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In this paper we stedy an imersection properly of balls ealled the finite -
werseclion property, for injective and projective tensar products of Banach
spaces. It fums out that Nor Banach space £ containing an isomeinis copy of
v

cp. £ F [ails (his property when F s infinite dimsesional, A precise
posilive answer can be obraincd when £ is 3 space of continuous functioms,
Similary this interscction property will not e in general peesarved by projec-
fwve focnsor produects, By eastablishing some general thecrems aboot proper
M-ideals we conclude that several of the classical compact ODETAIOE Spaces
fail this properiy.

IxrropUCTION

In this paper we continue the study of the intersection properties of balls in
tensor product spacest” started in. The main objective of this paper is to study the finite
intersection property (FIP for short) of balls introduced by Lindenstrauss!® for the pro-
Jjective and injective tensor products of real Banach spaces with particular emphasis on
the space of vacior valued integrable and continuous functions.

According to Lindenstrauss, a real Bapach space E has the FIP if for every family
{B (a1, ret e of closed halls in E such that any finite suhcollection has non-emply
i

intersection, one has M & (ai, r¢) # ¢. Since closed balls in a dual space £* are also
el 3
w*-compact, one can see that any dual space has the FIP, It is fairly casy to see that

if F C E*is the range of a norm one projection then F has the FIP. A lopg standing
open question due to Lindenstrauss is 1o decide whether every Banach space that has
the FIP is the range of a norm ome projection when canonically embedded in 1ts
biduall® {page 60). Itis well known!® that a Banach space E is the range of 1 norm
one projection in its bidoal iff it is isometric to the range of a norm one projection in
some dual space. Hence the question can be reformulated as “If E bas the FIP, isit
isometric to the range of a norm one projection in a dual space?." There have been
oniy a couple of papers, both by Godcfroyl®11 that have dealt with this problem
before.
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Seizing on the role played by the space g (the space of sequences converging to
zero) in the isomorphic theory of tensor product spaces5 1% and utilizing the observa-
tion that ¢y fails the FIP, in Section 1 of this paper we show that when £ has an iso-

W

metric copy of oy, the space £ & I has the FIP only when F is finite dimensional and
when £ = C (K), the space of continuous functions on an infinite compact Hausdorff
W

space, a more precise answer is obtained by showing that C(K) & F has FIP iff K is
extremally disconnected. We show that the projective tensor product of two spaces
with the FIP necd not in general have the FIP. However it turns out that the /1-direct
product of any family of spaces with the FIP has the FIP.

In section 2, we point out a general phenomenon that explains why co fails the
FIP when we show that any Banach space that s g proper Af-ideal {see section 2 for
the definitions) faile the FIP. For a further special class {that includes cp) we show
that no equivalent FIP norm exists. As a consequence of these results we get that
several classical spaces of compact operators fail the FIP, We conclude with some open
problems,

Our notation and terminology is fairly standard. For a compact Hawsdorfi
space K, and a real Banach space E, the space T (K, E) denotes E valued continuous
functions on K, equipped with the supremum norm and for any measure space {Y, &,
g)y LY (u, E) stands for the space of E-valued Bochner integrable functioms. We will
be using the notation for tensor products and the basic results of Distel and 1ih17,

1. Texsor Propuct Sraces

Tn this szction we show that if £ is a Banach space containing an isometric copy
of ¢ then for any non atomic measure space X, @, p), L1 (o, E) fails the FIP. In the
W

case of injective tensor products if turns out that £ @ F can have the FIT only when F
is finite dimensional.

Lindensiraussl® showed that in ¢y, the family {B (es, {)} of closed balls with
centre at the nth coordinate vector, has empty intersection. It ie easy see that apy finite
subeollection from the above familv has non-empty intereection. Consequently op
fails the F1P.

In recent years, starting with the paper of Cembranos®, many situations have
been found where tensor product spacses contain isomorphic, complemented copies of
¢o. Ouor first results point out that the corresponding “isometric’ results are rather
easily obtained.

We shall be repentediy making use of the following easy observation, noted in
the introduction.

Let F O E be a closed subspace and let P F: — F be an onto projection of norm
one. If E has the FIP then so does F.
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Thearem 1—Let E be a Banach space having an isometric copy of co and let F

L
be any infinite dimensional Banach space then the injective tensor product £ & F fails
the FIP.

