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THE BARTLETT CORRECTION —A BAYESIAN ARGUMENT

1. Introduction. Lel X — (X, ...

By Perer J. Bioker:2 ann J. K, Grosg?

University of Californic, Berkeley and Tndign Stotistical Institute

Let M = n~! Iz plx, #) be the log likelihond of an n-dimensional X
under a p-dimensional §. Lel #; be the mie under I: ' = 6, ... 8/ — 8]
and ﬂ‘,, he the unrestricted rn]x: Define T as

[2nfe(d_ 1) — ((8)}] " senldi_, — 03).

Let T = {T,,.... T, Then under regularity conditions, Lhe following thea-
rem is praved: Thnder @ = 4, T i3 asymptotically Ma "Ya,+n la,
J + a7 %)+ 0n ¥ 2)where JJ in the identity matrix, The result iz proved
b first cstablishing an aoalopous resull when # is random and then
making the prior eonvorge to a degenerate distrbution. The exdstence of
the Rartlett correction to arder 1~ %™ follows from the theorem, We show
thot an Edpeworth expansinn with error G(n~Z%} for T involves only
polynomials of degree less Lhan or cqual to 3 and henes verify riporously
Lawley'a (1956) result giving the order of the crror in the Bartlell corree-
Linn an O{n %),

U = H, respectively, are well delined. Then let

(1.1)
(1.2)
(1.3)

and
(1.4}

the usual likelihood ratio test statistic. All these quantilies, of course, depend
on i but we auppress this dependence to ease the notation. 'Fhere is a common
approximation to the distribution of A which hag ihe siatus of a folk theorem:

Key words and phroses. Boruelt eorrection, sipned fop Heelibond ratio statistic, Bernstein.-von

1(8) = n~"log p( X, 0},
I{#) = max, 1{#),
b, maxy I{#)

A = 2n(1(8) — 1{8x))

LAY =x¢

Mizes theorem.
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, X,) be a vector of observations with
joint, density plx, ), # = © open — R7, where we do nol assume a priori any
partlculs.r structure on plx,#). Consider the hypothesis H: 8' =éf,...
8% = 8. Supposc that maximum likelihood estimates # and #,, for § = & and
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fur 8 = H. Theoretically this can be interpreted, for ¢ = H, as
{1.5) Pla <t]=x2t)+o(1)

ag it -» . This result was proved by Wilks (1938) and extended by Wald (1943)
in the iid. case, extended to the Markov case by Billingsley (1961) and
subsequently extended to many other dependent and nonstationary situations,
Bartlett (1937) noted, in the particular case of the hypothesis of the equality of
variances for & + 1 normal populations, ithat the yj distribution was a far
better fit to the diatribution of £A/E,A than to A itself. Following work by
Box (1948}, Lawley (1956), by ingenious and difficult eumulant caleulations,
“established" the folk theorem that quite generally

kA 3 )
(1.8) PJ-E srl = xi(f) + O(n ?),

where

A

-

b
E=k+— E(A) +0,(n"?)

and b is a suitable estimate for the coefficient b of »~! in Lhe expansion of
EA). Departing from an asymptotic formula for the conditional density of X
given an ancillary due to Barndorff-Nielsen (1986). BarndorfT-Niclsen and Cox
(1984) showed that (1.6} can be expected to hold quite generally and they
derived formulas for estimaling b in one imporiani class of models. Efron
(1985} established (for an important special case) a related result. Let

T = AV 5gn(d' — 9.

Then
(& — p(8) ;
(1.7) Pﬂ[Tgt]=¢[ﬁJ + O(n 7,
where
;_.[,[H} 5 ﬂu(ﬂ} n ﬂ:fﬂ} + ﬂ[n"””},
¥m
c(8)

ocigy =1+ —+ O n 37y,
i

where o, @, and e are suitable functiona of #, not depending on n. As P,

McCullagh pointed out to us, this result implicitly alveady appears in Lawley

(1956) and, in fact, o, = 0. It is easy to see that, for & = 1, (1.7} finally implies

(1.6) lwith O(n~*) replaced by O(n~**)] with b estimating a’(#) + c(#).
Cur aim in this paper is:

1. To give a generalization of Efron’s result to vector parameters. A closely
related result appears in Barndorfl-Nielsen (1986) and iz again foreshad-
owed by Lawley (1956),

