
Austral. J .  Statist. 38(1), 1996, 3 5 4 2  

A NOTE ON COMPETING VARIANCE ESTIMATORS 
IN RANDOMISED RESPONSE SURVEYS 

ARIJIT CHAUDHURI~, TAPABRATA MAITI’ & DEBESH Roy2 
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Summary 

When gathering randomised rather than direct responses on a variable 
of interest relating to sensitive issues, one may use a modified version of the 
well-known generalised regression predictor of a finite populatioa total. To 
construct confidence intervals, this paper proposes four alternative variance 
estimators - modifications to those usable with direct responses - and 
examines their relative efficiencies through simulations from simple super- 
population models. 
Key words: Generalised regression predictor; randomised response; variance estima- 
tion. 

1. Introduct ion 

We consider a sample survey to estimate population totals of several vari- 
ables including a few that could give a person a bad name, such as amount spent 
on gambling or alcoholism or number of days of drunken driving etc. 

Usually a population is stratified and from each stratum a sample is drawn 
according to a suitable design, ‘independently’ across the strata. So, each stra- 
tum theoretically may be treated as a population in itself. Accordingly, we 
present a theory for estimating a ‘population’ total. For each variable of interest 
y we assume it is possible to  identify a correlated variable z with known popula- 
tion values zi totalling X. From the population U = (1,. . . , i, . . . , N) of size N 
a sample, s, of n distinct units, is assumed to be drawn with a probability p ( s )  
according to  an appropriately chosen design p. For the design p, the probabilities 
xi and T . .  respectively of including i and i , j  (i # j) in the sample are assumed 
to be positive. By Ep,  Vp we denote design based operators of expectation and 
variance. 

If y is a non-stigmatizing variable, then its value yi for a unit i in s may be. 
directly ascertained by survey. On the other hand, if the variable could stigmatize 
a person, we assume that a randomised experiment may be implemented to 
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produce a 'randomised response' (RR), say r j ,  for i in s, and that a direct 
response (DR) yielding yi may not be obtained. As described by Chaudhuri & 
Mukerjee (1988) a suitable RR technique may be employed so that, writing ER, 
VR as operators of expectation and variance for the 'randomisation' experiment 
one may have 

E R ( T ~ )  = yj, VR(Ti) = qy; + Pjy; + ei = say (i E u), (1.1) 
for known a j ,  p j ,  Bi. The r j  are assumed to be 'independent' over i E U. In 
addition, 

1 c=- 1 + a j  (air: + pjr; + dj) (1 + aj # 0)' (1-2) 

satisfies 

With this set up we postulate a 'super-population' linear regression model M 
permitting us to write 

Here p is an unknown constant, the cj are 'random' variates distributed with 
means and variances respectively as 

E R ( R )  = (i E U). (1-3) 

yj = p x j  + € j  (i E U). (1-4) 

Em(Ej) = 0, V,(€i) = 2 x f ,  (1.5) 
with c (> 0), g (0 5 g 5 2) unknown constants. By c, we denote sums 
over i in U and i , j  (i < j )  in U; by C', C'C' we denote the same in s. If 
direct responses yj are available, then a popular estimator for Y = C yj is 

Here pQ = C ' Y ~ X ~ Q ~ / C ' X ~ Q ~  and Qi (> 0) are 'arbitrarily' assignable con- 
stants. This is called the 'generalised regression' (greg) predictor (Cassel et al. 
1976). Skndal (1980)' following Brewer's (1979) asymptotic approach, showed 
it to be 'asymptotically design unbiased' (ADU) for Y. S h d a l ( l 9 8 2 )  gave two 
variance estimators for tg as 

Here ej  = 3; - pQxj; alj = 1; u2j = gsj (i E V ) ;  Ajj = ( ~ j n j  - ~ j j ) / ~ j j .  If 
instead of yj only r j  is available, we can estimate Y using e 
t,, which is obtained from t ,  by substituting r j  for each yj (z E s). We write 

the RR version of 
g'. 

and e j ,  = T~ - jQrr j  (i E s). C'rixiQi 
jQr = C'xlQj 
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In Section 2 we present alternative formulae for variance estimators of 

Note that in the same survey, for a given sample, both t ,  and e, may have to be 
used when dealing with specific (y, x )  variables. 

