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ABSTRACT. This note is concerned with the transmission of a train of surface water

waves obliquely incident on a thin plane vertical barrier with a narrow gap. Within

the framework of the linearized theory of water waves, the problem is reduced to the

solution of an integral equation which is solved approximately. The transmission and

reflection co-efficients are also obtained approximately and represented graphically

against the different angles of incidence for fixed wave numbers.
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I. INTRODUCTION.

When a train of surface water waves is incident on a plane vertical barrier with

a gap, it is partially reflected and partially transmitted. For the case of normal

incidence Tuck [I] used the method of matched asymptotic expansion to solve the

problem for a gap which is assumed to be narrow in the sense that the depth of sub-

mergence of the midsection of the gap is large compared to its breadth. Packham and

Williams [2] also considered the same problem and used an integral equation (IE)

formulation wherein IE is on the horizontal component of velocity across the gap.

The IE is then solved analytically by an approximate method. Porter [3] used a

reduction procedure and also an IE formulation (different from the approach of Packham

and Williams [2]). Both the methods considered by Porter [3] lead to finding the

solution of the same Riemann-Hilbert problem. In the IE formulation considered by

Porter [3], the IE is on the difference of potential across the barrier above and

below the gap. While Tuck [1] and Porter [3] considered the problem only for deep

water, Packham and Williams [2] extended it to water of finite constant depth.

The transmission and reflection coefficients obtained by Porter [3] are in

principle exact, but that obtained by Tuck [I] or Packham and Williams [2] are

approximate under the assumption that the depth of submergence of the midsection of

the gap is assumed to be large compared to its breadth.

In the present note we generalize the problem in deep water to the case of a
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wave train impinging the barrier obliquely. An IE formulation is used to reduce the

problem to the solution of an IE involving the unknown horizontal component of

velocity across the gap. This IE is reduced to the solution of a system of IE’s by

an approximate procedure which is successfully used in some related obliquely

incident water wave scattering problems involving obstacles in the form of plane

vertical barriers (cf. Mandal and Goswami [4], [5], [6]) and a half immersed

horizontal circular cylinder (cf. Mandal and Goswami [7]).

2. STATEMENT AND FORMULATION OF THE PROBLEM.

We consider the motion in an inviscid and incompressible fluid occupying the

region y 0, the mean free surface (FS) coinciding with the plane y O, Ixl O.

A plane vertical barrier of infinite horizontal extent with a gap is present in the

fluid, the barrier being represented by x 0, the gap being situated in the region

a < y < b. Assuming the motion to be irrotational and simple harmonic in time with

cylinder frequency o and of small amplitude, a velocity potential exists which may

be described by Re{x(x,y,z) exp (-lot)}. Under the linearized theory X satisfies

the Laplace’s equation in the fluid region, the FS condition

3y + KX 0 on y O,

the barrier condition

3x 0 on x 0, 0 < y < a and b < y < ,
02

where K g being the gravity.g
A train of surface water waves represented by X exp{-Ky+iKcos x+iKsinz}

is assumed to be incident at an angle a with the normal to the barrier. In view

of the geometry of the barrier we can assume,

X(x,y,z) (x,y) exp (iz)

where K sin a. Then (x,y) satisfies

32
+__ 2) 0 in the fluid region, (2.1)

3x2 3y2

3y + K 0 on y 0, (2.2)

0 on x 0, 0 < y < a and b < y < , (2.3)

where.(x,.y) and its partial derivatives are continuous everywhere except possible

cross x 0, 0 < y < a and b < y < . We also require that and V are bounded

everywhere away from the two sharp edges of the wall at the gap, and near these edges

iVI O(r }) where "r denotes the distance from the edges.

