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Abstract
An expression is obtained for the probability that a Weibull random variable falls after the truncation and within a finite interval.

However small, the truncation in the Weibull distribution (when the value of the shape parameter is two, it is called the Rayleigh
distribution) has an impact. An attempt is made to obtain generating functions for two fixed shape parameters.
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1. Preliminaries

The p.d.f. of a Weibull r.v. Y is given by

S = g (g)ﬂ_l e_(g)ﬁ, forall y > 0. (1.1)

Here « is a scale and B is a shape parameter. There are other forms for the function in (1.1) (see [1]). The
characteristics of this function are well known. However, the characteristics of this function are different if some
of the values of the r.v. Y are right truncated [2,3]. For better understanding of the progression of a disease, e.g., for
HIV, earlier researchers considered right truncated Weibull distributions [3]. Here they assumed that the progression
of the disease is not an increasing function, but will stabilize after a certain time point. This time point is called the
truncation time § and the truncated Weibull p.d.f. [3] is given below:

Ses(y) = g (g)ﬂfl @’ forallo<y <Sanda, f >0 (1.2)
RO RO (5)’“ )
fo5) = —e =) +(3)

forall§ <y <oocandeo,f > 0,5 <t < o0. (1.3)
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Define f5(y) as follows:

f<s(y) forall0<y <3$§

f>s(y) forall§ <y < oo. (1.4)

fa(y)z{

There have been attempts to estimate the parameters of the truncated Weibull distribution, in some cases censoring
and also fitting the survival data [4—6]. For § = 2, the Weibull distribution is called a Rayleigh distribution [7]. In
Section 2 technicalities of the effect of truncation on the Weibull distribution are given and a result useful in dealing
with such truncated Weibull distributions is also proved. Section 3 deals with an attempt at deriving the generating
functions in a couple of cases. Section 4 concludes with brief outline of applications of truncated Weibull distributions
and potential applications for the future.

2. Importance of truncation

Theorem 2.1. For all a, 8,8 > 0, a definite interval of length o and for a given k > §, the probability

P(Y <k)=P(Y <)+ ¢s(ko) (2.1
where

_(3\ o (s)_(sth0)’

¢5(ko’):e (9‘) —e ‘3(0‘) (“‘)
Proof. Take P(Y < k). This can be expressed as

=PY<§)+PE=<Y=<h (since k > §) (2.2)

8 k
= [ ramay+ [ Lo, @3)
s

Distributing the second term in the RHS of (2.3) into two finite integrals of equal length o and evaluating them, we
get

S+o §+20
fs(lo) = fza(y)dy+/ S>s(»)dy
F) S+o
sto B8\ s (2B
B /+ JEE) o)
(24 S
Bl e o [ o\ vy
ol d | (o) @) e
_B [z {e(2>“ . eﬂ(2>"ﬂ(s>“<l+%><ﬁ%>f”
a| B
i [z {eﬂ(i)ﬁﬂ(i)Wlﬂ)(%f)ﬂ”
«|B

After canceling and simplifying these terms, we get (2.4)

k) B 280 (8 B 8420 B
frtoy = () () -(5) 24

Again, distributing the second term in the RHS of (2.3) into three finite integrals of equal length o and evaluating
that term as above, we get
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4o §+20 §+30
f5(20) = f fos)dy + / fos)dy + / fos()dy
B S+o §+20
B L a\B A
_ @) ) ) @.5)

There is a symmetry in the expression and terms cancel in the order shown for deriving (2.4). By this rule, if we
divide the same integral, from (2.3), into £ finite integrals of equal length o, then the integral evaluated will be of the
form given in (2.6), i.c.

S+o 5+20 d+ko
fikor= [ oy + / S0y -+ / /0)dy
§ o+o S+k—1)o
5\ o (5\P ([ stho )P
_ () ) () 2.6)

Hence the proof. O

Remark 2.2, As the value of the truncation point increases, (2.6) is a decreasing function except where 8 — 0. When
B — 0 and § is increasing the values become oscillatory, and then it looks like a step function. When 8 > 1 and § is
increasing the function looks like a quadratic exponential with a uni-peak.

