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An Inventory Model for Detertorating [tems and
Stock-dependent Consumption Rate
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An order-level inventory model iz developed for deteriorating items with uniform rate of production and
stock-dependent demand, Shottages are allowed, and excess demaad is backlogeed, Results are illustrated
with pumencal exemples.
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INTRODUCTION

In formulating inventory models, two faccts of the problem have becn of growing intercst, onc
being the deterioration of items, the other being the variation in the demand rate. Among
researchers considering inventory models for deteriorating items, Shah and Jaiswal! considered
the rate of deterioration to be uniform, Covert and Philip? formulated an BEOQ model for items
with variable rate of deterioration, Misra® used a two-parameter Weibull distribution to fit the
deterioration rate, and Deb and Chaudhuri® suggesied a model with variable rate of deterioration
allowing shortages to occur. Gupta and Vrat® considered a model of stock-dependent consump-
tion rate.

Tn the present paper, an invenlory model concerning a single item 1 sugpested for detenorating
items with a variable rate of deterioration. In the proposed model, the rate of production is
uniform, shortages are allowed, set-up cost is considered, and the demand rate is varying, being
dependent on instantancous inventory level. The total cost per unit time is calenlated, and the
model is illustrated with some numerical examples.

MODEL

A single-itemn delerministic order-level model for deteriorating items with aniform rate of pro-
duction and stock-dependent consumption rate is presented under the following assumptions:
ia) T is the duration of a production cycle, where T =1, + {5 + {4 + &, (see Figure 1).
{b} The production rate K is aniform.
{c] The demand rate R(r) is linearly dependent on the instantaneous stock level ),
Bit) = a + #Q(0), where x and § are non-negative constants {z < K).
(d) Shortages arc allowed and backlogged.
(e} ¢, is the unit holding cost per unit time.
{f) ¢ is the anil shortage cost per unit Uime.
(g} ¢, is the unit cost price,
(b} &t} is the variable rate of deterioration. This implies that it should be restricted as follows:

Dot for O, +1;.

{fi) C is the total average cost for a production cycle.,
{(f) A is the scl-up cost for cach new eycle.

The production with a uniform rate and subsequently supply to consumers starts at a time
t = 0. This continues up to a time ¢, when the stock level reaches § (see Figure 1). Then the
production is stopped, and the stock level declines continuously, ultimately becoming zero at time
£ + £1. Over the period (0, £, + £3) there is delerioration of items. Now shortages are allowed 1o
occur down to an inventory level — P at time ¢y + £» + 7. At this instant of time, fresh production
and supply to consumers start to clear the entire backlog at time T. This entire cycle is repeated.
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It may be noted that the demand is always non-negative, even when the stock (ir) is negative. A
sufficient condition for this is that x — ¥ = 0, which is, however, antomatically satisfied in this
maodel [see equation (13) below].

MATHEMATICAL ANALYSIS

Tnventory level Q1)
The inventory level Q) at lime ¢} = t = T) satisfies the following differential equations:

QM+ QN =K — R, 0=r=1, (1)
Q) + MQU) = —REt), fy sttt + 8y, (2)
Qity= —R{1h, 1+t =t=1t + 1y + 1, (3)
Q'{ﬂ'=K—R{r}, by ttg iyt mt i+ iy + 1y, (4]
and the conditions that
O =0att=0,r +tyand T ()
Also Q(i) is continuous at + = ¢,, 1y + ¢, and t; + t; + t,. Further,
8=0(t;) and P=—0Q +i; + i) {6)
The solutions of equations [11-{4) are given by
# )
(K—w)——, 05151y, (7}
fo) -
LU J};; =P sogvr v, (8)
o=
_EU —expifiit, +t; — 0}, f +iySESE +iy+ iy, {9
K —u
L‘_ ; fexpi{T —t)} — 11, ty+ta+t, =t =T, {10
where
' ™y
= chU {8l + B} du}
o
and _ 3 {11}

Fit) = [ Sl due.

