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A certain minimal extrapoiation problem for Fourier fransforms 15 known to
have conssquencas for the determination of best possible bounds in some problems
in lincar opcrator cquaticns and n perturbation of operators. In Lhis paper we
estimate the value of the constant in the Fourier-transform problem. by an analviic
reformulation,

. INTRODUCTION

In an carlier paper [4] it was shown thal a certain minimal
extrapolation probicm in Fourier analysis can provide beunds on solutions
of some lincar opetator equations, and that these in turn lead to some per-
turbation bounds for spectral subspaces of self-adjeint or normal operators.
In this paper wec supplement that discussion with further information on
the valug of these bounds,
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In this introductory section we state the problems surveyed and the
relations between them and outline the results to be presented.

Problem 1. An Extremal Problem for the Fourier Transform on L(R)

For fe L,(R) denote its L, norm, as usual, by || fll, = | |/(s)| ds. Let 2
be the Fourier transform of f with the normalisation

f@r=[ e “sis)ds

Consider all those functions f in L,(R) for which f(£)=1/¢ when |£|>1.
The problem is to find the infimum of ||f]|; over this class. In other words,
we want to evaluate the number ¢, defined by

C, =inf{|{f||1:fe L(R), f(é)=é whenever |£| > 1}. (1.1)

Problem 2: An Extremal Problem for the Fourier Transform on L,(R?)

For fe L,(R?) let  denote its Fourier transform with the normalisation
fen =] e s, ) do, s

Here &s stands for the real inner product &,s, + £,5,. We will write s for
the vector (s, 5,) in R? as well as for the complex number s, + is,, and let
|s] = (s? +s2)"2. A two variable analogue of Problem 1 is the problem of
finding the number ¢, defined by

c2=inf{nfn,:feL1(R2), &)=

1
E TG, whenever || = 1}. (1.2)

The next two problems concern the equation AQ—QB=S, where
AeB(H) the space of bounded operators on a Hilbert space J#, and
Be B(x), where A" is another Hilbert space. It is well known that if the
spectra o(A4) and o(B) of A and B are disjoint subsets of the plane then for
every Se#(A, #) the above equation has a unique solution @ in
B(A ', #). In other words if I, 5 denotes the operator (or “transformer”)
from #(A, ) into itself defined as I, 4,(Q)=AQ — QB then I, p is inver-
tible whenever 6(A4) and o(B) are disjoint. In [4] the authors obtdined
some information on bounds for the norm |[(Z, z) ~'|l, when 4, B are self-
adjoint or normal. The problems described below concern this question.
We will use the notations ||A4]| for the usual operator norm and ||A4]| for
any unitarily invariant norm on #(X", #). (See [7].)

Problem 3. The Operator Equation AQ — QB =S with Self-Adjoint A and B

Let K,, K be two closed subsets of R such that |s—¢| > for every
se K, and re K5, where ¢ is a positive number. Suppose A, B are self-
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adjoint and that ¢(4) and a(B) are contained in K, and K, respectively.
We know that I, 5 is invertible. In [4] the authors obtained bounds of the
type [|(1,.5) 'l <c/d, where ¢} is a constant independent of 4 and B, and
showed that the same estimate is valid for every unitarily invariant norm
on #B(X, ). Put differently, the operator equation AQ —QB=S has a
unique solution @ for a given S under the above conditions. It is being
asserted that for all operators as described and for all unitarily invariant
norms & [|Q| < ¢} [|SI| for some constant ¢;. The problem is to find the
least constant ¢} with this property. (In the subsequent discussion ¢; wil
mean this smallest number.)

Problem 4: The Operator Equation AQ — QB=S with Normal A and B

In the above discussion replace “self-adjoint” by “normal” and the real
line by the complex plane. The problem is to find the least number ¢}
for which we can generally assert |[(/,5) 'l <c5/d; or in the other
formulation, for which we always have é || QI < ¢ |Is]l.