2. To apply this extension to establish the validity of Bartlett's correction for
the p variate joint distribution of the A statistics (deviances) arising from
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testing the nested hypotheses H,: ¢/ = ¢, j=1,..., &, within H,_, for
k =1,..., p. That is, to show that, when the deviances are standardized by
their asymptotic expectations to order 1 /n, their joint diatribution under 8,
differs from that of p independent identically distributed y% variables by
an error of order 2~ 2. This resuli is also implicit in Lawley (1956) although
the caleulations are purely formal. For the case of a single statistic A, this
can be obtained in a rigorous fashion under appropriate regularity condi-
tiona from Chandra and Ghosh (1979).

3. To give Bayesian analogues of both of these results which we believe
provide a key to understanding the Bartlett phenomenon. The Bayesian
analogue is interesting in its own right, is fairly easy to establish and is the
basic step in our arguments for aims 1 and 2.

Here iz 2 discussion of the motivation and the structure of our Bayesian
argument when we restrict to the familiar case of ii.d, chservations from a
smooth parametric family. It has been proved in Chandra and Ghosh (1979)
that the diatribtions of the likelihood ratio, as well as Wald's and Rao's score
statistic, have asymptotic expansions in powers of r ™!, which are valid in the
sense of Bickel (1974). Theae types of expansions have been around for a long
time; see Box (1949). When viewed as formal expansions for the density p (x®)
of one of these statistics, they are of the form ee ™ /(3 *¥2 Y1 + ¢ (yZIn "t
+ -}, where the coefficients # are polynmomials in y2. It is easy to check that
adjustment of such a gtatistie through multiplieation or division by a conatant
of the form (1 + én~ ") will knock off the coefficient of n~! in the expansion
for the adjusted statistic, ifT 1, is linear. By examining varioua examples one
can convince oneself that ¢, is not linear for Wald's or Rao's statistic.
Moreover it is far from clear why ¢ is linear [or the likelihood ratio statistic.
This paper ia addressed to clearing up myvsteries of this kind as well as to
exploring the duality between the Bayesian and the frequentist setup which, to
first order, was studied extenzively by Le Cam under the rubric of the
Bernstein—von Mises theorem,

Our Bayesian route could be followed to produce a relatively transparent
proof of linearity of . However, since we want to do more, namely, derive the
agymptotic expanaion for the joint distribution of the p deviances statistics up
to Oin~2), we first note, in a similar vein, that here also the guestion boils
down to the structure ol the polynomiala that appear as coeflicients of powers
of n~" in the expansion. The relevant results for this purpose are Lemmas A2
through A4 in the Appendix. These lemmas need to be applied to the vector
T(§,X) of the aigned aquare roots of the likelihood ratio statistics, defined in
Section 2. That the distribution of these statistics has a valid Edgeworth
expansion can be shown using Theorem 2 of Bhattacharya and Ghosh (1978),
In the frequentist setup the sort of structure one needs lor the polynomials is
gpecified in the conclusion of Theorem 3. It turns out that one needs the
polynomials corresponding to n~ %% and n ! to be of degree at most 1 and 2,
respectively, To prove this, one firat obtains a aimilar reault in the Bayesian
setup, namely, Theorem 1, which provides an expansion for the posterior
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distribution of T, X) given X. The likelihood factor in the posterior exp{nl{#)
— nl(6) is exactly the sum of squares of the compenents of T and s0 no

expansion is needed. The coefhicient pﬂlynﬂmlalg in the asymptotic expansion
arise only from the Taylor expansions of the prior density (8} around @ and a
gtochastic expansion of the Jacobian of the transformation of (¢ — ) to
T(8, X) viewed as a [unction of random #. For reasons that are not hard to
see, in these latter expansions the degree of the coeflicient polynomial matches
the power of n™!; vide Lemmas 1 and 2. These facts are at the heart of the
proof of Theorem 1. Theorem 1 would fail for Wald’s or Rao’s statistic because
the likelihood factor explrl{#) — al(#)} cannot be written as the square of
either of them exactly and so an expansion of this term is called for too
Finally, Theorem 3 follows because Theorem 1 is true for a set of priors which
is dense in the weak topology.

Our expansions may be used to set up Bayesian or frequentist confidence
intervals; see the discussion following Corollary 1.

