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A Note on Self-Organizing Semantic Maps

James C. Bezdek, Fellow, IEEE, and Nikhil R. Pal, Member, IEEE

Abstract— This paper discusses Kohonen’s self-organizing se-
mantic map (SOSM). We show that augmentation and normal-
ization of numerical feature data as recommended for the SOSM
is entirely unnecessary to obtain semantic maps that exhibit
semantic similarities between objects represented by the data.
Visual displays of a small data set of 13 animals based on
principal components, Sammon’s algorithm, and Kohonen’s (un-
supervised) self-organizing feature map (SOFM) possess exactly
the same qualitative information as the much more complicated
SOSM display does.

I. INTRODUCTION

BJECT data are represented as X = {xj, X2, -, Xn},
Oa set of (n) feature vectors (signals) in feature space
RP. The jth observed object (some physical entity such as a
tank, image, patient, stock market report, etc.) has vector x;
as its numerical representation; x; is the kth characteristic
(or feature) associated with object j. To characterize feature
extraction, let P ( ®7) and P (R?) be the sets of all subsets
of RP and R, respectively. Let ®: P(RP) — P(R?), be a
set-to-set transformation with image ¥ = ®[X] € P(R9).
When |X| = |Y| = n, there is a correspondence X;<y;Vi,
and we call ® a feature extraction transformation [1]. Usu-
ally ® carries points to points, Y = {y1,y2, -, ¥n} =
{B(x1), B(x2), -+, B(%n)}.

The word transformation includes two realizations: ¢ may
be a fupction, written ® = f; or ® may be an algorithm,
written ® = A. Functions lend themselves to analysis of
properties such as linearity, continuity, etc. Algorithms are
computational transformations, and hence, their functional
properties are generally difficult to verify. We avoid using
the word “map” as a synonym for transformation, as there is
much confusion in the literature about whether the word is
being used in its mathematical sense, its perceptual sense (as
a visual display, which is a “map” in a much different sense),
or both.

The dimension ¢ can be greater than, equal to, or less than
p. Dimensionality is sometimes increased when p is small to
enhance the utility of the original data. For example, simple
images contain only one dependent variable (intensity) at
each pixel in the image. Extracting a list of features such as
estimates of the gradient of a picture function and its average
intensity over a window centered on each pixel increases the
dimensionality of the raw (sensed) data.

When p is large, feature extraction is used for two different
but somewhat related problems: dimensionality reduction and

visual displays. It is often desirable to reduce p to ¢ < p.
The basic idea is that feature space may be compressed and
possibly improved by eliminating, via selection or transforma-
tion, redundant (dependent) and unimportant (for the problem
at hand) features. If ¢ < p, time and space complexity of
algorithms that use the transformed data are reduced. The
simplest method of reduction in dimensionality is feature
selection, choosing subsets of the original measured features.
Features are selected by taking & to be a projection onto some
coordinate subspace of R”.

The second important use of feature extraction is to get
g = 1, 2, or three-dimensional scatterplots of X for visual
exploratory data analysis. Further, a large class of trans-
formations produce only visual displays from X (and not
data sets Y C R, R2 or R%) through devices other than
scatterplots. In this category are functions such as Andrews
plots [2]; and algorithms such as Chernoff faces [3], and trees
and castles [4]. This more limited class of transformations
will be represented as fP, AP:RP — V(R?), and these
will be called, respectively, feature display functions and
algorithms. The nature of the image space V(R?) of display
transformations depends on the function or algorithm being
used.

While the primary use of visual displays is in the ex-
amination of unlabeled data, feature sets that possess class
labels can also be visually examined with profit, for such
displays often suggest what type of learning model and/or
classifier design can be expected to produce good (or bad)
results. Moreover, labeled data can also be used to generate
(usually) two-dimensional (2-D) maps exhibiting structural
or similarity relations between a set of objects. Any @ that
produces Y = ®[X] C R? can be used for visual displays by
taking ¢ = 1, 2, or 3 and plotting Y on a rectangular coordinate
system. If the data are labeled, their images have labels in
the scatterplot or visual display. These labels can be used to
construct visual maps that may indicate similarities between
objects, or may be used to design an object data classifier.