2. Variance Estimators and Their Relative Efficacies 

A measure of error of e ,  as an estimator of Y may be taken as 

= EpER(e, - Y ) 2  = EREp(eg - Y ) 2 ,  

noting that Ep commutes with E,. Then 

M = Ep(tg  - + EpVR(eg) 
2 = Ep(tg - q2 + Ep [c ' (-) Q S ,  V;] .  

=i 

Skndal  (1982) showed that 

Let 

Ep(vk)  approximates Ep(tg  - Y ) 2 .  (2.3).  

and observe that 

Then, 

Let Fi, Fij stand for Fi, Fj j  with V; replaced by ( i  E V )  in the latter and for 
k =  1,2 



38 ARIJIT CHAUDHURI, TAPABRATA MAITI & DEBESH ROY 

Then. 

and hence EpER(dkg) approximates M, see equations (2.2)-(2.3). So we propose 
ijkg (k = 1,2), as two variance estimators of eg .  

Alternatively, writing R = C ri we neglect the error in equating E,(e,) to 
R. Recalling that Ep commutes with ER we approximate M by 

To find an elegant approximation 
sion we proceed as follows. 

Let 

h A T =  (Tl, ... 

for Vp(eg)  by a first order Taylor series expan- 

we approximate 

So, using (2.6), (2.7) we propose the following additional variance estimators of 
e ,  7 

m1g = 

and 

m2g = 
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observing that E,E,(mk,) (k = 1,2) approximate M. 
To judge the relative merits of 6 k g ,  mkg k = 1,2 in terms of their variances 

is difficult. So, to discriminate among them we consider their respective efficacies 
in yielding confidence intervals for Y of the form 

eg f r 4 2 f i 7  (2.10) 

with o standing for + k g ,  m (k = 1,2). Here, for a chosen a in (O,l) ,  ra12 stands 
for the 100: point on the nght tail of the distribution of 7 which is the standard 
normal deviate. This confidence interval has a nominal confidence coefficient of 
lOO(1- a) and is constructed on the basis of usual convention of approximating 
the distribution of (e9 - Y ) / f i  by that of T. In Section 3 we present a numerical 
comparison of the relative performances, based on a simulation study, of the four 
alternative confidence intervals above. 

k? 

3. A Numerical Exercise by Simulation 

Take N = 70. To generatex = ( y i , .  . . , y i , .  . . , y N ) , &  = ( x i , .  . . , x i , .  . . , xN) 
subject to model M we generate ui (i = 1,. . . , N) as random samples from the 
density 

with several choices of p ( p  > 0), and generate ri (i = 1,. . . , N) from N(0, l )  
and take xi = 10 + ui ,  ci = ~ ~ ~ z f / ~  with various choices of u (> 0) and g 
(0 5 g 5 2). With several choices of p (> 0), we then generate yi  = p x i  + ci 
( i  = 1,. . . , N ) .  In order to draw samples from U, we take n = 15 and apply 
two well-known schemes, one due to Lahiri (1951) and the other due to Hartley 
& Rao (HR) (1962). Both require use of size-measures, zi say ( i  = 1, ... ,N), 
positively well correlated with yi. We generate z = (ti,. . . ,ti,.. . , zN) taking 
zi = 8.2 + 0.6527 choosing 7 = 0.78. To apply Lahiri’s scheme we equivalently 
follow Midzuno (1952) and select a w i t  i of U with a probability proportional 
to ti on the first draw and take a simple random sample without replacement 
(SRSWOR) of size (n - 1) from the remaining population. Formulae for ri,rij 
are easily found. Hartley & Rm’s scheme chooses a circular systematic sample 
of size n with probability proportional to z j  from U after randomly permuting 
the elements of U, ensuring an inclusion probability .ti/ C ti for i in U. These 
authors give formulae for r i j .  We apply Chaudhuri & Mukerjee’s (1988) method 
to generate randomised responses in the following way. We choose two vectors 
of suitable real numbers A = ( A i , .  . . , Ah, . . . , A H ) ,  & = (B i , .  . . , B j , .  . . , B J )  
with means p, (# 0), p B  and variances u;,& For a sampled individual i ,  an 
element, A, say, is chosen randomly from A and ‘independently’ ah element, 
B, say, is chosen randomly from & and a ‘randomised’ response is elicited as $Ji 