We propose to carry out our program without relying on the iid. sampling
assumption, under conditions such as those of Bickel, Gitze and van Zwet
{1985) which emphasize that we are, as with the original Wilks resuli, dealing
with a phenomenon which depends only on ihe asymptotic stability of I and its
derivatives, moderate deviation properties of # and related estimates and the
existence of Edgeworth expansions for the distribution of 7. Simple conditions
implying those we give may be apecified in the case of Markov and independent
nonidentically distributed observations in the same way as iz done in Bickel,
Gitze and van Zwet (1985}

A leature of our approach is that calculations are kept to a minimum so
that, we believe, the phenomena are transparent. The disadvantage here is
that unlike our predecessors, we do not arrive at formulae [or the {estimated)
coefficient b needed in the correction. It is, however, worth pointing out that,
in situations which are like simple random sampling and where computing
power is readily available, we can obtain b without knowing its form by
applying the jackknile for bias reduction; see Efron (1982), for example. That
is, we caleulate A_ |, the A statistic for the data X, 7 =1, and put

b= z [ &Y —nk

i—=l

—a

The paper 1s organized as follows. Section 2 contains the statements of the
main theprems plus the necessary assumptions and notations. Seetion 3
contains the proofs of our results. Four simple technical lemmas are in the
Appendix.

2, The main results. Since we intend to use tensor notation for arrays,
we subsequently identify vector components by superseripts, for example,
g ={8",...,6"), For given # € O, define &, as the maximum likelihood esti-
mate of # when #°,...,06¢ are fized, i.e.,

{2.1) I{#) = max{i(r): 7! =0',..., 77/ = §7).
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We shall in the sequel assume that thess quantities exist and are unigue but at
the end of the section will sketch how this requirement can be weakened.
Define T (T T?) where
(2.2) 74 = n'#[2(1(8,_,) - 1(8,))] " sen(di_, — 07).
Note that T is a function of # and X

Let 7 be a prior density on @, Let P denote the joint digtribution of {#, X)
and P(:[X) the conditional (posterior) probability distribution of (#, X) given X.
Lei r — 7 '"? and consider the posterior density of r X8 #) given hy

w(h|x) = exp{{{f + ri) — (D }= (8 + rh) /N(x),

where
(2.3) N(X) =fexp{f[fr+rh} — @) w6 + rh) dh.

Let

bit) = (27) 7" CK'D{ — g UE}E}
i=1

be the standard p variate normal density. Let 7.(¢|X) denote the poaterior
density of T |which oxists under our assumptions with probability 1 —
U{?.m+l‘}}‘

Noranion, We poatulate st + 3 continuous derivatives for I{#), r(8} and
write I, .., for 981/08% --. 48%, etc. Following tensor notation, we indicate
arrays by their elements. Thus {' is a veclor, {;; a matrix, etc. We also follow
the Einstein convention of summing over a aubacript which is repeated in a
superscript, e.g., 1,,0'=E, [, ;‘EE' Occasionally we denote a vector array by
aymboly like »;, ao that ».¢° stands for &, vt

Here are the main resulls sialed under regularity conditions which appear
at the end of the section,

Tueorew 1. If B, holds, then
(2.4) Epfimp(tX) — (8, X} df = O(r™""),

where

T, X) = ¢t {1 + Po(r, X, 7) + @, (rt, X, 7)) U{X & 8},
P iz a polynomial in r of degree m, @,, ia a polynomial in r¢ of degree m
[beth withoutl constant lerms and with coefficients which are rational func-
tions of {, ...(6)] and w, ., (6)/7(@) for 1<k =n+2 and P[X & 8] =
O(r '} where § is given in Soction 3. 1{A), as usual, denotes the indicator
of A
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Write

Pm{rsxi ‘JT} 2y E Pm.if{.x: 'JT}J"'t1
k-1

I

QX m) = T Qo K, m)utt oo
k=1
and note that P, &, and 8 depend on n.

Nore 1. It is necessary to keep the indieator of S in 7, since the
coefficients I, ;. @5 .., need not be bounded outside S.