The self-organizing feature map (SOFM) is an algorithmic
display transformation denoted here by AL, p\ @ RP —
V(R?) that is implemented through a neural-like network
architecture. There are various versions of SOFM that use
labeled or unlabeled data. QOur interest is in the original
algorithm for unlabeled data as described by Kohonen [5] and
in a modification of it called the self-organizing semantic map
(SOSM) by Ritter and Kohonen [6]. The difference between
SOFM and SOSM is that the former produces displays from
unlabeled feature vectors in P, while SOSM uses data that
are augmented by class labels. The main purpose of our
paper is to show that SOFM, principal components, and
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Sammon’s algorithm all produce the same qualitative results
on unaugmented data as SOSM does on the augmented data.

II. PRINCIPAL COMPONENTS ANALYSIS
AND SAMMON’S ALGORITHM

Two methods which can be used for both feature extraction
and visual display are principal components [7] and Sammon’s
algorithm [8], [9]. Principal components begins with S =
(1/n) > p_;(xx—m)(xx—m)T, the sample covariance matrix
of X, where m = (1/n) Y ;_, Xk is the sample mean of X.
Assuming S to be positive definite, extract and order the p
eigenvalues of S, as, say, Ay > Ay > ---A, > 0, and let

vi.i = 1,2, .-+, p be the corresponding unit eigenvectors;
ie, Svi = Aviei = 1,2,---,p and vIv; = 1Vi =
1,2, .-+, p. Eigenvector v; is called the ith principal vector

of S. The set {v;} is an orthonormal basis for RP which is
simply a rotation of the canonical basis that decorrelates the
samples.

The principal vectors of S are used to define p linear feature
extraction functions. Let P, denote the p x g matrix whose ¢
columns are the first ¢ (ordered) eigenvectors of S. Thus

Plz Vi .P2= Vi Vo

[ I]
Pq: Vi V2 oo Vgl
I ]

Now define, for ¢ = 1, 2, ---, p, fpc, ¢: RP — R? as Yo =
frc.q(x) = PlIx. y, is called the gth order principal
component of x, and yg; = vIx is called the ith score of x. In
particular, the second-order PC image of x, fpc, 2(x) is a point
in R2, and a plot of the set Ypc o = {frc,2(xi):x; € X}
is called a principal component scatterplot of the first and
second principal components of X. Of course any of the
p(p — 1)/2 pairs of PC’s of the data may be plotted; of these,
our notation accounts only for the single pair produced by
fpc.2. For example, a scatterplot of the last two PC’s is
sometimes examined to see what is in the “tail” of the sample
variance.

For any ¢ < p, Ypc,q = fpc,¢[X] is data in R? extracted
from X, and this extraction produces an image set with a
known statistical property. The projection of X onto the
span of {vi, va, --- v} accounts for the maximum possi-
ble fraction of the total sample variance in X that can be
accounted for by a linear projection onto a g-dimensional
vector subspace, and this is measured directly by the ratio
Epc oY) = (371 A)/(X%_; Xi). In a rough sense then,
plotting the first few principal components allows you to
visually examine those features in the data that account for
most of its variance.

Sammon’s method is a set-to-set algorithm denoted here by
As ¢ P(RP) — P(R). As 4 attempts to find a set Y5 , =
As, 4[X] in R? such that the distances between pairs of vectors
in X are preserved in their algorithmic images in Y5 ,. Let d3;,
d;; be, respectively, the Euclidean distances between x;, X, in
RP, and (unknown) vectors, y;, y; produced by Ag , in R9.
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Sammon suggested looking for Ys , by minimization of an
error function Eg , that measures how well the configuration
of the data points in Y5 , agree with those in data set X in
the sense of matching pairwise distances. Sammon’s measure
of error is
d¥ —d;;)?
Es,(Y) = Zld* Z ( i - 5) . (1)