Problem 5: Perturbation of Spectral Subspaces of Self-Adjoint Operators

Let A, B be bounded self-adjoint operators on a Hilbert space #. Let
K,, Kz be two closed subsets of R separated by a distance § as in
Problem 3. Let E be the spectral projector for A4 belonging to the set K,
and F the spectral projector for B belonging to the set K. We want to find
the least positive number ¢| such that for all operators as described and for
all unitarily invariant norms we have 6 || EF|| <c7 ||4 — BJ|.

Problem 6: Perturbation of Spectral Subspaces of Normal Opertors

In Problem 5 replace “self-adjoint” by “normal” and R by C. We seek
the least positive number c¢; for which the inequality ¢ || EF}| < c5 |j4 — B||
always holds under the above conditions.

The results of the earlier study [4] included

i€cei<e, <2,

¢ £05< ¢, <00,

There is no substantial evidence for expecting that any of these inequalities
is an equality. However, we do know that the constants on each line
cannot differ too much.

Indeed, the simplest examples with dim # =2 show that 1 <c{. It is
clear from the definitions that ¢{ < ¢4 and ¢} <c5. In [4] it was also shown
that ¢} > (3/2)"? and that c¢; > n/2.

The constant ¢4 is related to a long-standing open problem in pertur-
bation of eigenvalues [3], which we state below.
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Problem 7: Variation of Eigenvalues of Normal Matrices

Let d be the least positive number with the property that if A, B are any
two normal matrices with eigenvalues «;, ..., «, and f3,, .., f§,,, respectively,
then there exists a permutation ¢ of the indices such that

max lo;— Bl <d |4 BJ.

The problem is to find d.

In [4] it was shown that 1 <d<cj. In fact we have d< ¢y where ¢’ is
the (possibly smaller) best constant which works in Problem 6 when
limited only to the operator norm | -|.

In particular d<c,. To date one knows no other way of finding an
upper bound for d.

There is a natural analogue of Problem 7 for the case of infinite-dimen-
sional operators [2], and it is known [5] that the constant d which works
in the finite-dimensional problem also works for this infinite-dimensional
analogue.

A. Mclntosh and A. Pryde [8] have used ideas similar to those in [4] to
study commuting tuples of self-adjoint operators. Here the real analysis
used in Problem 3 and the complex analysis used in Problem4 are replaced
by Clifford analysis. This then leads to an extremal problem in many-
variable Fourier analysis analogous to the one- and two-variable problems
mentioned above. This problem is not treated in this paper.

In Section 2 we will begin with the answer to Problem 1. This answer,
unknown to us, was already in the literature long before we began this
study. Section 2 also sets the stage for the general attack on problems of
this type.

In Section 3 we will reduce Problem 2 to an equivalent problem in a
single variable, somewhat resembling the one already solved.

In Section 4 we give an upper bound on the constant ¢,. As explained
above, this gives upper bounds for the constants occurring in the remaining
problems as well.

2. MINIMAL EXTRAPOLATION

The study of the kind of extremal problems for the Fourier transform
with which we are concerned was initiated in the 1930s by A. Beurling and
B. Sz.-Nagy. Recent discussions may be found in [11, Chap. 7; 15] and the
literature cited there.

The general context is the following, Let E be an open subset of R” and
let ¢ be a continuous function defined on its complement F. We seek an L,
function f of minimal L, norm whose Fourier transform coincides with ¢
on the set F.
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The minimality requirement means that ||/ + ¢g||, = { /||, for all g whose
Fourier transform is supported in E. This variational condition means that
f (sgn [)g=0and hence [ (sgn /)~ ¢ =0 for all such g. This in turn implies
that (sgn ')~ is a distribution whose support is contained in F. As Shapiro
[11] points out, such reasoning does not necessarily provide a way to
prove that a particular function is extremal, or even to find a likely
candidate, but it may give some guidance.

Problem 1 stated in Section 1 was studied for different reasons, and
solved, by Sz.-Nagy in 1938 in collaboration with A. Strausz. This paper
not being widely available, Sz.-Nagy published a new exposition in 1953
[13]. We overiooked that paper and thank Professor Sz.-Nagy for bringing
it to our attention. We will not reproduce his argument here, but quote his
result: the infimum ¢, in (1.1) is n/2 and is attained by f such that
sgn f(t)=sgnsin .