U]
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From (6) we derive

Flr,)  Fity +t1) — Fity)

§=K—a2—=x«u {12
{ ) fie) e }
] K—=x
P =7 [1 — exp(—fig]] = =—— [expifra) — 11. (13)
Thus ¢, and ¢, are related by the equation
Fit, + ;) K
o IVt 14
Firy) o@ L
while ¢, and r, are related by the equation
(K — ajexpifity) + xoxp{—fit,) — K =0 {15}
Tl average cost
The total number of deteriorated items over (0, T) s
T fL+12
J OG0 dr + Hehit) et
o+ r
Using (1), (2) and (5}, this becomes
r ntiz
(K — =)ty — ﬁf Olt) dt — oty — ﬁj Q1) dr, ' (16)
where (1) is given by (7) and (8) over the ranges (€}, ¢,) and {t,, t, + &) respectively.
The holding cost over the period (0, T 1 Is -
™t tL -2
cl[ ) de + J: ) .ri::|, (17)
wlh 1
and the shortage cost can be rewritten, using (15, as
41z i ¢
cz[—f 0f) dt — J o dt] =22 [ory + (2 — K)o}, (18]
£+ e 1 dez e ﬁ

The total cost X over the period (0, T) is given by
XN=A+ Kt —ejalty +8) + (e, — fiey)
™ Fiu) j""* du J‘l“l Fiu) ] Cy s
(K —a —— du + aFty +t — = — du Feety 4+ {0 — Kyt (19
[.: L G| ] ]G e e K (19

Henee the total averape cost 15
X
Clr ; fa] = - 20
(1, T4 T {20

where on the right-hand side z, is related to t, through equation (15).

Cost-minimizaiton criteria
The optimum values of ¢, and 1, for minimum total average cost are the solutions of
=0 and C,=0 {21y

provided C, ., =0, O, =0 and C ,],IC,3,3 — €7, = 0 for these values of ¢; and 7, Using these
optimum values of r; and ¢, the optimal valves of §, P, C, t;, r, and T can, in theory, be
calculated. However, because of the complexity and generality of the model, only numerical solu-
tions can be found.
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Eguations (21) arc eyuivalent to
ixX di 5 ax dt,
T==x{1+=2 ; == —*)
i ( s fih) and T i X(l + drj) 22

The solutions for optimal values of r, and ¢, from equation (22) seem to be a formidable task for a
general #(z). Hence two simple cases of practical interest are considered separately: Kl =a (a
constant}—ie. the rate of delerioration is constant; and 8(f) = ar—ie. the rate of deterioration
increases lingarly with time.

SPECIAL CASES
Let 8(t) = a {constant). From {11) we then obtain
Sity = expifa + fi}.
expila + i} —1 {23)
o+ )

F{.E:i =

_ n[ff
a+ﬁ'

Equation {14) then gives

:—_

expf —{u + fi 1}:| (24)

while (15} gives

1 [K—aexp(—pr)]
e i lnl: K—uz ] (25)
so that
% K-« expl—la + FliL, + £3)] (26)
"1
and
fiIA. _ r)
dry K expifiy — o {(27)
Again, in this case
X =A 4 oK —alty —cyary + (o — fea)
K—= B I —exp) —{a + M} - B
x[a+ﬁ{f1 G } @t ,ﬁ’}“l cxplla + f)ea)} - +I3:l
7 (il e8)
50 that
i R_}[ 3]"“ —{a + Bt + 62)}] 29
, (K= e+ 2 +3 [1 — expi—ia Al )
and
TR & {30)

dry, f Kexpifr)—a

Substituting the dilferent expressions in (22), we obtain (wo simultancous non-linear egoations
in optimal valucs of 1y and ;. The sccond cquation is simple and can be rewTitten as

X = Te ﬁ [1 — exp(— fit;)]. (31)

486



B N, Mandal and 8. Phaufdar—An Inveniory Model for Deteriorating Items

These eguations can be solved numerically for different values of the various parameters.
The cusc &) = at {3 is a constant) can be dealt with similarly. The details of the analytical
calculations leading to two simultaneous non-linear equations are given in the Appendix.

NUMERICAL EXAMPLES

Let A = £100, K = 230 amiis per month, @ = [N units per month, ¢, = £1 per unil per month,
¢y = £10 per unit per month, and ¢, = £1 per unit. The optimum valucs of ¢y, ¢,, t; and £, along
with minimum total cost per month and optimum values of § and P, are calculated numerically
for different values of @ and § for the two cases where the rate of deterioration is constant or
varies linearly with lime. These are shown in Tables | and 2 respectively. 1t may be noted that the
condition 0 < &) < 1 for 0 = ¢ = T + ¥ is satisfied in this numerical example for different values
of a.