i i<j i

i<

Es ¢(Y) = 0if and only if Ag , preserves all n(n —1)/2
pairs of distances exactly. Thus, Ag , attempts to be an
isometric connector between X and Ys , = Ag, ¢[X]. Mini-
mization of Fs ¢(Y") is an unconstrained optimization problem
in the ng variables y;;,¢ = 1,2, ---,m; j = 1,2, -+, q.
Sammon’s algorithm is the method of steepest descent for
(approximate) minimization of Eg ,(Y’). Modifications of
Sammon’s algorithm to improve its speed and performance
are discussed by Schachter [10], Pykett [11], Chang and Lee
[12], and Biswas et al. [13].

To summarize, principal components [Epc, 4(Y)] and Sam-
mon’s algorithm [Es 4(Y")] are both driven by well-defined
performance criteria that attempt to guide them toward ex-
tracted features that satisfy a desirable property. Neither of
these algorithms requires class label information, and they
produce extracted feature vectors in R? for any ¢ < p.
At the termination of either algorithm, the vectors Ypc, 2
or Ys o can be scatterplotted on a standard rectangular co-
ordinate system, and these images of X can be inspected
to guess about its substructure. We will show that these
two algorithms produce—without the benefit of any label (or
linguistic) information—images that are qualitatively identical
to those produced by the SOSM, which, according to Ritter
and Kohonen, must include the label information to display
semantic relations between symbolic data [12, p. 241].

III. THE SELF-ORGANIZING FEATURE MAP

The SOFM is an algorithmic display transformation denoted
here by ALpy @ ®P — V(RY) that is often advocated
for visualization of metric-topological relationships and dis-
tributional density properties of feature vectors (signals) X in
R? [5]. SOFM is implemented through a neural-like network
architecture that is believed to be similar in some ways to the
biological neural network. Fig. 1 illustrates this architecture
for ¢ = 2.

The visual display produced by A%, .., presumably helps
one form hypotheses about topological structures in X. In
principle X can be transformed onto a display lattice in R?
for any ¢; in practice, visual displays can be made only for
¢ < 3 and are usually made on a linear or planar configuration
arranged as a rectangular or hexagonal lattice. In this article
we concentrate on square (m X m) displays in R2.

Input vectors x € RP are distributed by a fan-out layer to
each of the (m x m) output nodes in the competitive layer.
Each node in this layer has a weight vector prototype v;;
attached to it as shown in Fig. 1. We let O, = {v;;} C
RP denote the set of m? weight vectors. O, is (logically)
connected to a display grid O, C V(R?). (4, §) in the index
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set {1, 2, .-+, m}x{1, 2, ---, m} is the logical address of the
cell. There is no vector with coordinates in %2 associated with
each cell. This gives a one-to-one correspondence between the
m? p-vectors {v;;} and the m? cells {(i. j)}, i.e.. Op < Oo.
In the literature display cells are sometimes called nodes, or
even neurons, in deference to possible biological analogs.
SOFM begins with a (usually) random initialization of the
weight vectors {v;;}. Having made the important point that
feature vectors x in RP are logically identified with 2-D
addresses in O as in Fig. 1, we now simplify our notation
by suppressing double subscripts. Now let x € RP enter the
network and let ¢ denote the current iterate number. Find
V,t—1, the vector in O, that best matches x in the sense
of minimum Euclidean distance in RP. This vector has a
(logical) “image” which is the cell in O, with subscript r.
Next, a topological (spatial) neighborhood N;(r) centered at
r is defined in Oy, and its display cell neighbors are located.
In Fig. 1 we show a 3 x 3 window N(r) centered at r; this
would correspond to updating nine prototypes in RP. Finally,
v, ¢+~1 and the other weight vectors associated with cells in
the spatial neighborhood Ny(r) are updated using the rule