The paper by J. D. Vaaler [15] also discusses this problem and its
applications to some questions in number theory.

3. A REFORMULATION OF PROBLEM 2

Before beginning our computations regarding c,, let us comment on the
simpler known fact that ¢, < oco. The proof of this given in [4] was
somewhat arduous. Later M.S. Narasimhan gave us the following
especially transparent proof.

Let D be the disk {&:]&] <1} in the plane. It is required to exhibit an
feL,(R?) for which f(£)=1/(¢,+i&,) outside D. Let ¢(¢) be any C*
function which vanishes strongly at 0 (for example, which is zero in a
neighbourhood of 0) and which is identically equal to 1 outside D. Define
Y(&) = ¢(&)/¢. We will show that the inverse Fourier transform ¥ is in L,.
To this end, consider n(&)=(d/dE) Y(&)= (1/E)d/dE) ¢(&). This is a C*
function with compact support and hence belongs to the Schwartz space
<. Hence # also lies in %. But J(s)=2i#(s)/s and hence belongs to L,.
This shows that ¢, < 0.

Now for the computation of the value of ¢,. Consider the tempered
distribution fy(s)= —1/2nis. We know that fo(£)=1/&. (See [10, p. 205].)
We seek an element p of &’ with the following properties:

(P1) pis an L, function with Supp < D;
(P2) if we define the distribution f as
f=rfotp (3.1)
then f is an L, function.

Note that ¢, =inf, || /]|, over such p.



AN EXTREMAL PROBLEM 143

Writing s = re” we see that

c2=i2f% J: rdr r

—n

1 )
o ie"2np(s)| db. (3.2)

Our first aim is to reduce the number of variables in the problem by
ascertaining the most favourable dependence of p(s) on 6.
For each r separately, we have

r

—n

%—ieiGan(s) dOZI%:E—hi r e“p(s) dO.,

with equality in the case (among others) that e“p(re™) is independent of 6.
For any p let

F(r)=| " iep(s) db. (33)

Then what has been shown is that

(

-

1 . 1
;—ie’927rp(s) db=2n ;—F(r)

3

with equality for functions p with the special angular dependence men-
tioned above. But any F obtainable in this way via (3.3)—say, from p;—is
also obtained from a p which has this special angular dependence, viz.,
from p(s)=(1/2ni) e F(r). Further, this p satisfies properties (P1) and
(P2) if p, does, for we can write p=(1/2n) |* , ¢”p, do, where p(re?)=
po(re’®+ %), Consequently we can restrict our attention to those p which
also satisfy this additional condition:

(P3) sp(s) 1s a radial function.

We thus have

o t
c2=ian‘ rdri—— F(r)
F r

0

= inf j “\G(r)| dr, (3.4)

where we have put
G(r)=1—rF(r); (3.5)

the infimum in (3.4) being taken over all F defined via (3.3) with p satisfy-
ing conditions (P1), (P2), and (P3). The problem now has been cast as a
one-variable L, minimisation problem. We now seek a useful charac-
terisation of the class of functions G which enter.

580/82/1-10
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By standard results in Fourier analysis [12] the condition (P3) implies
that p also has a special angular dependence. If & = pe’ then we can write j
in the form

P(&) = —2mie ~?Q(p). (3.6)

The restriction (P1) implies that Supp Q < [0, 1]. Further since p(¢)=
JEY—fo(&)=f(&)~ /&, and f is continuous being the Fourier transform
of an L, function, we can write

1
Q(p)=ﬁ+h(p), (3.7)

where 4 is a continuous function.