which is 

f(u) = pe-pu (u  > 0), 

$Jj = YiA, + Bh. (3.1) 
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This is repeated ‘independently’ for every i in s. Then, T~ = (+i - p B ) / p A  is 
generated. For such T ,  the relation (1.1) is satisfied with cri = o i / p ; ,  pi = 0 
and 9, = u;/& (i E U). In our numerical exercise presented in the table below 
we choose ( p ,  p, a , g )  as 
(i) (0.6,2.0,5.0,1.4), 

(ii) (0.2,2.0,4.0,1.5), 
(iii) (0.2,1.5,3.5,1.6), 
(iv) (0.6,2.5,4.5,1.7), 
(v) (0.2,1.5,3.5,1.8), 

(vi) (0.4,2.0,4.0,1.9). 
The vectors A,& are chosen as 

(11) A = (42,36,50,30,45,28,52), & = (15,12,18,9,11,8), 

where case I corresponds to DR (direct response). To calculate eg we choose 
Qi = 1/7r,z,, take F = 1000 replicates of the samples for both the schemes 
and choose cr = 0.05 to construct 95% confidence intervals. By c, we denote 
summation over the replicates, and by M^ we denote the approximations of M 
by (2.6). To evaluate the performances of (eg, v) we consider the following three 
usual criteria: 

1. ACP(actual coverage percentage) = the percent of replicated samples for 
which the confidence intervals actually cover Y .  The closer it is to 95, with 
everything else at par, the better. 

2. ACV (average coefficient of variation) = the average, over the replicates, 
of the values of f i / e g .  This reflects the length of confidence interval: the 
shorter the better. 

3. ARB (absolute pseudo relative bias) = 1/F C, Iv - M ( / M :  the smaller the 
better. 
In Table 1 we present the values of (ACP, 103ACV, 103ARB) for (eg, v) 

with v as Gkg, mkg (k = 1,2), corresponding to several combinations of choices 
of (p, /?,o,g) as in (i)-(vi) and A,B as in (1)-(111) noted above. The values based 
on Lahiri’s scheme are given below those for the HR scheme. 
Concluding comments: Like vk (k = 1,2), the vaiance estimators Gkg (k = 
1’2) and mlg are suggested by Yates & Grundy’s (1953) form while m2g is 
suggested by Horvitz & Thompson’s (1952). However m2g seems to outperform 
its competitors in terms of ACP and ARB though not ACV. For DR as well as 
RR cases all the procedures seem quite acceptable and competitive. Midzuno’s 
scheme is simpler than HR’s and performs better. For Midzuno’s scheme, xi 
equals [n - 1 + ( N  - n)zi/ C 4 / ( N  - 1) which is rather close to n/N, the R,- 
value for SRSWOR. Yet it is preferable in employing e,, at least in the present 
context, over HR’s with wider variation in 7ri. 