Vit = Vi1 + hei(t)(x = Vi) (2)
Here r is the index of the “winner” prototype

r = arg min {||x — vi.r_1]} 3)
N e’

i
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and ||*|| is the Euclidean norm on R? (this is the only norm we
use in this paper). The function k.;(t) is used to express the
strength of interaction between cells 7 and % in Oj. Usually
hi(t) decreases with t, and for fixed ¢ it decreases as the
distance (in O3) from cell 7 to cell r increases. A common
choice for hy;(t) is hri(t) = aze= 4t/ where a; and
o+ decrease with time ¢. The topological neighborhood Ny(r)
also decreases with time. Note that the “preimages” of Ni(r)
are not necessarily metrical neighbors in RP. This scheme,
however, often preserves spatial order in the sense that weight
vectors which are metrically close in RP generally have, at
termination of the learning procedure, visually close images
in the viewing plane.

There are many variations of the basic SOFM algorithm. For
example, in [14] an algorithm is suggested that uses metrically
defined neighborhoods of winners v, in feature space ®?. In
[15] neighborhoods of winner v, in R? are chosen from nodes
in a minimal spanning tree constructed on the weight vector
set O, = {v;;} C RP. Here is the version of the SOFM that
is used in the numerical example given later.

Algorithm AL\ (Kohonen [5]):

Begin
Input X /** unlabeled data set
X={x;eRP:i=1,2,---,n} *¥
Input m /** the display grid size, a square

m X m lattice is assumed **/
/** maximum number of
updating steps **/
/** initial neighborhood size **/
/** the initial step size
(learning coefficient) **/
Input 0y and oy /** parameters to control
effective step size **/
/** Learning phase **/
Randomly generate initial weight vectors
{vijoi=1,2 . mj=12---,m}
t—20
While (f < mazxstep)
Select randomly x(t) from X;
find r = arg min {||x(¢) — v;(¢)||} /** r and ¢
N —

Input maxstep

Input Ny
Input o

stand for two- dimensional indexes that uniquely
identify a weight vector in O, **/
Vit + 1) — vi(t) + ageldist(r. Dx(t) — vi(t)]
Vi € N¢(r)
vi(t + 1) «— vi(t)Vi & Ne(r) 1** dist(r, i)
is the Euclidean distance between centers of
nodes r and ¢ on the display lattice,
gu(d) = e~ /7% x4/
t—t+1
ay — ag(l — t/mazxstep)
N; — Ny — t(Ng — 1)/maxstep
o — 09 — t{0, — 0f)/maxstep
/** - there are many other ways to readjust
oy, Nt, and oy,
and many choices for g; **/
While End
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/** Display phase**/
For each x € X find r = arg min {||x — v;||},
——

and mark the associated celllr in Os.
End.

According to Kohonen [5], there are two opposing ten-
dencies at work in the self-organizing process. First, the
weight vectors tend to describe the density function of the
input population, and second, the local interaction between
processing units tends to preserve continuity in the double (2-
D) sequences of weight vectors. In other words, the weight
vectors in O, are trying simultaneously to approximate the
distribution of the data in R? and to have logical images which
are topologically ordered in O,. At the conclusion of learning
a final pass is made through X to get the display in V(R?),
which is produced by “lighting up” (marking) each cell r in
0> that corresponds to a winner node v, € O,,.

The SOFM in its original form is an unsupervised learning
algorithm. Ritter and Kohonen suggested that the SOFM
could not be used to discover semantic relationships without
“an essential, new ingredient [which] is the inclusion of the
contexts, in which each symbol appears, into the input data”
[6, p. 241]. They used the class information or label vector
for each point in feature data to produce what they called
a semantic map, which exhibits the similarity relationship
between a set of animals. Mitra and Pal [16] have also
used class information in a similar manner to design a fuzzy
self-organizing classifier. These authors augment the feature
vectors (attribute vectors) with the class information and use
the augmented data as input to the network. The primary
objectives of this paper are to establish that using class
information as discussed in [6] and [16] is counter-intuitive
and that qualitatively identical results can be obtained without
using class information. We will establish this by showing
that feature extraction techniques such as Sammon’s algorithm
and principal components and the SOFM display method all
generate qualitatively identical results to the SOSM.