Note 2.3. Suppose Y1, Y2, Y3, ..., Y, are identically independently distributed random variables with Y; following a
truncated Weibull distribution (1.4). Let

Z =Min(Y1, Y2, Y3,..., ¥))
and suppose § <z € Z < oo. Then
P(Z > z) = PMMin(Y1, Y2, ¥3,..., Y,) >z}
=P(N_,Y; >z2)
=[[rwi>2
= P >2)"

since § < z € Z < 0o; we use (1.3) and, for § = 2, we have

P >z) = / Szs(»)dy

_ (T2 2 e-n-)7 ([t y
_/Z ae{ Y }{<a>+(a)}dy.

Now substitute w = (g)2 — %(t — y) and change the limits accordingly: y — oo then w — oo andas y — z

then w — (é)2 - %(t — 2) (say, ¢). Also, verify that dy = 2\/% and y = —t + +/3¢2 + «?w. Then
P(Y; > 2) /Oot*“’ dw +/oo(t+ 32+ o) e dw
>z) = e — ow) eV —/ ——.
' o V32 +atw Uy V312 + oatw

Therefore,
P(Z>z2)=T1, )" =[I'(1)—pe M1, 2,$)]".

Here M is called Kummer’s function. See Appendix for the relation between lower, upper gamma functions and
Kummer’s function.

Note 2.4. If

=20 ]
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then (1.3) can be written as
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_B(t Py P
-1 @)
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o o * (oz) txA 2! *
_P)(L IS_IJr(Z)’31 lim (1+£)"
a |\ o n—00 n
d /1)’ . xX\" d /y\B . x\"
—a<a) Jim (147) +a(a) Jim (14+7)" @7
3. Truncated generating functions
Let G, denote the moment generating function for (1.4); then it is expressed using (1.2)—1.4) as follows:
o0
Gr = [ iy
0
) _1 , 00 BBl . ¥ \B -1
=/ E(Z)ﬂ emy7<;>"dy+/ B mr+t &y -n-2) }(L> a
0 o\« s o
e BT _y—(2)P -1
+/ B m )" a-n=() }(Z) dy. (3.1)
§ o o

There is a polynomial of degree 8 in the exponent; hence it will be very difficult to obtain the generating function
for this integral. Even for the second degree the integral will be a rational exponential. In this section, with suitable
substitutions and using special functions, a moment generating function formula up to second degree, i.e. for M,
and M,, is evaluated. The formulas could be of potential use in biological and engineering sciences when we are
dealing with (1.4): highly flexible in survival and reliability analysis. The value of ¢ indicates the time of truncation.
It was shown that when ¢ reaches a certain value, any increase in it after that value will not change the shape of the
distribution [3].

When g = 1 then (3.1) will become

8 y o0 e L —( Y
/ le’"y_(’&)dy +2/ le{’er"‘(t Y ("‘)}dy.
0 o s o
Substituteu = y/a—1/a(t—y)—my in (3.2), and change the limits accordingly; then we get the following equations:

S {/g eIy ”/
a2/a —m) —t/a g

Sinceas y — Othenu — —t/aandasy — 8 thenu — §/a—1/a(t —8) —mé (say, g) and dy = du2/a—m)~!
where,

(3.2)

oo

e_”du} .

u+L

y=5—2
a m

1 _L{I(l?na)—ua} ot _g)
— o —moa o — 2[’ 17
a(z/a_m)[e (e e ®)+2I'(1, 9)
then,
1 1—ma)—ua
Moy = [efé{%} (efé _ e*g) +2{1 — ge ¥M(, 2, g)}] . (3.3)
oa(2/a —m)
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When g = 2, (3.1) will become

s oo N2 [e}e] N2
2 ¥i\2 2t L2 (X 2 2 iy (L
| Zem @y | 2 elm i@y, +f 2 lmrriten-rly, (3:4)
0 o s« s o
Take
y\2 2t
v = (—) —my — —(t = y); (3.5)
o o
then
2
o
Vaalv + odm? — da2mt + 1212
Also,
212
y=>0=v—->——
o

5\* 2t

y—o>d8d=v—> (=) —— =8 —my(say, h)
o o

y > 00 =1t — 00.