The proof of Theorem 1 actually also yields that if X = 8, ie., with
probability 1~ Q{r™*"), the random quantity

j|“‘T“|x} — 7, t[X}| et
is O(pm™ N,

Notr 2. Since P, and @, .., depend on r they arc not uniguely
defined. Sinee

(2.4 E

[t X) dt - 1i — Oy,

It is casy to see that we can always take P, , = @,,, = 0 and suppose all P,
for & odd to be zero. For example, suppose we are given a set of P and
agsuciated .. Note that

piliy 4 ]er@m dt = 0(r?) ifm =1,

el

Therefore, P} = O(r). lence we can define the following set P!% satisfying

mel ok

(24): PR =0, P =Plr 1 PR+ Plir, P& =0 for k odd and P2 =

ok

Bl + Pl |, Tor k even and greater than or equal to 4.
MoTe 3. Nole Lhat (2.4 for m = 2, 3 implies

E‘fﬂ'ﬂ:: X:' 'l.'ff =S E!PESrz S leaﬁ‘jrl‘!! = O{?‘E].

In view of Notea 1 and 2 and the above relation we deduce, putting m — 1.2 in
(2.4), that with probability 1 — 0{r®) and 1 — G(r?), respectively, the poate-
rior distribution of T is NJ(r@,J) with error O(r®) and N(r@,,J +
r¥H2Q,. 5 — Q8,0 with error O(r "), where Ny, 2)is the p variate normal
distribution with mean u and dispersion matrix X and J is the p X p identity
matrix. These are the multivariate Bayesian analogues of Efron’s (1985)
result,

Nore 4. The relation (247 for m — 3 implies as above Lhat
E!Pwrz - st_,-aijrz! = arY
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and hence that 7, may be written as
rQqtt + riQy, {1 — 8YY + gy, Lttt + O r?),
which has the strueture of g{¢) of Lemma A2 up to O(r?). This fact will be

used in the proof of Theorem 2.
Let ¢.(-) denote the 2 density,
DY = (T9)" = 2n(i(8; ,) - 18))
the deviance and
0¥ = 01 + 202Q,,)

the standardized (Bartlett corrected} deviance. If «,, and w; are the corre-
sponding posterior densities of these vectors D = (D!, .., 0¥} and D =
(I, ..., D7), then one has the following result.

TuroreM 2. Under H,

(2.5} Eﬁ{f

while under B.,

mo(wX) - [1 cliuui dt 1K = S}} = 0(n™"),
J-1

n |
{2.6) EP’{f il 2| X) — J_ljli;i{u-’-}i et 1(X = S':l} =0{n %),

In fact (vide Note 1), with probability 1 — O{n~") and error O(n~'} the
posterior diatribution of D is that of p independent yZ, while for D the same
claim holds with probahility 1 — ©4{n %} and error {n %)

From thiz we deduce;

CoroLLary 1. (a) Under B, if =, iz the posterior distribution of A given by
{1.4),

(2.7) EP-UWA{MX} _cy{u)ldu 1(X < S}}- - 0o(nY).
by Let A = A1 + Erzk"Eﬁ-’__l Q). Then, under By,
(2.8) Ep{firﬁ{ wX) — e, (u)idu 1(X & 5}} — 0(n"?),

Sp (2.7) says that the posterior distribution of A iz x2 with error O{n 1}
while (2.8) is the Bayesian analogue of the Bartlett phenomenon. The posterior
distribution of the Bartlett standardized statistic A is y? with error O{n 2).

These resulta can in principle be used to sel Bayesian poaterior confidence
regions for 8 to order n ', n~% in a varicty of ways. For instance, {¢:
A =y (1 — o)} where 3 is the 1 — o percentile of x and A = 2(4{6) — 1@

has posterior probability 1 — o with error O(a~'), while fo: A < xa(1 — al}
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has posterior probability 1 — @ with error O{n~%). Of eourse regions could be
based on other functions of I, and 1, for instanee, on max; IJ; or max; f‘-‘j.
They could also be used in investigating the old question of what choices of
model and prior lead Lo posterior probability regions which are also frequentist
regions with error ({n ~%); sce, for example, Stein (1985) and Welch and Peers
(1963). However, more detailed computation of the @, than we provide seems
necessary for this endeavor.

We use these results only in establishing the corresponding result in the
frequentist case.