Let us write

(x,y) o(X,y) + (x,y) (2.4)

where o(X,y)= exp(-ky+iKcosux), then (x,y) satisfies (2.1), (2.2) and the edge
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condition stated above. As the incident wave train experiences reflection by the

barrier and transmission through the gap, the asymptotic behavior of #(x,y) as

xl is given by

#(x,y) T #o(X’Y) as x , (2.5)

#(x,y) o(X’Y) + R o(-X’Y) as x -, (2.6)

where T and R are the (complex) transmission and reflection co-efficients

respectively.

By an appropriate use of Green’s integral theorem in the region y > 0, x > 0

and y > 0, x < 0 we obtain following Mandal and Goswami [6]

b
(,n) / G(o,y;,n) f(y) dy for > 0,

a

b
f G(o,y;,) f(y) dy + o(’)a

-/" G(o,y;,n) (o,y) dy for < O,
o

where f(Y) x (o,y), a y b,

and G(x,y;,) is the Green’s function given by Levine [8] as

G(x,y;,n) Ko(0) Ko(0

+ 2
(kZ-2) cos{ (k2-2) (y+) K sin{ (k2-2) (y+)

K2 + k2 2

exp(-klx- )dk + 2i
(K2-2

exp{-K(y+) + i(K2-2)1/21x-l}.

(2.7)

(2.8)

(2.9)

(2.10)

Considering the continuity of (x,y) across the gap we obtain the IE for f(y) as

b
G(o,y;o,n) f(y) dy -o(’) (2.11)

a

where f(y) 0(y2-a2) -1/2
as y a and f(y) 0(b2-y2) -1/2

as y b.

3. SOLUTION OF THE INTEGRAL EQUATION.

To solve the IE (2.11) we first expand its Kernel in terms of where sina

so that 0 g < I. 0 corresponds to the case of a normally incident wave for

which the solution is supposed to be known. This technique is used earlier

successfully by Mandel and Goswami [4], [5], [6], [7] in connection with the scatter-

ing of an obliquely incident wave train by obstacles of some particular geometrical

shapes. Now following Mandal and Goswami [6]

G(o,y;o,) G (o,y;o,) + 2 n Gl(O,y;o,)o

+ 2 G2(o,y;o, + 0( n , ) (3.1)
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where

G (o,y;o,) 2 f (K sin k-k cos k) (K sin k-k cos k)
dk

o o k(k2 + K2)

+ 2i exp{-K(y+)},

Gl(o,y;o,n) (I Ky)(l K),

G2(o,y;o,n _K2 f (K sin ky-k cos ky) (K sin kn-k cos k
dk

K k (k2 + K2)

(3.2)

+ (l-Ky)(l-Kn) { + /-I n(/+l))

+ i exp {-K (y + n)}

n 1.3.5 (2n-l)z (-I)
n=2 2

n n! 2n-2

etc.

Thus to solve the IE (2.11) we assume a similar expansion for f(y) given by

f(Y) fo (y) + E2 gn fl(y) + 2f2(y) + 0 ( En E, g) (3.3)

where f (y) satisfies the IE
n

b
f fn (y) Go(’Y;’) dy Un(n), a < < b, n--0,1,2
a

(3.4)

Here u (n) - exp (-K)
o

b
and Un (n) f fo (y) Gn(’Y;’) dy, n 1,2

a

(3.5)

and f (y) has integrable singularities at the two ends. Closed form solution of
n

(3.4) is not possible, and instead, as in Packham and Williams [2], we solve it
a+b.

approximately by exploiting the assumption that the depth of submergence h( --)
of the midline of the gap is large compared to the breadth b-a 2c say.

Now the kernel in the IE (3.4) can be written as

G (o,y;o,n) n [y-n[ + g(o,y;o,n)
o

where g(o,y;o,n) is regular. Then (3.4) is

b b
f f (y) n [y-HI dy u (n) + f f (y)g (o,y;o,)dy, a < n < b. (3.6)

n n n
a a

Since 2c is small compared to h, we can approximate the right side of (3.6) by

its value at n h, so that (3.6) reduces to

b
f f (y) n [y-[ dy A a < < b (3.7)

n n’
a

where An -Un(h) + g(o,h;o,h) cn, n 0,1,2
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b
and c / f (y) dy.

n n
a

Now the solution of (3.7) when f (y) has integrable singularities is given by
n

(cf. Cooke [9])

A
n

f (y)
{ (y-a) (b-y) n

provided # i.

