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I this paper wo continge cue siudy of certain dnite dimensional Hithert medulcs
veer the fonetion algebry &fde), 220 We show that 1hese madules are alawaya
ermpieiely bounded with the bound obigined ws the maceis valued analopue of a
certain scalur valugd esxtremal prohlem. In particulyr, we obtwin 4 negessary and
saficient condican for our madule ta ne eompletely contractive. We produce a
vontnitetive module T oover s such thot i e compleiely beunded wich the

comalete bound equal o ., that is, <% 15 not complelely contractive. d° 30

Wil
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INTRODUCTION

This is a continuation of our eatlier work in [6]. We rerain most of the
notatien from [6] and recall only a minimum of definitons and terminal-
oy, when necessary, For ¥ in ©°F and in 10, define the (#+ 1 xi{n+1]-
malrix

I A wh
;‘l.'{\'.;.]:‘\n IJ

For v ={u\ ., 6l PEigm and w={w., .. w,]ina region & in 07, we
consider the m-tuple of pairwisc commuling operators

o= (A AL = NI ) MO w0

Here we study the bounded /(82 -medule ©30 ' and determine when it is
a completcly bounded maodule.
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Lo CL' " as a CoMPLFIRLY BouNpin MoDULE OVER &[]

In this section we assume that

(a} 2 s a bounded open neighbourhood of ¢ in €

(b} £2is convex and balanced :

fcl Q2 admits a group of biheiomorphic automerphisms. which acts
transitively on 2.

We nete that (a}, (b implics £ 15 pobynomially convex [4. p 67| and
3o by Oka’s theoremn [4, po 84]. /(02 comains all functions helomorphic
in a neighbourhood of £

Following Arveson [1] and Douplas [2], we give the definition of a
completely bounded = (£2)-rmoduie,

For any fanction algebra 4 and an integer £z 1, ler #idi=
@AY denote the algebra of (& < kp-matrices with entries from o,
Here for F'={f.) in &L the norm F) of F iy defined by

LFi=8upi [(£:(z0Hze M

where M is the maximal ideal spuce for A, We note that for o = /(£2), the
maximal idead space can be identificd with [4, p. 677 and thus

IFl = Supd ((flz0 ]z 2}
L1 DERSITION,  IE 3 15 @ howded Hilberi & -module, then # 5 CF is

a bounded .4 {A l-module. For each k, let #, denote the smallest bound for
A @O, The Hiibert w'-madule is complerely hownded if

= limow <o

———

and is complerely contrgetive T o, = 1

Throughout this paper F will denote the {prxowlmatrin whose rows
vl o, ™ and we will write ¥, ., v, for the columms of the matrix V. 1t was
shown by the authors in [6. 2.2.4] that the map

g1 A — LT,
plph=piNp=N¥piw} ¥, plwh
extends continuously to Hol{£h). Indeed, we bave
1= AINT= NV e VAl

for all # in Hol($2). It follows that the map p@& 7T, #0282 -
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AL LFEICT ) extends continuously to & (TTolif23) and we have (as shown
in [8, 6227

: fw)) DU (V@ L)

{P'@ -‘rn‘:l‘”:'ll:r}_ [\ {] Ik @ f_f;_.':w]] )'

Let X, ¥ he finite dimensional normed lingar spaces and £2 be an open
subsel of X A function f1 2= X — ¥ is suid to be holomorphic if the
Frecher derivative of £ at w exists as a complex linear mup from X to ¥,
Let I—(f,. .. i) dencde a multi-indes of length f=§ + .- +i, and &,
denote the multi-index with & one in the kth position and zeros elsewhere.
P02 — .4 15 a polynomial matrix valued function, ie, P(z)=(p,(z]),
where each g, 15 g polynomial function in m vanables, then we can write

PIz) =Y Pdz—wl!,
i
where cach p, 15 3 sealur &= f)-matnx,

MNow 1t 13 easy 1o venily that the derivative DP{w] of poat wis

DPw)={p,. ..p. L

'

which acts on a vector ¥=ig,....0,,) by
DPiw)-y=v, P, + - =1, F, .
Recall that 2/ w) was delned in [6. 6217 as
iR P X
f( =Pl ( g F‘J r_wJ).
o t.'l‘-l £ LRI

where

(i: I) ()= (fi P, )l

P

Thus, it is easy to see that
(ZPHey (VR L) =(DPiw) v, . DPIw) -0,

Let (X0 (x) and (¥ ||| ¢} be normed linear spaces. By the operator
norm for Fin L0410 ¥ ) we shall mean

1T =Sup{ | Txlly: Ix x =15,

Asin [ 6], we choose a norm || | o for & such that the unit ball of ™ with
respect Lo this norm is §2 and write the corresponding normed Hnear space
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as {7 || | o) Il no nerms are mentioned for TF 30 15 ynderstood Lo be the
L-norm. We idenufy &, the [kxkimatnces, with 204, 0F) and the
norm of such a matrix is the operator norm (with respect to the L-norm
on £%} as abave. By the same token, a linear transformation from (Y, ¥}
to X, F) s an element of #09°0X, ¥, 221X, ¥, and possesses the
OPETALOL NOrm.