TuEOREM 3. Suppose that F, holds and the density of T, pp(4|8), admits
an Edgeworth expansion such thal if i* = —1,
(2.9)

fe""ﬁ“'{pg-{ﬂﬁ'} —{ﬁ(!]{l + kﬁ r"‘Rk{t,H‘}H df | = O(r™ 1)
. -1

uniformly in compact sets of 8 and v, where the Ry (-, 8) are continuous in 8
and polynomials in t, independent of r. Then the R, are of at most degree k
in £

As in Notes 2 and 3, it is clear that (2.9) implies, on taking » =0,
that Ry(f,8) = Ry ;07 and R,f(¢,68) = Ry (t'87 — 677) + R, t', where 5% is the
Kronecker delta. In the following we shall need a condition analogous to (2.9),
namely,

.fei".r[rrj![p"'{ﬂﬂ} _ *.i'(f}[‘ + Y rFR,E, EI}H F

b1

(2.9) =0(r™'

uniformly in compact sets of # and all ». We deduce our generalization of
Elron's result.

Corotrary 2. If m = 1, the characteristic funciion of py differs from that
nf'Né'rrﬂ Jyby Olr®yand if m = 2, from N(rR, , J + r%2R,; — R, R, ) by
Ors). '

11 1t

Taeorem 4. If the assumptions of Theorem 3 and (2.9') hold for m =1,
then, uniformiy in v,

2
(2.10) fore| patuin) = TTa(uh | = 0™,
41
i.e., the approximation T17_, efu’) is good to order a2
Further, et
If 12.9), (2.9 and F,, hold for m = 3, then uniformiy in v,
P

(2.11) fE“'-"“j[Fﬁ(ulﬂ} -T1 -:1[:,&-5]'] du = 0(n %),

7=1
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Coronrary 3, Under the conditions of Theorem 4, uniformiy in v,

(2.12) Je | pululd) — cz(u)] du = O(n™Y),

(2.13) Jer [ pa(uif) — ey(u)] de = O(n72).

It turns out that Ti=r"Y% — 7'} + O{r) [zee (3.6) and (3.19)] and
r Y% — ) is up Lo O{r) a linear function of the first derivatives of the log
likclihood: evaluated at #. In fact it is possible to atochastically expand T in
terms of Lhe derivatives of the log likelihood evaluated at #, with a leading
linear term. In the iid. case if enough moments are finite, we can talk of a
formal Edgeworth expansion for the density or distribution function of T and
under the same assumptions the rigorous expansion of the characteristic
function of T that we require is valid; vide the introduction in Bhattacharya
and GGhosh (1978). This ia all that one needs to justify the Barileit correction
and the related results as given in Theorem 4. If one wants these results to be
valid for the distribution function in the senae of Bickel (1974}, it is enough to
assume that the Edgeworth expansion for the density of T is valid in the L,
sense. This assumption may be verified via Theorem 2{a} of Bhattacharya and
Ghosh (1978} il the derivatives of the log likelihood appearing in the stochastic
expansion for T up to o,(n %%} have an abzolutely continuoua joint disiribu-
tion, Actually, instead of abselute continuity, it is cnough to assume Cramer’s
condition [vide condition C of Bhattacharya and Ghosh (1978)] and apply their
Theorem #(b) instead of Theorem 2(a).

We note again that a form of Theorem 4 appeared in Barndorfi-Nielzen
(1986) [with error Q{n */%)]. Barndorff-Nielsen’s results focus on conditional
inference given aaymplotic ancillary stalistics. Hiz work implicilly requires
conditions for the validity of saddlepoint expansiona for the conditional den-
sily, These in turn imply but are not necessary for the validity of Edgeworth
expansions for the conditional density. The Edgeworth expansions may be
used in conjunetion with our “Bayesian™ resunlt to derive the appropriate
analogues of Theorem 4. We believe our Bayesian route makes matters easier
and more transparent. The assumptions below may appear rather strong but,
as indicated in the remarks, they hold quite generally. Moreover, they are
quile natural if one is to develop a rigorous, ralher than a formal, argument.

