {i £ Nn1 } among themselves and N - "n indices {i £ NnO }

among themselves. Therefore,
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- I * -1 I *E{y B} = n r. NY.E(f . B )n n 1E 1 n1 n

-1 I * -1 I *a n r. N Y.E(f . B ) + n r. N Y.E(f . B )
1E n1 1 n1 n 1£ nO 1 n1 n

-1 I *= n r. N Y.E(f . B ) + 0
1E n1 1 n1 n

-1 -1= n r. N Y.{V r. N f .}
1E n1 1 n JE n1 nJ

-1 -1= n r. N Y.{V n}
1£ n1 1 n

-1= v r. N Y.
n 1£ n1 1

-1= v L NY.g .n 1E 1 n1

•

V n > 1.

Therefore, by the Rao-B1ackwe11 theorem, for any.convex loss L(a,b),

EL(y , y) ~ EL(y(v ) , y).
n n

In pnrticular,

- - 2 - _ y)2,E(y - y) > E(y( ) V n > 1.n - vn

We write

f' a (fnl'··· ,fnN)' so that 1 ' f = n, V n > 1._n -N _n

Let f_n+1 = ~n + ~n+1' ~n+l independent of :n and ~~~n+l = 1, V n > O.

g' = (gnl, •.. ,gnN)' g'lN = v , n > 1._n _n_ n -

~n+1 = ~n + ~n+l' where the distribution of ~n+1 depends only

on vn and g •
-n

*Thus, given B , the distribution of f is generatedn _n
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by the v :(N - v ): possible equally likely permutations, while
n n

-1
v 1 can be a null vector with probability N v and a non-null.n+ n

vector with probability (1 - N-lv ), there being N - v equally
n n

•
likely realizations:

and g' v = O. Thus,
.n

~ = (vl' ••• ,vN) : vi = 0 for all but one i

. * *g1ven B , f and v +1 (i.e., A and B 1)n.n.n n n+

are conditionally independent. *Therefore, {B , n > I} is a
n

transitive sufficient sequence.

Let B~ = B* V ••• V B* be the smallest sigma field containing
n 1 n

* *Bl, ••• ,B for n > 1. Then the events [.* = t] (or [. = t]) are
n -

BO*-measurable. Hence, if we are able to show that
n

E[YnIB~*] = E(YnIB:) = y(v)' V n > 1,
n

then we would have for a BO*-measurab1e stopping time M

where

E[L(ym, Y)IM = m] ~ E[L(y(v )' Y)\M = m], V m > 1,
m

so that

EL(Ym' Y) ~ EL(y(v )' Y).
m

Towards this note that

-1 I 0*= n E. N Y.E(f . B )
1£ n1 1 n1 n

-1 n I 0*= n E. 11 Y.Ek 1E(uk. B ).1£Hn1 1 = 1 n
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*As ~ is independent of Bk_j , j ~ 1, we have

I 0* I * *E(uki Bn ) = E(uki Bk v •.• v Bn >'

Note that v
k

as well as Nkl are nondecreasing in k, and, hence,

Nkl ~ ••• ~ Nnl , V k < n. Thus, given that i £ Nnl , under

* *Bk v •.• V Bn , i will also belong to Nkl with conditional probability

vk/vn ' V k ~ n. On the other hand, for every i £ Nkl ,

•

•

* * -1 IE(uk 1.' IBk v ... V Bn) = vk L N E(uk' ••• )
1.£ kl 1.

-1 I * * -1 I= v
k

E (L. N ~. B
k

\I ••• vB) = v
k

E(1 ••. ) =
1£ kl 1 n

for every i £ N l' k < n,
n -

Therefore,

I 0*E(uk . B )
1 n

-1= (vk/V )V,n t<
= v-I, and

n

-1
= v L N Y.

n 1£ nl 1

•

TV n > 1.

This characterizes the m1n1.mUm risk property of the sequential

y (\l ) for BO*-measurable M.
N
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• Table 1. Comparisons of n** and E(Vn*)

N
-1 n** n* E(vn*)B

5 2.1 3 3 2.44
2.5 3 4 2.95
2.6 3 4 2.95
2.8 3 5 3.36
3.1 4 5 3.36
3.5 4 6 3.69
3.6 4 7 3.95
3.7 4 7 3.95
3.8 4 7 3.95
3.85 4 8 4.16

6 3.2 4 5 3.59
3.4 4 5 3.59
3.6 4 6 3.99

# 3.8 4 6 3.99

e 4.2 5 8 4.60
4.4 5 8 4.60

• 4.6 5 9 4.84
4.8 5 10 5.03