IV. THE SELF-ORGANIZING SEMANTIC MAP

The method we describe next is the SOSM [6].! The
basic idea is to encode class information of objects as a
part of the input data. This is done as follows: Let X =
{x1, X2. -+, Xp}, be a set of (n) feature vectors (signals)
in feature space RP that possesses representatives of each of ¢
known classes. For each x; there is output information, which
in its simplest form is the crisp (nonfuzzy) label of the class
to which x; belongs.

Ritter and Kohonen [6] suggested that direct application of
AL p\ 10 object data without class labels would not yield
results that displayed semantic relationships or similarities
between the objects. Accordingly, SOSM begins by changing
the input data set X to

R -

! Authors such as Mitra and Pal [16] do not use this terminology. We prefer
to stick with the original name given to this algorithm by Ritter and Kohonen.
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TABLE 1
XA ANIMAL (RITTER AND KOHONEN [6])

e t hiz

d d h{a w i |l jole
Animal - olhjujfo|o|alg|f|d|o]lc|g|i |r|blc

wil 14 e
ke L

small 11 (1{1]1{1}0}0}{0 |0 |1 0
Is medium 0 |0 [0 {0 |0 |O |1 100 {0 {00 |0
big 0 {0 [0 {0 {0 [0 |00 (0 OO {1 |1 {11 |1
2 legs 1{1|14{1j1}1|1}O0|O (O |0 OO |O|O]|O
4 legs 0{0 |0 OO0 OO 1 |1 |1 {1 {1 J1 1|1 {1
Has hair 00000 OOl |1 J1 {1 {1 {1 {1 1
hooves 0 {0 [0 |0 |0 |0 |0O|O|O O |O|O}O |1 |1]L
mane ojojojojojo|ofoloj1|0ojO {1l {1]1|O
feathers f1 §1 (1 {1 {1 {1 (1{0 {0 {O [0 {0 |O |O]O |O
hunt 0{0|0JO |11 |1}{1]O |1 {1 ]{1{1|0O]|O]|O
Likes run ojofojo OO |OfO L {1]O {1 {1 |1]1]O
to fly 1|00 1|1 |1l }|1}{0{0 {0 |O |0 {0 |O]O]|O
swim 0f{0 |1 |1 |0 [0 ]|0}0}{0 {0 0|0 |O {00 ]|O

where x, ; is the original attribute vector x; € R? and
X,,; contains the class information. Following Ritter and
Kohonen [6], we shall call x, ; the symbol part of each object
(modulated by « € (0, 1]). The purpose of the multiplier « is
to make sure that during learning the class information does
not get much importance compared to the attribute part. For
the simplest case, x, ; = {0, 0, --- b L0 0}T € Re

when x; is in class k. Often x; is nom,;alized to unit length.
The network is then trained with the normalized version of
X, and after training some or all of the display cells (nodes)
are marked (labeled) by the class (symbol) information. The
marking strategy can vary with the goal at hand. Ritter and
Kohonen used SOSM to generate what they called a semantic
map of an animal data set, X 4 = Animal. X 4 describes each
of 16 animals by a set of 13 binary attributes,? as listed in
Table I.

For this data set the number o multiplying x, ; marks
(encodes) attribute vector x, ; as the sth animal as only
the 7th place in x, ; contains a nonzero value. Normalizing
x; = [%.] to have unit length and using o = 0.2 as the
marker value (the choice of « clearly affects the results, and
there is no guidance about how to select it) were recommended
and discussed in [6, p. 247].

Quote A: “The core idea underlying symbol maps is that
the two parts are weighted properly such that the norm of the
attribute part predominates over that of the symbol part during
the self-organizing process; the topographical mapping then
mainly reflects the metric relationships of the attribute sets.”

Quote B: “However, we now want to be sure that the
encoding of the symbols does not convey any information
about similarities between the items.”