Suppose we estimate the correction factor and adjust the likelihood ratio
atatistic in {1.6). If in Corollary 3 we replace A by kA /(k + b/n) then iLhe
conclusion of Corollary 3 holds under suitable regularity conditions. This fact
was first noted by Barndorff-Niclsen and Hall (1988), The most brutal condi-
tion ia to suppose that

(2.14) b =b(8) + redt + A(S),
where

Ega(8)] = O(r7).
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Of course (2.14) is motivated by a stochastic expansion such as

(2.15) b=b6(8) =b(8) +d,(§ -8+ 0,(r")
and the cxpansion
8 8 - D, T+ 0,(r?)

for a auitable fJ:-_I-; gee Lemma 2. To show that (2.14) and the assumptions of
Corollary 3 arc encugh for this result we need only note that the difference
between the Fourier transforms of A and £A /(& + &/n) at » can be written
[with an appropriate constant M{(2)] a=s

p 1 '
M(ﬂ)fexp[[—% % [t*']ﬂ) + ;'IJE[t"]zl[E[t"]z{(riﬂ}]ra dt + O(r*)
i-1
uniformly on compact » subsets, The integral vanighes by symmetry.
Condition (2.14)} is too brutal but can readily be replaced by the possibility of
further cxpansion of (2.15) and large devialion estimates for f — #. Alterna-
tively, we can simply suppose that the Edgeworth expansion of kA(k + br?) 1
agrees with that of A(L (& + B(#)r?)""r2e, T} with error of order r* This
kind of replacement can be proved in a standard fashion under the usual
protocols for agymptotic expansions of maximum likelihood estimates; see
Pfanzagl (1974), for example.

We postulate nonrandom arrays 4, A, etc. and write,

Esl ---ib{ﬂ) = Ail---i*{ﬂ} + ‘511---“(&}-
Here are our condilions. Lel |- | denote the {| norm on R?. For all
O=M<wandsome 0 <8 <1,e_ L0
B,: () Plift — 81 = Mr1=%] = O(r™*1),
(i) Pl — 8] < Mr™*+2] = O(r™*1),
Lei

A= (x: forall j,{6: 16(x) - 6] < Myt ) {8:18,(x,8) - 8(x)| < M,r~*}}.

For all 0 < M, < =, there exists 0 < M, < = such that:
(iil) PIX e&A]l=0(rm"".
(iw) Plsuplia; ...iﬂfﬁ + v sMr! Bze l=00r"*) 1 =k<m+ 3.
(v} The maps 6 — A, (@) are continuous, 1 <= k < m.
(vi) The matrix || — A, (8)] is positive definite for all #.
(vii} (a) 7 vanishes off a compact K C &. (b) P[sup{|x, ..
wl = Mr® = r %] = O™, :
F_: Uniformly on compacts in #:
(i} Plie - 6] = Mr'=%] = O(r™*1),
(n} PJlig — 8] = Mr™*2] = G(r™7),
(iii} P[X & A] = O(r™"!) for A defined in B,,.
(iv) Plsuplid, .. (8 +rv)): |vj = Mr' %=, 1= 0(r™*"), for 1<k =
m + 3.
(v) Condition (v} ol B, .
{(vi) Condition (vi) of B,.

(6 + rv)| S (:

",
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REMarrs. {a} We give a qualitative discussion of the *‘Bayesian” condi-
tiona B,_. The frequentist conditiona F,, ecan be viewed in an analogous
faghien.

(i) Varialions of the mle 8 from § of order n ' ® gecur with very
small probability. Thus we can safely think aboul Taylor expanding (8} and
I{ﬂ (87 around 8.

(i) This condition says that 48 — ) has approximately a bounded
density near 0. It is needed to ensure that the map # — # — T(#,x) is 1-1 and
olherwize well behaved with high probability. "

(iii) This condition assumes that both ¢ and @, are close 1o # and each
olher

simultanecusly. It iz needed for expansions of E{H‘ (g

{iv) The cocflicients of the Taylor expansion dlﬁ"er little from constants, or

more epeciflically, () and its derivatives behave like averages of 1.i.d. variables.
{v) Smoothness conditions needed to permit replacement of guantilies

such as A4; .. Eq{ﬁjfﬂ }) appearing as approximations to coefficients in the Taylor

expan-

sion of .!{E'n' {(#)) by A, {H]

{wvi) Nunmngulanty ﬂf the information matrix is necessary even for the
statement of the Bernetein—von Mises Lheorem,

(vii) We need to expand log w(@) around #. Condition {(a) is useful for
technical reasone, while (b} is needed to control log «= and its derivatives necar
the boundary of K where log 7 — — =,

(b} The validity of F,, and B, other than (ii} and (iii) has been checked for
independent nonidentically dlstnbutcd and Markov dependent chservations in
Bickel, Gotze and van Zwel (1985). In particular these conditions hold for
exponential families in the ii.d. case. They also hold in many examples for
such families in lhe independent nonidentically distributed case, e.g., in regres-
sion and GLIM models. Another example is the class of aperiodic irreducible
finite slate Markov chains with stationary completely unknown tranaition
matrix.