Consider only the first term of (3.4) and make the above changes; then this term with new limits can be written as

2 2
2 |:/h G% —tm+% (\/4a2v+zx4m2—4ot2mt+12t2) —{ s —é+ﬁ (\/4a2v+a4m2—4a2mt+12t2) }
0

ol

2

2

mo t o

X\ — — 4= (\/4a2v+a4m2—4oz2mt+ 12¢2 } < >dv . (3.
{ 2 2 ) Vaod2v + odm? — 4a’mt + 1242 (

Consider the second and third terms of (3.4) and following the steps as above; then these terms with new limits can
be written as

/°° 2t _, o?
—26 dU
o Vaod2v + ofm? — 4amt + 12£2
% 5 Uozz{’"T“z —t—i—%(\/4a2v+a4m2—4a2mt+l2t2>}
+/ 2 e

dv. (3.8)

e
o? Vaa2v + ofm? — 4a2mt + 1242

Now as v — —i—t;,we have
2
t
{% —1+3 (\/40521) +atm? — 4amt + 12t2)} -0

and

2t
Vaa2v + a*m? — da2mt + 12t2/oz2 - = —m.
o

Therefore the sum of (3.7) and (3.8) will lead to the generating function in the special conditions discussed in this
section. This can be written as follows:

2t 212 Jo?
Myy = 2= (I'(1) — he " M(1, 2, 1)}
2t — ma

4. Conclusions

It is already established that when 8 = 1 the ordinary Weibull distribution becomes an exponential distribution.
It is also known that when the shape parameter is two, it will be a Rayleigh distribution [7]. Hence the generating
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function obtained in this work can be called a generating function for the truncated Rayleigh distribution, which is not
available in the literature. The discrete form derived here for the general right truncated Weibull distribution for the
probability that a random variable falls in the finite interval after the truncation time can be practically explored.

Theorem 2.1 can be applied to find the probability that a random variable falls after the truncation and within a
specified interval. If ¥; are independent and identically distributed Weibull random variables, then the probability that
a minimum value greater than z (say), where z falls after the truncation time point, is obtained in this work is an
incomplete gamma function.

One biological application of such a truncated distribution arises in studies where the variable of interest is the
duration between infection with a virus and development of symptoms of a disease. Given an infection time for an
individual, it is not always possible to assess the time of onset of symptoms or development of the disease. It is proved
here that the truncation of this kind of distribution has an impact [3]. The risk of development of the disease will
increase as t — oo and the chance of survival will decline after the optimal truncation point.

Acknowledgements

Thanks go to Professor Masayuki Kakehashi for introducing me to the truncated Weibull distribution during our
collaborations in Japan, which motivated me to study its properties further. A substantial part of this work was carried
out when I was at the Mathematical Institute, Oxford. Thanks go to Professor Philip Maini for his encouragement
and enthusiasm during this work. I am grateful to Sir David Cox for valuable discussions and questions about the
application aspect of the content, which helped me to revise the manuscript. I wish to thank both the referees for their
highly constructive comments (one of their suggestions resulted in the present title), which helped a lot in the revision.
I was supported by DST, New Delhi, and had partial support from LMS, London.

Appendix
The lower and upper gamma functions utilized in this work are from the following Pearson forms of incomplete

gamma functions (4.1) and (4.2); Kummer gave a formula (4.3) for the incomplete gamma function as a confluent
hypergeometric function [8]:

o0
rr*lr(r+1,25)=/ e OLirHl=lygy 4.1
25
t t
y(r—i—l,—):F(r—I—l)—F(r—l—l,—) (4.2)
[07 o
vy, h)y =r "W e "ML, 1+ 1, h). (4.3)

In (4.3), M is called Kummer’s function.
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