Thus c
n

u (h)

b-an --- g(o,h;o,h)
n 0.

u (h)
o

For n 0, c
b-ao n --- g(o,h;o,h)

b
Also Un(h) f fo (y) Gn(’Y;’h) dy

a

(3.8)

G (o,h;o,h)c
n o

G (o,h;o,h)c
n o

so that c n > 0
b-an n -- g(o,h;o,h)

4. TRANSMISSION AND REFLECTION COEFFICIENTS.

Making + in (2.7), in (2.8) and noting the form of G(x,y;,n) in

(2.9) as II =, and using (2.5) and (2.6) we obtain respectively

b
T -2i (I e2)- f exp (-Ky) f(y) dy

a

b
R + 2i(i e2)- f exp (-Ky) f(y) dy

a

so that T+R= I. Noting (3.3) we can expand T and R as

T To + 2 ne T + e2 T
2 + 0( n e, e)

R Ro + e2 ne R + 2 R2 + 0(g En e, B)

so that To + Ro i, T + R 0, T
2 + R

2
0, etc.

Now 2
0

-2i exp (-Kh)Co,

TI -2i exp (-Kh)c I,

T
2

-2i exp (-Kh)( + c2),

etc.
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Following Evans [I0]

g(o,h;o,h) n(2h) 2{E
i

(2Kh) ri} exp(-2Kh)

X

where i(x)

_
(et/t) dt.

Thus T
2Kho :i+e i(2Kh)nh+
2

T2TI 2i
(l-Kh) exp(-2Kh)

o

T T
T
2

= [I - exp (2Kh) G2(o,h;o,h)]

etc.

We may note that ITo[ coincide with the result given by Tuck [I] and Packham and

Williams [2] for a narrow gap.

5. DISCUSSION.

The approximate expressions for the transmission and reflection co-efficients

are obtained here under the assumption that the gap is narrow. For a fixed value

the ratio .c 0.15 (as considered by Packham and Williams [2]) numericalof

calculations are performed for Kh 0.I, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4 and 1.6

and the angle of incidence a 0, D, I0, 15, mo 25 and BO ITI and IRl are

graphically represented against a up to 30 for the different values of Kh

mentioned above (cf. fig.l,2 and 3). It is observed that for a fixed the trans-

mission co-efficient first increases while the reflection co-efficient decreases and

then the transmission co-efficient decreases while the reflection co-efficient

increases for different values of Kh. This has already been demonstrated in the

result of Packham and Williams [2] and Tuck [I] for the case of normal incidence and

infinite depth of water. However for a fixed Kh, the transmission co-efficient

increases and the reflection co-efficient decreases as increases. This type of

phenomenon was also observed in connection with the scattering of an obliquely

incident surface wave train by a fixed vertical partially immersed barrier

(cf. Mandal and Goswami [4], Evans and Morris [II]), a submerged plate (cf. Mandal

and Goswami [5]), a submerged barrier extended infinitely downwards (cf. Mandal and

Goswami [6]) and a half immersed circular cylinder (cf. Mandal and Goswami [7]). All

the curves for different fixed values of Kh exhibit the behavior that more energy is

transmitted through the gap, when the wave.train is obliquely incident than when it

is normally incident on a barrier with a narrow gap.
2cFor other small values of -h-’ numerical calculations are also performed and

similar qualitative nature of the transmission and reflection co-efficients are

observed. It may be noted that we have restricted our analytical as well as numerical

calculations correct up to four decimal places and up to a 30 However as

0 sin a < i, in principle, there is no difficulty to make calculations for more

values of a. However in that case we need to consider higher order terms involving
n gnand En (n 4) in the expansion of the kernel of the IE and similar terms in

f(y), T and R.
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