Tanit 1. Cowstant rate of delerivralion; ey - o

i 17 in menth 3 it month 17 in menath {3 in month C*in£ 5* £

Ll 0l nila {4911 nitl {L4FT3 110 4 1.2
02 0,706 {5349 115 QAT 114.5 Y34 TLA

04 0692 728 0124 02 1230 807 12,5

06 (682 64 131 4086 13040 813 13.2

Lk} 675 {1578 G138 i | 1370 754 139

LI i 0735 {504 e LTI 114.6 Y35 17
04 05403 07a5 LY ) 0075 1150 5.8 120
0.6 (587 008 11§ G074 1140 251 122
L8 (4% (L66S iy {13 1135 4.5 125

Tank 2, Farighle rate qfda?teriﬂraﬁan; A7) = ar

B a t} in month 1% in mumth t% in menth tf in month Crin £ 8 !
o1 Gl 0678 D.BET 0110 2073 L0 iR 111
02 a5 0812 112 0474 12D 21.2 1.3

04 (1,601 0713 LR RS 00TE 1180 213 19

0 0.566 hGdd 124 L 123.0 175 115

08 n541 0.5586 125 (g 1270 a1 128

n: 0667 783 113 0474 1120 1.0 114
04 0,70 0731 113 04¥73 T a4 116
0. 0,740 D683 all4 T2 LI #6.2 118
0s 0758 0638 0113 DF70 1080 ila LL&

DISCUSSION

The present stock-control model of deteriorating items with stock-dependent consumption rate
is applicable to problems where a low stock level adversely affects the demand rate. The rate of
deterioration is assumed first to be a constant and then to be an increasing linear function of lime.
The latter case would be more suitable for items which start deteriorating appreciably some time
after they arc produced and for which the rale of deterioration increases over time.

Keeping in mind that the objective of minimizing the total average cost is achicved through
scheduoling the different values of the subintervals f; to t,, it is clearly demonstrated in Tables 1
and 2 that in the casc of both constant rute as well as variable tate of deterioration, the system s
fairly sensitive to the changes in the value of the parameter a as well as 1. Tables 1 and 2 also
demonsirate that for both constant and variable rate of deterioration, the minimum total average
cost increases, as expected, with the rate of deterioration, However, in the present example, the
above cost does not change much with the parameter f/, and the reason is apparcnl from the
nature of changes in the values of the subintervals, in this particular case. However, the system
would be more scnsitive to the changes in the value of B where « has a lower value,

Ackmowledgenen—The authors are grateful to the referees for theit detailed comments in revising the paper in the present
form.
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APPENDIX

When 1) = ai (¢ is a constant), from {11) wc obtain, in this cuse,
: al’
fo= cxv(—.,— + ﬁr),

Fif) = JF exp(aziz + ﬁ‘u) i
0

The relation between ¢, and ¢, is now obtained from (14) as

T b I ] 1
o j Exp{%— + ﬁu) du =K J- cxrj({—lgL + ﬁ-u) i, (A2}
o " 2

while the relation between t; and t, remains the same as in {15).
From {A2) we obtain

(AT)

dty, _ Kf(t)
dey  af(ey +13)
while dt,/dt, remains the same as in (27), since the relation between ¢, and t, does not depend on
d(r).
Now from (1%), differentiating both sides with respect to ¢, we pet

oX dty
o, —caK_‘-ﬂﬂ(l + dtl)—i_{cl — fies)

{ v it R | Fit, + t3)
* [K Jiigy et "*’( E) J W ]

Using (A3), this can be rewrillen as

éX Sy B KFP(1) LR dw Pl )
o 3”[' f{n+sg]”“‘ Beal “Fin ”(””J 7wt iy ] S

BX/6ty, however, remains the same as in (30). Substituting from (A3) and (A4) in the first equation
of (22), we obtain one non-linear equation, and the other non-linear equation is (31), from which
sel we would solve for the optimum values of ¢, and 5.

Tt ]-! (AS,}
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