FRDDF : We shall show that cp is isometric to the range of a norm one projec-
tion in £ @ F. Since ¢y fails the FIP, we can conclude then that £ @ F failg the FII',

We adapt the arguments of Saab and Saab®-which in turn depend on the beauti-
ful way Josefson — Nissenzweig theorem® has been applied by Cembranos® to get
complemented copies of cp.

Since F is infinite dimensional, usiog the Josefson-Nissenzweig theorem we get a
sequence z: € F*such that {lz} [| = 1 and z} — 0 in the w*-topology.

Applyiog now the Bishop-Phelps theorem!? we can get a2 sequence y: such that

lzy — yy = 0and |lyg I =y (ya), where ya € Fand [yaf = 1.

Clearly _r: —= {1 in the w*-1opology apd lim II_}: [= L. Put x: y: i

¥, -
Now IIx? il = 1 = x7 {¥a) = ll»sfl and x; — 0 in the w*-topology.
Let T denote the isometric embedding of co in £. Put an = 7T {ea) and let a: (=
E* be a norm preserving extension of ey o 771,
Clearly ﬂ {am) = Snm,
Define
v
P:op+E & Fby
& {(an)) = L an (gn & ya).

We claim that ¢ is a well-defined linear isometry. Enough to show that for any n

3
HE og (@ @ 3o}l = max i),
1=1 lesimn

Forx* € E* y* € Frwithjx*} < 1, Y = 1

[ 3 E
I Z arx*(a) p* ()1 Q(E |x%(ar)|) max jot].
=1 =] I=isn
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But by the choice of the a

n
i::: P x* {a) | & )x% = 1.

-

Hence by the definition of the injective tensor product norm, we have

(]
| 2 e (@ vl = 1m_ax fog].

i=1 =ifn

b

Evaluating E i {a @ 14} at a suitable choice of 4} and x:' one can easily see the
1

reverse inequality, © js thus weli-defined and clearly is a linear isometry.
Define F: £E& F — © {eg) by

k

P(> ne .w) g i © (@ (re) x* (s0).

i=1 =1

Then as in Saab and Saabl?, one can verify that P 15 a norm decreasing, linsar map

W
and hence can be extended to a norm one projection from E & F onte @ {cp).

Remark 1. Smce E (or F) is isometric to the range of 2 norm one projection in
E @ F, clearly for E I:El F to have the FIP, it is necessary for £ (or £)to have the FIP.

The next result shows that one can obtain a more precise information when Eis
the space of continuous functions on a compact Hausdorff space K.

Tt is well-knowid that for aninfinite K, C (K) contains an isometric copy of gy.

Theorem 2—For a finite dimensiopal space F and infinite compact Hausdorfl
W
space K, C{K} & F = C (K, F} has the FIP iff X is extremally disconnected.

Proor : Suppose C (K, F) has the FIP. As remarked before this implies that
C (X) has the FIP. It is well-known that in the space C (K) {Laceyl5) any finite family
of pairwise intersecting closed balls, have non-empty intersection. Combined with the
FIP this means that any family of pairwise intersecting closed bells have Don-empty
intersection. Hence using results from section 11 of Lacey!5, one can caucludc that
K is extremally disconnected,

Conversely suppose that X is extremally disconnected. Appealing again to the re-

sults from section 11 of Laceyls, we get that there is a projection P of norm one from
C (K)** onto C (K.
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It is fairly easy to see that P & [is a norm one projection from C (K)** é F
»
onto C (K} & F,

Sipce the former space is a dual space, it has the FIP. Hence C { £, £} has the FIP,

Remuark 2 : We have in fact showed that C (X, F) has the FIP iff it is the range
of a norm-one projection in a dual space. Also contained in the above proof is the
fact that if E is the range of & norm one projection in a dual space then for any finite

v
dimensional space F, £ & F is the range of a norm one projection in a dual space.

Remark 3 : Let K (E} denote the space of compact operators on a Banach space
E. 1tis along standing open problem to decide when does K ({E) occuras & dual
W W

space. Since K (1) = N & I*and K (I**) = I @ ([*)*, we can deduce from the
above theorems that £ (/1) and X (7°°) {ail the FIP.

Cur next result shows that the projective tensor product of two Banach spaces
with the FIP can fail to have the FIP.

We shall first introduce some notation and then state without proof a Proposition
due to Godefroyl®11,

For any Banach space E, let
v =1{g € E** g+ x= {x], ¥ x € E}.
FProposition—For a Banach space E the following statements zre equivalent,
{1} E hasthe FIP,
(2} E¥*=F 4 '

(3} For any family {8 (u¢, re)} of closed balls in £** with centres from E,
i Bias, ri} = ¢ in E** implies 7 B (ay, #i) has a point from E.