2Ritter and Kohonen refer in [6, p. 241] to these 13-dimensional attribute
vectors as the context (of the data) in their demonstration 1.
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Fig. 2. (a) The SOSM display for X 4 = Animal: normalize and augmented (after Fig. 2, [6]). (b) Agoml display for unaugmented X 4 = Animal:
normalized. (c) -“9()1-‘_\1 display for unaugmented X' 4 = Animal: unnormalized. (d) fpc 2 scatterplot display for \'4 = Animal: unnormalized.

Quotes A and B seem on the one hand to weaken the authors
resolve to use the symbol part that they recommend adding to
the data. On the other hand, we read elsewhere that:

Quote C: “If then, during recognition of input information,
the attribute signals are missing or are weaker, the (same) map
units are selected on the basis of the symbol part solely.”

Quote C seems counter to Quotes A and B, suggesting that
the symbol part is very important indeed. We repeat these
statements to emphasize several difficulties with the method
advocated in [6]. First, there is the problem of choosing proper
weights. Second, for, say, 1000 objects (animals in this case)
the augmented data lie in R1912, so distance computations may
be excessive, even though each symbol vector might contain
999 zeroes. And while the third remark above is offered as
justification for the symbol vectors, we wonder why they are
needed at all? If we have the symbol part, then the data are
labeled and there is no need to classify the objects. Given

the symbol information, you can even get the characteristics
(description) of the corresponding animal (or meaning of the
symbol) by extraction of the weight vector associated with
that symbol.

It is true that for recognition of the objects (animals here)
or calibration of a classifier, the symbol (or class) information
must be incorporated into the SOFM visual display. We claim
this can be easily done without recourse to augmentation of
the attribute data (the context in [6]) with symbol information.
The SOFM display can be (and should be, as implied by
quotations A and B) obtained without the symbol information.
Once the SOFM display is formed (i.e., learning is over) the
symbol information can be simply attached to the winner cell
corresponding to each animal. The resulting display, called
a semantic map by Ritter and Kohonen, will (or at least
could) show semantic relationships between the symbolic
data as expressed by their attribute vector representations.
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This will ensure what has been demanded by Quotes A
and B.

If it is desired to now label the rest of the display cells (and
their preimages, the other prototypes in R?), perhaps to equip
the network as a nearest prototype classifier over the range of
the input space, this can also be done without recourse to the
SOSM. First, we apply SOFM as described earlier without the
label information to the attribute vectors. Now for each node
(weight vector) in O,, find the activation values for all the
attribute vectors in the training data. Suppose for the ith node
the maximum response (activation/match) is obtained for the
jth object (animal here); then mark the ith node (in O, and O,
) as the jth object. This procedure will assign a label to each
of the m? nodes in the SOFM map.} This map corresponds
to the “simulated electrode penetration mapping” in Fig. 3 of
Ritter and Kohonen [6, p. 248].

Once this is done, given any new unlabeled attribute vector,
we can feed it to the network and find the unit that produces
the maximum response (match). The label of the best matching
unit is then assigned to the unlabeled attribute vector under
consideration. This converts the SOFM display into a nearest
prototype classifier. Again, there is no need to use X = {x; =
']} € RETP with the SOSM to achieve maps like Fig. 3 in
Ritter and Kohonen; it is easily done with the SOFM if labels
for the original objects are known. Each object that has distinct
attribute coordinates will acquire a region in the display grid
with an area of at least one cell.

V. THE NUMERICAL EXAMPLE

Fig. 2(a) (Fig. 2 in [6]) is the result obtained by Ritter
and Kohonen upon applying their SOSM algorithm to the
normalized, augmented data. Notice that horse and zebra
occupy distinct cells in the SOSM display, even though their
attribute vectors are identical. The same is true for owl and
hawk. The boundaries in this and all subsequent views of X 4
are hand drawn to emphasize that contiguously placed animals
could be logically (i.e., semantically) grouped. The boundaries
in Fig. 2(a) show that three subgroups of animals that seem
by human intuition (or knowledge) to be closely related do
occupy subregions of the SOSM display.