(e} Condition B, (i1} in fact follows from the other B, conditions since they
pguarantee an Edgeworth expansion for #{#|X). An Edgeworth expansion
uniform en ¢ compacts for the distribution of r~*§ — 8) implies F, (i) and (ii).
Condition F_ or B, (iii} holds if the log likelihood is convex.

{d} The mndltmns on existence of Lhe estimale ﬁ' can be replaced by
requiring the existence of a preliminary, estimate # w1th appropriate moderate
deviation properties and then redefining the #, as the result of m + 1 itera-
tions of the Newton-Raphson method applied to the appropriate likelihood
equations. See Theorem 4 of Bickel, Gitze and van Zwet { 1985),

{e} In the situation of (d), suppose that F, {iv}—(vi} hold and that, uniformly
on ¢ compacts, for all 0 < M < e,

Pﬂ[:lé H:I = Mrt 3] - DE .-...r.'t+'.l.}’

(2.16) = ;
P16 8 = Mr=-2] = O{rm+7),
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Let
A = {x: forall 7, {8:16 8 <Myt ¥} c {o:|d, - 0] {Mgr‘“ﬁ}}.
Then uniformly on 8 compacts,
PIX € A*] = O(r™1),
If we redefine Lhe el B of Bection 3 ao that B{il) is replaced by
|6 — 8" | = M*rmr2 |8Y — gt <t 0

then the proof of Theorems 4 and § goes through.

1

3. Proofs. We nced to analyze 77(¢X} where we assume that X helongs
to
a gel S on which the map b — T(f + rh,X), |h| < Mr ®, is invertible with
nonvanishing Jacobian and the matrix | -1, {#)] = ¢ is positive definite. We
explain the transformation in more detail and give S§ below. Let D be the
unique lower triangular matrix with positive diagonal such that

(3.1) o= ¢

and

(3.2) Lin) =I{D 'n).

If ||7,,(8)|| is the Iessian of [ at & and # = D4, then in the usual notation,
(3.3) - L) =4d,

the p * p identity. This in the Bayesian domain corresponds to standardizing
Lthe Fisher information at ¢ to be J as is done in the corresponding frequentist
calculations. Further define 5; by

(3.4) Lifi;}  max{L{y}:iy' =7',....9' =77)

and

(3.5) Te(m) =r(20L(H ) LA sanldi_, — 7).
It is easy to verify that

(3.6) T(6 +rh) = T(f + rDh).

Now Dr~4# — §) has posterior density

(3.7) (D RX)|det(D)|

and hence

(3.8) wr(¢X) =exp[—%z {rif}«{ﬁ {1 rh(d)))det [ R5(2) | /M(X),

L =L
where h{t) iz defined by
(5.9) T(# —rh{f)) =t
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and

RL(E) ah!{}
(¢ — (1},
S d:tj

- £ .o .
M(X) - JExp{ Ly (4 Jn-{.ﬁ YA + rhit)))det]|Ri(e) |
i—-1

For fixed X, let K, be the image of {k: |k < Mr~"} under the map h — T(# +
rit, X), From {3.8) it i= clear that our task in proving Theorem 1 15 to exhibit
the set 5 asuch that, for ¢ € R, A is uniquely defined by (3.9} and such that

{3.10} B{t)y =t +rP(£,X) + O(r™"),
(3.11} ﬁ_f.{t} =5, + ""‘F:Jst} + O(r i}r

where P and P, are polynomials in £, and lo identify the order of the
polynomials, Here O{r™~') means that the remainder is bounded on & by
Mroi'l for a generie constant M independent of n.

We define B as the set where

(i) sup{«rri- 4..”1“3 + )| (8 v = Mr™ '5} <r”

(i) M*r™ 2 <" —0%<r'™%, 1zbxp.
(ill) sup{la, .. (F+rediivl <Mr e,
Note that, by B,

(a} Pl(r—%§ — 6),X) = B*] = O(r™*"),

() The x sections of B intersect each quadrant in an open convex set since
| - | i& the {, norm.