Note : (3) is what Godefroy!? calis as Property 3.

Lemma=-§{ {E4} is any family of Banach spaces having the FIP, then theair !
direct product E = (%7 £: has the FIP.

Proor :  In view of the Propesition stated above, it is enough to show that E**
=E 4 &r.

If F denotes the cy direct product of the family £ | then clearly # C E* = &,

-

<
Let F denote the annihilator of Fin £**. Harmand!® has observed that

-
E** = (&1 E:-} d1 F.
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Now let f € E** and write / = (fi) + 2z where(fi) € &1 E*andg € F.

Since Kt has the FIP for each /, appealing again to the above proposition, we
can write f; = ai + £ where o € Eiand g¢ &=y,

Since [l % |[fiil, we have Z flag] = o=
i

and hence I |igi] = ==, so that (¢:) & E and (g4) € &1 E:".

We conclude the proof by showing that
g+ (g} E G
Let {b:) € E

i(bs) — (&e) — gll = 1 {bs) — (gl + ligli
(since E** is the J! direct sum of &3 E;* and F).
= % lbs — gell + gl
= fi Il = [Ls )
since g1 € 5.

Therefore g + (g¢) € ..

Theorem 3—For any noo-atomic measure space (X, #, u) and for any Banach
space £ containing an isometric copy of ey, L1 (p, £) fails FIP.

Proor  : Using standard measurs theoretic arguments. one can see that it is
enough to prove this result when X = [0, 11and w the Lebesgue measure.

If rn denotes the Rademacher funetions in £1 ([0, 1]}, then observations similar
to the ones given by Emmanuele® show that the map ® 1 ¢g — £1 ([0, 1], E) defined by
@ (zn)) = Z wy rs an where the an have been chosen as in Theorem 1, isa linear
isometry.

1
Mote that for any f € L1 ([0, 1), E}, the ssquence of vectors [ ¢ f du —+ 0.
o

Consequently
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1
P:LL([0, 1], E) - @ (eq) defined by P(f) = ®(a’ {I ra fdul)
i

where the a> have been chosen as in Theorem |, is a linear projection of norm one.

Hence 11 ([0, 11, E) fails the FIP,

Remark 4 : Since for any measure space {X, #, p), L1 (n) (see Lindenstraussit)
hag the FIP, by taking E as, say, I™, we can see that projective tensor product of two
spaces with the FIP can fail the FIP,

Earlier we have proved!® that if £ has the Radon-Nikodym property and is the
range of anorm one projection in a dual, then for any measure space (X, #,1), L1 ({1 E)
is the range of a norm one projection in a dual.  The above result also shows that our

theorem is pot true without the additional hypothesis of Radon-Nikodym property,
answering a guestion raised in our earlier workl®,

It is well known that for a duoal space £*, C (K, E*) can be identified as the
space of compact operators from E into C {K), (see Dunford and Schwartz). In view
of our results about the FIP and C (K, E}, it iz natural to enguire as to when does the
space of bounded operators L (£, C (K] has the FIP? If one, uses the identification of
L (E, T (K)) as the space of functions on K, that are continuous when E* has the w*-
topology {denoted by C (K, E*, w*}), equipped with the supremum norm {see Dunford
and Schwartz?), our next proposition completely answers this question.

Proposition 2—Far an infinite compact Hausdorff space K, C (K, (E*, w}) has
the FIP iff X is extremally disconnected.

Proor : By fixing an ey & £ and q;‘ £ E* such |leglf = e'; ieg) = I;eE = 1,

one can see that the map [ — [ e:]' is an isometric embedding of C(K) into

C (K, (E*, w*)). The association F — Feo ¢ defines a norm one projection from
'C (K, (E*, w*)) onto the image of C(A). Hence if C (K, {(E*, w*)) has the FIP, then
from what we have proved before, it follows that X is extremally disconnected.

Conversely when X is extremally  disconnected, since € (K} is the range of a
norm-one projection in € (K)**, arguments similar to the ones indicated before, show
that C (K, (E*, w*)} = L (E, C (K)} is the range of a norm-one projection when em-
bedded in L {(E, € {K)**) and the latter space, as is well-known is a dual space. Hence
C (K, (E*, w*)) has the FIP.