We will now express F in terms of Q. We can obtain p from p by the
Fourier inversion formula. Substituting this expression for p in (3.3) and
noting that s, &, +5,&,=rp cos(f — ¢) we get

F(r):-Lr e df f dé j' exp(irp cos(8 — ¢)) H(E)p d,
47'[2 . . o purp p pap
n !

e™ du f exp(irp cosa) Q(p) p dp

0

n 1
=2 f cos o do J‘ exp(irp cosa) Q(p) p dp,
0 0

where the substitution «=0—¢ has enabled us to perform one of the
integrations. Since Q(p) has the form (3.7) the order of integration in the
last double integral can be changed. Make this change and then substitute
A=p cosa in the inner integral to get

1 n/2
F(r)z4j0 Q(p)p dp L i sin(rp cos a) cos a da

ot oo A
=4 J;) Q(p)dp J;] sin rA m dA.

Now notice that

1 rp }_2
J, | gy 1000 didp < oo,

because the inner integral is O(p?) (actually const - p?) and Q(p) is O(1/p)
near 0. So, once again the order of integration in the last double integral
can be changed, and we can write

Fr)= fol sin rAS(2) di, (3.8)
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where
A

S =4i | 0(p) do. (39)

From this expression of F as a Fourier sine transform we see that F is an
odd function of exponential type <1 with F(0)=0. From (3.5) then we
have that G is an even function of exponential type <1 with G(0)=1. Such
a G can, in view of (3.4), be expressed as a Fourier cosine transform

G(r)= jm cos rig(t) dt

—

of a continuous even function g whose support is contained in [ -1, 1] and
which satisfies |' | g(¢) dr = 1. These properties of G mean that we can also
write

G(r)=2 fl cos rig(1) dr. (3.10)

0

To summarize the analysis thus far: we have associated with a function p
satisfying (P1}-(P3) a function G via (3.3) and (3.5); this G has the proper-
ties enumerated in the preceding paragraph.

We will now show that every G with these properties (i.e., every even
function G in L,(R) of exponential type <1 with G(0)=1) can be obtained
in this way. Assume then that G is any such function. Represent it as (3.10),
where g is a constant multiple of G, here continuous because G is in L,.
Define f on the s-plane (s = re®) by

o)=L GO _ o =1 GO

2ni s 2ni r

. (3.11)

Then fe L,(R?), indeed ||f], = [30 |G(r)| dr. Now define F from G via (3.5).
Then put

p(s)=% e "PF(r). (3.12)

Note that F can be recovered from p via (3.3). The equation (3.11) can be
rewritten as

f(s)=%n,ls+p(s). (3.13)

If we define S(4)=2 {} g(r) dt, then using (3.10) and integrating by parts
we get F(r)= [} sin rAS(4) di. It remains to show that Supp p < D.
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Once again by standard results in Fourier analysis [12, p. 137] any f in
L,(R?*) which has special angular dependence as in {3.11) has a special kind

of Fourier transform. The convenient form of the transform for our
purpose is

F@y=e* [ " Gl Jytpr) dr

—e fo (1 —rE(r)) J,(pr) dr, (3.14)
Q

where J, is the Bessel function of order 1, and as before ¢ = pe”. We want
to show that for || > 1 we have 0= p(¢) = f(&)— 1/E. (Here we have used
(3.13) and as before taken the Fourier transform in the space &’.) By
(3.14) this reduces to proving

r G(r) 1,(pr) dr =~ (3.15)
0 p

for each p> 1. Since J, = —J, we have

—Jolpr)
p

JM G(r) J,(pr) dr=[ G(r)]M+—I— fM Jolpr) G'(r) ar.
0 o FYo

As M — oo the first term on the right hand side goes to 1/p. So our claim
will be proved if we show

M
lim Jolpr) G'(r) dr=0.