1.2, DermviTion.  For we 2, define
D, 2wl = {DFwie FULT [ gk # ) Fe #AHol{2)), [Fl =1}

Of course, V determines a map o, LU0 [ gk #) = (FCY T
defined by

]

pl'{P[- o P”"]:(IE t;ll P." ot ; r.:‘:IPI.;l

=1
and we sel

MOV wh=5Sup! | o d T o ony: TE Ty 4 £20w)}
MUV, w)=Sup{ MV, w): ke,

1.3, Remark. Here we emphasize that for T in Z{C™, ) ||, %) since
I TT&* =Sup{ (T2} 2z}, it follows that |71 5% <1 is equivalent to
saying that T maps £2 into the unit ball in ., .

The nest lemma says that o determune when  p@ fo]| < 1, 1t 18 enough
to consider those functions which vanish atl a fixed but achitrary point of
2. However, to prove 11 we need the following result of Douglas, Muhly,
and Pearcy [3, Proposition 227,

4. LemMa (DMP). For i=1,2 let T, be a coriraction on a Hilhert
space ¥, and let X he an operator mapping A5 inte W A necessary and suf-
ficient condition that #he operator an #, @ 2, detimed by the mairix (] ;]
fe a contraction (5 thar there exist a comtraction © mapping 3 into ¥, such
that

X=il, =T/ TFY2C(F,, - TFIWE

We need some results about biholomorphic automorphisms of the unit
ball in .4, which can be found in Harrs [5, Theorem 2]. We collect the
results we will need in the following proposition,

1.5 PrRorposiTION {Harris)  For each B in the wnit hall (&), of 4, the
Mébius transformation

pplAl—(F- BB*) '"{A+ B+ 8*4) I BB}
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i a hitolomorphic mapping of (60, enta itself with @ z(00= B Morcaver,
Wy =0 g i al AV = gl A}, lpgld) gl A1)
el
Dp i AYC ={f— BE*) I+ AB*) Ol + B*d) (I - B*B)'”
for A de LAY and O i W,
Now, we prove
LA, LesMa. I [FINH =1 for all Foin o (haliQ0 with Fl <1 and
Flad—10 ehenm [ INY 51 for ol G in &ATTONEY) with | G| = 1L

FProof. Any G in .#{Hol{£2)) of norm less than or equal to one maps
& iato (&) In particular for win £, |[G(w)i = 1 and we can form the
Mabius map g 0F L&), Clonsider the map ¢, ~ G which maps w
omto zero. Thuos,

# AR ! -
Bica """1”»‘"=H(g [Di u.,.,ﬂmf_m L.]!i'

However.,
[ GHw |- F={{Dg o BO{wI - [ DOw) v |
LifMe e MG ) ] - [ DGy ov ]

Let B=(f—Giwi Gy "and S=(F- Glw)Giw1*) "= Thus

[fH@ s GHW D] F = (R{DG{wh-v. ) 5, o RUDG (W) - v, 15}
2'5 ‘-_‘
= R[D{;[u']-1.-1],,,,,{."J(_Iiu']-v,__!l]{ ]
, 'Sla"

We can apply T.emmau 1.4 to conclude thal

I PG L S Y RLAY
= f* 0 f & G[n'],}
_ ({'Hh‘} Priw)-w L o Driwe) v | 2
L 1,0 Gl J o

L

which completes the prool of the lemma.
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LT Tueored, ©3U'' 65 o completely comtractive wf (82 madule 3 and
anbe i MESV, wh 1 for all k.

The proof of this theorem is identical to that of Thearem 3.4 in [6].
With this lemma at our disposal, the proof of the following proposition
becormes identical to that of Theorem 3.5 in [6 ]

LA, Prorostrion, O i a complerely bounded =8 (3 }-modude wizh the
beownd ., =maxd 1, MLV )bl Fuether, iff MUV, wiz 1 then there exists
ar dncertible (e d Vs lm b Lmairiy L such thar |E|VL ' = MSUF, w)
and TV s o completely contractive o (02 -nodule,

The follpwing theorem s analogous 1o Theorem 4.1 in [67], where only
scablar valued lunctions were considered.