Remark 5: As before we note that the proof implies that C (K, {E, w*) has the
FIP iff it jg the rangs of a norm one projection in its hidual.
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Remark 6 : It may be worth remarking here that since Josefson-Nissenzweig
theorem is equivalent to the existence of non-compact operator from E and an infinite

compact set K K (£, C {ﬁ:}] is always a proper subspace of L (E, C [:Ff}j,

2, FIP awp M-IDEaLS
A closed subspace # C E is said to be an M-ideal, if there isa projection P
from E* onto F'Lsuch that
Ifl=UPfli+ s PfIl forall f € E*.

This concept was introduced by Alfsen and. Effros and Behrends! monograph
is now the source book for M-ideals and their structore theory.

Behrends and Harmand® have introduced the notion of & proper M-ideal, and
according to them, a Banach space  is a proper M-ideal, if there is a Banach space £
containing F (isometrically) such that Fis an M-ideal in £, but not ae M-summand,
The containment of cyin [* 18 a typical example of this situation. Behrends and
Harorand® proved that no dual space can be a proper M-ideal. We next prove a
theorem which 15 more general than this and which in a way explains cn failing the
FIP.

Theorem 1 —1If a Banach space Fhas the FIP then F can not be 2 proper M-ideal.

Proor : Suppose Fisa proper M-ideal. Then uvsiog Lemma 2.2 of Bchrends
and Harmand?, wemay assume that there is a Banach space F such that E ~ F &
span {ao}, and F 15 an M-ideal in £, but not an M-summand.

Consider in £ the family of balls {8 (&, g — 2aecr 1f we can show that ™

uEF
B(a, la — apl) #= ¢ in F, then one can use this information as ia Lemma 3.2 of

Lindenstrauss™®, to get a projection of norm one from E onto £and then appeal to
Proposition 2.1 of Behrends and Harmand?® to get a contradiction.

To this end consider the family of closed balls {F (a, |a — ap] + 6}}::5 r
el
in F. We shall show that any finite sub-collection from here has non-empty intersection.

Let {B (a¢, lioe — agll + )} 1 < i < nbe any finite family of balls considered
in F.

Put « = min {«}: Notice that in E, ap is common to alf of them and =ach ball
intersects F at least in &, 60 since F is an M-ideal, using the characterization of M-

ideals interms of intersection propertics of bails (see Behrendsl), we conclude that
i

B (ay, lar — ay] + ¢) non-empty in F. Consequently (0 B (ds, las — ag| + «) is non-
empty in F. Suppose now F has the FIP, we can conclude that

N Badla—al +e= N Bia lla — anl)
oEF a€F
£
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in non-empty in F. Heoce F can not have the FiP.

Remark : Any non-reflexive Banach space that is an M-ideal in its bidual (see
Harmand and Limal?} is a proper M-ideal and hence any such space fails the FIP.
Frime examples of this phenomenon are K (/7) {| = p < =) (se¢ Harmand and Limal?
and the references there). Our concluding result shows that these spaces can not even
be renormed to have the FIP,

Theorem 2—1If E is a non-reflexive Banach space such that £ is an M-ideal in its
bidual then no equivalent norm on £ can have the FiP.

Proor : Since E is an M-ideal in its bidual, F is an Asplund space!®. Hence every
equivalent norm on E is Frechét differentiable on a dense subset of E. Now using (1)
of Theorem 3 of Godefroyll we see that if an equivalent norm has the FIP then it
must be a dual norm. MNow note that since F is non-reflexive, from Theorem 3.5 of
Harmand and Limal?® we get that this doal norm has an isomorphic copy of ¢ and
hence from the Bessaps and Pelezynski theorem (Diestel®) we get that this equivalent
dual norm has an isomorphic copy of /. This contradicts the fact that £ is an
Asplund space.  Hence no eguivalent norm on E can have the FIP,

We conclude with some open problems.

(i) If £ is a Banach space having the FIP and F C F is a separable subspace,
does there always exists 2 separable space & with the FIP such that F & & C E?.

| do not know how to do this even when £ = [*® and F = co. One should keep
in mind here the well known fact that £ 15 not contained in {isomorphically) a separa-
ble complemented subspace of a dual space.

{2} IF E has the FIP and £ is fintte dimensional does £ é F have the FIP?

(3) If E has the Radon-Nikodym property and the EIP does L1 (A, E) have the
FIP? {where } is the Lebesgue measure on {0, 1))

After completing the work on this paper we have realized that a forthcoming
article of Cambern and Greim? deals with a situation similar to the one in Proposition
2, when they are looking at the question when is C (X, {E¥, w*)) a dual space?.
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