(I) A = (1,1,1,1,1,1,1)’ B = (0,0,0,0,070), 

(111) A = (100,102,99,105,101,98,103), B = (75,72,71,69,72,70), 

h h  
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TABLE 1 
Values of (ACP, 103ACV, 103ARB) for (eg, u) under several alternative situations 

(eg, v )  (1,i) 
(eo,CIg) 81.4 200 486 

91.1 249 377 
(eg,C2,) 83.7 215 429 

91.3 250 386 
( e g , m l g )  83.7 215 429 

91.3 250 386 
feo,m2J 90.9 267 375 

91.3 250 386 

75.7 
85.9 
78.6 
85.4 
77.3 
85.4 
85.1 
85.4 

(II,i) (II1,i) 
219 558 81.6 200 592 
268 480 91.1 249 383 
233 515 83.1 215 434 
203 483 91.4 250 391 
228 531 83.1 215 434 
263 483 91.4 250 391 
281 425 90.3 266 373 
263 483 91.4 250 391 

(eg, v )  ( I , 4  
(eg,ijlo) 83.9 166 702 

( e g , i j 2 g )  86.5 180 646 

(eg,mlg) 86.5 180 646 

(eg,mzl)  91.9 216 so5 

92.4 199 791 

92.9 201 780 

92.9 201 780 

92.9 201 780 

(I1,ii) 
77.9 185 715 
84.7 214 813 
79.8 197 685 
85.5 216 805 
78.8 192 699 
85.2 215 806 
84.4 230 582 
85.2 215 806 

~ 

(II1,ii) 
83.9 166 705 
92.3 199 794 
85.8 180 650 
92.6 201 784 
85.8 180 651 

91.9 216 511 
92.6 201 784 

92.6 201 784 

(eo 9 v )  (1,ii.i) (11,iii) (II1,iii) 
(eg,ijlo) 82.5 228 506 78.3 249 576 82.1 228 512 

91.4 279 438 86.3 294 536 91.5 279 446 
(eg,C2>) 83.9 245 448 80.1 265 531 83.6 246 453 

91.8 280 443 86.0 295 535 91.6 280 450 
(eg,mlg) 83.9 245 448 79.6 260 545 83.6 246 453 

91.8 280 443 86.0 295 535 91.6 280 450 
( e g , m z , )  90.7 301 467 86.2 318 435 90.2 301 366 

91.8 280 443 86.0 285 535 91.6 280 450 

(eg,Clg) 81.2 208 483 76.4 228 556 81.6 207 481 
91.1 255 373 85.9 268 476 91.1 255 378 

(eg,Cag) 83.8 224 426 79.0 243 513 83.2 222 431 
91.4 255 381 85.6 269 478 91.5 256 386 

(eg,mlg) 83.8 224 426 77.5 238 528 83.1 222 431 
91.4 255 381 85.6 269 468 91.5 256 386 

( e g , m z g )  90.9 278 373 85.3 293 422 90.4 275 371 
91.4 255 381 85.6 269 478 91.5 256 386 

(eg,Glg) 84.4 266 564 79.9 302 627 84.0 266 569 
92.7 317 622 88.1 340 682 92.6 317 629 

(eg,62g) 86.7 287 500 83.3 323 579 86.0 288 505 
93.2 321 606 87.5 344 669 93.2 321 612 

(eglml,)  86.7 287 500 82.1 318 590 86.0 288 505 
93.2 321 606 87.5 344 670 93.2 321 612 

( eg ,mzo)  92.2 345 388 87.6 379 472 91.9 345 391 
93.2 321 606 87.5 344 670 93.2 321 612 

(eg 9 v> (IiV) (I1,iv) (II1,iv) 

( e p  v )  (4v) (KV) (IKV) 

(eg, v )  (1,Vi) 
(eg,Clg) 82.6 287 478 79.2 

91.6 359 390 87.5 
(eg,C2,) 84.2 309 423 81.4 

91.9 361 401 87.3 
(eo,mlo) 84.2 309 423 80.9 

91.9 361 401 87.3 
( e g , m z g )  90.9 378 370 87.1 

91.9 361 400 87.3 

(I1,vi) 
299 557 
361 495 
319 513 
363 496 
314 525 
363 496 
383 422 
363 496 

(II1,vi) 
81.1 289 480 
91.7 371 396 
83.7 311 428 
91.7 374 407 
83.7 311 428 
91.7 374 407 

91.7 374 406 
90.6 381 368 
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