For unnormalized augmented data the semantic relationship
is governed by the metric relationship between the attribute
vectors because ||x,,; — X, ;|| =2 Vi, j; i# j. Thus the
metric relation between the augmented vectors do not change
due to the incorporation of the symbol part for unnormalized
data. Two animals should be different because their character-
istics are different. Since a horse is clearly not a zebra, the
defect from the point of view of discrimination lies with an
improper choice of numerical attributes. In the animal data
set horse and zebra have the same attribute vectors without
the symbol part and so SOFM (but not SOSM) will not and
should not be able to discriminate between them. It is not
desirable to have different positions on the display for the same
feature vector, as occurs in Fig. 2(a). This is not a limitation

3The map produced this way using SOFM on the numerical attributes alone
will differ from Fig. 3 of [6] in that it will have one region named “owl-hawk”

and one named “horse-zebra” rather than separate regions for each of these
four animals.
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Fig. 2. Continued. (¢) A, oscatterplot display for .\'4 = Animal: unnor-
malized.

of the display but rather of the inadequacy of the chosen
set of attributes. This can be avoided with a different set of
numerical attributes; it should not be avoided by attaching
label information to each attribute vector.

To appreciate this problem, consider a simple example. Let

() [51

be the vectorial representation of an object (an animal in this
case), where x, is a d-dimensional vector representing the
symbol part of the data and x, is the attribute vector in RP.
We think that Quote B means that Ritter and Kohonen want,
for every i # j, ||xs.i — Xs, ;|| = ¢, where c is a constant
and X, ;, X, ; are the symbol vectors encoding the ith and
jth animal labels, respectively. For the Euclidean norm, for
example, ¢ = a\/2. As long as the data are not normalized
the condition ||xs ; — x5 ;|| = c will hold. What happens
when x is normalized?

For clarity we explain this with only three animals that each
possess three binary features. So X, ; and x, ; will each have
three components. Let the three augmented vectors be

a 0 0

0 @ 0

0 0 «

1 1) 0

1 0 0

1 1 1

o 0 0
Xs1=10 Xs2= |a |, Xs3=10

0 0 o'

Prior to normalization we have ||xs 1 — X5 o|| = ||xs,1 —
Xo 3|| = ||Xs,2 — Xs.3]] = @V/2, and that is what is desired.
Normalization leads to

a/V3+ a?
Xs,1 = 0

0
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0

Xs52=|a/vV2+a? |,
0

and

0

Xs,3 = 0

a/V1+ a?
Now |[Xs,1 — X, 2|| = [|Xs,1 — Xs,3(| = ||Xs,2 = Xs.3]|| = ¢

is no longer valid. After normalization, the symbol part of
each vector contributes to the proximity relations between
the three animals. For example, suppose « = 0.2. Then
[1Xs,1 — Xs,2|] = 0.181 < |[x5,1 — x4,3]] = 0.227 <
[|Xs,2 —Xs, 3|| = 0.240. This is a proximity relation that Ritter
and Kohonen did not intend to have (cf., Quote B). The only
effect of this representation and normalization is to have two
different positions on the SOSM map for two objects with
identical attribute (or context) vectors. In other words, when
the attribute vectors say that two objects are identical, symbolic
augmentation forces them to occupy different positions in the
map for an unnatural reason. This is not sensible or rational;
it simply means that if the animals are really different (and
they are, of course), the numerical representation chosen is
inadequate to reflect this.

To justify our claims, we now show the semantic maps
produced by plotting Ypc 2, Ys 2, and the visual displays
made by both SOFM and SOSM when applied to X 4. We
shall also illustrate that normalization of the features is not
necessary. Here are the computational protocols we used:
Sammon’s algorithm was initialized randomly and run for 300
iterations with o = 0.35. Afypy used ap = 0.9; oy =
4.0; o5 =0.5;No = 9;and m = 10. AL, Was terminated
following Kohonen’s suggestion [17], by using maxstep =
500 * m2 = 500 * 10 * 10 = 50000) steps. For a fixed data
set one can cycle A o\, sequentially through X, but in this
study randomly selected data points were used at each ¢.