19, THEOREM, Lei we £ and (1, ke o Dikolomarphic automorphissm of £
such thar 80wy =0 Then,
fa) D iwp=D , Q0000 (w
(b D i =T 2007 .80 =10
fey MSHVowi=MINDE (w0
(b} -'?l’fi-:.fk[. FoO — i, i'.li:’::J'L'l".ﬂ.lf.-l.-:-ﬂ.-J'

Proaf. Since the map F— Fof defines a jection from | Fe Hol{£2):
I£F] =1 and FiD)=0} to {FeNolif2): 1 F <1 and Flwi=0% {a) follows
Iy the Chain rale.

To prove (b) first note that the Schwarz lemma as stated in Budin [7,
Theorem 8.12] actually applies to lunctions helomoerphic from 2% to 4.
Recall that T is given the norm |-, with respect (o which £ becomes the
unit Bkl and & hus the usual uniform operaior noem. Thus if F is in
AN LHOW ) with | F] < 1, then £ must map & 1nto {8, ), and the Schwarz
lemma would guarantee that the linear operator DF{0) maps @ into
(40, On the ather hand if 7is in #(¢™, " o #btand Tl=l then T
automatically maps £ into (&1 and T01 =10 Thus ¥ lies in D, 2001

Part (c) follows from the definition of ML{V, w).

Purl {d} is alse immediate from the dehoition. onece we note that

] =Supl g 08H: Fewitm o &n 51t
=Sup{' p A TH: TeD 4, 200}

20 THeE Unen Bacl. Poryiisk. s SoME RETATED EXAMPLES

In this section, we explicitly compute ' p, . when the domain wnder
consideration is the unil hall in 30
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THEOREM. M0V, 00=|p, =i¥7, »I9"’
Proof.  Wote that
MEH Y. 0}

—Suplip. P, PP+ - comll s Vo all {2, be HB™!

~sw (13 (5, )L pe )*iJ
< Sup ¢ [ % |I T Pt )m;_ . P,)eD, [Ef“fllll{ ¥ |f.-j||fi:\)|"\
'\r—| ile v / fe /

Since the bound for 455V, 0} 1s independent of &, 1t follows that
MY, m=( > Iv?)
Now, Choosing T=1{¥,, .., T,) with T, —e,,, where ¢, 15 the {m = m)-
matrix with 1 at the ([. &) position and zeros clsewhere, 1t is trivially
verified that | Fiz) 1< 1 for all = in B*". However,

EH e

piTh = L ofFi, L T, ]
W | I

w152

(o )

CoroLLary. If T%'' is a comtractive module over s/ {B™) then it is a
completely honnded module with bowad ai mast

Proaf.  Assume  withoul loss of generality thal N={~5{y'.0], .,
N{¥", 0). Recall that T~ is contractive over &/{B™) if and only if | V]| <1
[ 6, Theorem 4.1¢d) ], Howevcr, by the preceding theorem it is completely
contractive il and ondy if X7 [e/[¥= 1

22, The polydisk. From [6] . we know that £77' is a contractive
module over «{3™) if and only if max,_, ., |[e* I| % 1}. However. to
answel the corresponding question about completely contractive modules,
we need a rather exact description of those T in the unit ball of
I s ), that s, T D™ — {# ), so that we can compute
Supi o (T goycon s Te D, I™0) 1 This at the moment secms to be a
very difficutc task. O course, if we write T 0™ = 4 as (7, .. T} then

ITyll+ -+ 0T, 51 "HPI"E‘* D™ — (A )
However, the pair ((§ 0k (5 7)) which maps D into (.4}, with
[T+ 72 =2 shows that |7+ - +| T, =1 is not a necessary

condition for ¥ o map 0™ into &,
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230 A Family of Examples over the Ball Algebva. Let e ¢, denote

ey

the wsual basis in 2 sel
M= (M e b MO 2,00

Thus, in this case ¥ — [, and it follows that ©3' ' is o contractive module
over the ball algebra |6, Theorem 4.1{d}|. However, 124 i< not # com-
pletely contructive module over &/(B™), Indeed, Theorem 2.1, above,
implics that

. [N.'lr.J = \.-".J'i'f.
Thus,
T T A5 RI—+ X

even though each W, determines a completely contrictive module. This
cxample summests thyl asymprotealiy 10 s possible (o have a contractive
module which i3 not even similar 1o g completely contructive module,

This Tamily of cxamples perhaps should be comparcd to those of
Varoupoulos FR].
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