M — 0 v

Using the representation (3.10) this reduces to proving that for every p> 1
we have

1 M
lim | g()ar f Jolpr) sin rt dr =0.
Q

Mo Y0

By a known fact in Fourier analysis ([ 14], see (7.4.3) and the subsequent
discussion) we can conclude that for p>¢

M
fim j Jopr) sin rt dr =0,

M — oo ¥Q

So our claim will be proved if we show that the integrals

M
I,{n= fo Jolpr) sin rt dr



AN EXTREMAL PROBLEM 147

are uniformly bounded for 0 <7< 1 as M — oo, for each fixed p > . Since

the integrals [§ Jo(pr) sin rt dr are surely uniformly bounded we need only

show that the integrals [# Jo(pr) sin rt dr are uniformly bounded. For this

we use the representation [6, p. 69]

2 J‘DC sin pry
(

Jolpr)== GI_)”

dy.
T 4

It is easy to see that for a fixed M the integrals [{ (sin pry/(y*>—1)"?) dy
are uniformly bounded for 1 <r< M as A — o. Indeed, we have for each
r=1 and for 1 < A < B, by the second mean-value theorem,

JB sin pry < 3
N e AV e

Hence, by the bounded convergence theorem we have

M
J Jolpr)sin rt dr
1

2 . M 4 gin pry sin rt
=—1 ————dy d
T Al_l:noc L L (y2_ 1)1/2 dy r
1 4 M cos(py —t)r—cos(py +t)r
=—1 dr dy.
RAEnm . L (yZ_l)l/Z ray

Doing the inner integration, then estimating the integrand in the remaining
integral, using the restrictions 0 <7< 1 and p > 1 we obtain from this

4 1 ¢ dy
S _ f I_ i
mp—th yy'-1)

M
“ Jolpr) sin rt dr
1

2

p—t

for0<e<1.

This proves that I,,(¢) are uniformly bounded as desired. Hence we have
(3.15) and our claim about the support of p is established.

The conclusion of the above analysis is the following

THEOREM. Let ¢, be the constant defined by (1.2). Then c, is also given
by

¢, =inf fw \G(r)| dr, (3.16)
0
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where G varies over all L, functions of the form G(r)=2 fé cos rt g(t) dt,
where g is a continuous even function supported in [—1,1] such that

L, g()ydr=1.
4. THE VALUE OF THE TWO-VARIABLE CONSTANT

The extremal problem we are led to by the considerations of Section 3 is
of the general sort discussed in Section 2. We have not so far been able to
find ¢, exactly, in spite of the availability of a general machinery for attack-
ing such problems. The background in matrix theory shows that ¢, >n/2
and suggests that it is larger, see Section 1.

Any function g satisfying the conditions of Section 3 will give us an
upper bound on ¢,. We present in some detail this especially clear-cut
example:

gln=7cos 21 (1<),

cosr

G(ry=n’

T —4r

We want & |G(r)| dr. We have
[7160) dr =21, + 1),
]

2 COSr
I, = f dr,
0

n?—4r?
o 1
jcos r|
12: ~3 3 dr.
n/2 4rc—n

These can be simplified by changes of variable.
1 =2 /cosr cosr
=— —_— d
I 27zfo (n—2r+n+2r) ’
1 /2 8in u n 1
= — — d 3 = —_— S.
7 {fo 7 At L/z % d”} 4 Sl
1= 1 J'Oo |cos r| lcos rl
272 s 2r—m 2r+m

S 1
_t {f Isin u| du— | 'S”;”' dv}:I&Si(n),

4n u n

where Si(x) = {3 (sin t/7) dt
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Combining,

jw \G(r)| dr=n*(I, + ) =g Si(7) < 2.90901

0

(see, e.g., [1]), which is therefore an upper bound for c,.
Some other candidates which gave numerical values extremely close to
this are

4 , T n 1 3n
g(t)—§(1 —t%), g(t)—ﬁz<cos Fi-gcos t).

The only bound we get from below is from general principles, as follows.

Suppose if possible that [ |G(r)| dr<m/2. This would require the
inverse Fourier transform g to satisfy |g(¢)] <3 everywhere. But g is con-
tinuous, g(—1)=g(1)=0, and |, g(¢)dr=1, so this cannot be. Further-
more, the infimum in (3.16) is attained, because the candidate functions G
form a normal family (see, e.g., [9, p. 300]). Conclusion: ¢, > n/2.

To sum up, we have shown in this section that

2

.
3 <, gz Si(n).
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