We applied Ay to the unaugmented data X4 of Ta-
ble I in both normalized and unnormalized forms. Fig. 2(b)
is the result with normalized data. Fig. 2(c) is the display
obtained using unnormalized data. A few of the animals
occupy different spatial positions in Fig. 2(b) and (c), but
the qualitative information they possess (i.e., that contiguous
regions of the display contain the three families) is the
same and is again the same as reported in [6]. One of the
main points of [6] was to show that the data needed to be
modified before ALy, could be successful with data that
have “semantic” content. The boundaries we have drawn in
Fig. 2(b) and (c) indicate the same “family relationships”
sought and found in [6] and exhibited in Fig. 2(a). Comparing
Fig. 2(b) and (c) to Fig. 2(a) shows that the normalization and
symbolic augmentation procedures recommended in [6] are
both unnecessary for this data. Kohonen’s AD .\, does just
fine.

Fig. 2(d) and (e) are scatterplot displays of the 2-D fea-
ture vectors extracted from the original, unnormalized 13-
dimensional data set X4 shown in Table I with principal
components fpc, 2 and Sammon’s Ag 2, respectively. As you
can see, boundaries can be drawn on each display that isolate
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the three groups of animals exactly as in Fig. 2(a)—(c). The
various animals occupy different regions of ®? in these views,
but the qualitative information contained by these outputs is
identical to that in Fig. 2(a)-(c). Since owl and hawk and
horse and zebra have the same attribute vector representations
(columns (5, 6) and (14, 15) in Table I), they are mapped
to the same vectors by both extraction methods. In [6], the
normalization of the symbol part of each datum for these two
pairs of animals causes their images to occupy different cells as
seen in Fig. 2(a), which seems artificial at best—after all, these
animals have identical attribute (context) vectors. Columns
(2, 3) = “hen” and “duck” and (1, 4) = “goose and dove”
differ only in one coordinate. Consequently, these animals
have distinct vector images under all three methods discussed
here.

Displays analogous to Fig. 2(d) and (e) were made by
processing the normalized version of X 4 that was used for Fig.
2(b) with principal components and Sammon’s algorithm, and
the qualitative results were still the same. Thus, the qualitative
information possessed by Fig. 2(a) is easily obtained directly
from the original data in a straightforward manner using
SOFM, principal components, or Sammon’s algorithm.

VI. CONCLUSIONS

There is nothing extraordinary about the data set X 4 = An-
imal. Symbolic augmentation and normalization as discussed
in [6] are not required to secure good qualitative results that
display semantic relationships between data that have class
labels. Kohonen’s SOFM algorithm works quite nicely on the
unnormalized, unaugmented feature vector data X 4 and yields
exactly the same family relationships as principal components
and Sammon’s algorithm. Considering the simplicity of these
latter algorithms, we wonder whether the SOSM is really a
value-added deviation from the original SOFM.

One further comment. The idea of augmenting the original
data was carried a step further by Mitra and Pal [16], who
borrowed Ritter and Kohonen’s idea to design a classifier.
Their fuzzy SOFM network can be viewed as a three-step
process: learning, calibration, and testing. For learning, a
data point x € R” is replaced (not augmented) by a point
% € ®¥Fe % = ¥, ax"]T, X' € R, and X" € R°.
Here each component of X is a membership value in some
fuzzy set. It appears to us that information possessed by
the measured data can be lost in this construction, as the
3p+ ¢ membership functions used to replace the data are quite
subjective. We wonder: when the actual numerical value of a
feature is available (even given the possibility of instrumental
errors in measurement), why invite more impreciseness? Our
point? Authors that augment the SOFM as suggested in [6]
and [16] should temper their expectations cautiously—we do
not believe there is much to be gained.
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