{¢} There cxists a generic constant > @ such that on 8,

sup{[4,, (8 +rh)|: b <M~} < C.

(d} C = A = A = C where A, A are the minimal and maximal eigenvalues
of || — {ﬂ}ll

(e) |E|P Byl = Mt 08, — 61 < M r=%,

We lei & be the image of B under the map (k, x) » (T(8(x) + rh, x), x)

and S be just the projection of § on the x axis, i.e., the set of all x satlsfylng
{1} and (iii} above.

CowveNTioN.  Expressions such as 4,(n) are calculated at «+ = 1 + rh.

LEevMa l. On B, forj=1+ 1,
) m+ 1l )
{3'12} fif = f + E N.l:f...;,*i"khh' cae RPe 4 D(rm-b'l}‘

k=2

where N, .., are polynomials in the derivatives L, of L (evaluated at 7)

' ?.f
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with t <k and b =r"Yv f) with no constant term. Let d = %1 | — 71"
Then

mll
{3.13) il = - N MJdt + O(d|™ )

k-1

where My are polynomials in L; ... ond rh which vanish at b 0.

Proor. Write L, ete., for derivatives of L evaluated at §. For j = ¢ + 1,
K P LifYy=FL.(#% & L L
0=L,(#%)—L,iqn)= *J';.{"Tf i j + + m  riTE

{3.14)

m+1

< T1 (4t = 4) + 0(™"").
k=1

To sec this, note first that %, = D6, and hence, in view of (e), |f; — %] <
M,r' "% Therefore, applying (¢) and (d), again the relevant derivatives of order
up to m + 2 of L at # are bounded and (3.14) follows. Nole that by (3.3),
L. = —é,, and that

A% —fi* = —rh® forb < i.
So we can rewrite (3.14) in the form
(8.15) Sput =Plu,rh) +O(r™"), jzi+1,
where u” = 4'_, — 4" and P, is a polynomial of degree (s + 1) in « and rh
with no term of combined degree leas than 2 and bounded coefficients which
are polynomials in the 7, ;.

Claim (3.12) follows from a standard Lagrange inversion argument. For
(3.13) write, for f =i+ 1,

(3.16) 0= L'(ﬁi} = L'(ﬁi—1} = _Ljh(ﬁa}ebs

where 4% is an intermediate value and e® = §* ; — 4%
Note that

(3.17) et=0, b<i—1l, e=4d

and

L(4*) = =8, - 0(r),
s0 that (3.18) yields, for j = ( + 1,
(3.18) |4 1 — | = O(r)di.
Expand further to get

1
(3.19) L fia)et + 70 +WL.; o fA et e

+ O(|d|™t2) = 0.
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Rewrite {3.19) in the [irm

b [T ] Bl afmal
AJ'il_,E +A_ri|_,|52€ e’ +Aﬂ:| ...hm”e ! =
=ad+ - ta,, ,d®'t +0(d"'1),
where the indices b, &,,..., 68, range from i + 1 to p,
Loy
St M -
A_m, S L (1)

and the @, are polynomials in the L . ,(#; ) and the ¢*. Expand A, .,
around 5 to m + 1 — & terms and uae (3.12) to conclude that with remainder
Or™=Y),-all the Ay .., are polynomials in I, .., and rh. Finally note
that, for & = + 1,
h=ﬁ'ah 1_ﬁ'fj=[ﬁ? 1 _ﬁh}_{ﬁ?—'ﬁ'h}

can by (3.12) itself be written as a polynomial of rk and L, .5, 50 that the a;
are also, up to order m + 1, polynomials in rh and L, ;,‘, for f=m+ 1
The lemma fullows. O

LEMMA 2. On B
Ti(d +rh) =R ~r Q' (rh) + O(r™™h),
where & is o polynomiol of degree m v 1 i rh with no corstant or Lirear ferm
and coefficients which are polynomials in L, ., k<m ~ 2.

Proor. By definition

mlz K
T#+rr)=r"'|- ¥ k_lLﬁl---b*[ﬁr'—I}xl_I;(ﬁFLI - ﬁ‘;ﬁr)
k=1 - -
(3.20) L
01—, — ﬁr‘|m+a]} sgn(#) | —n').
Nole that Lif,_,}=0,b =i, and 7_, = 7, & =i — 1, so thal the firsl term

in the sum vanishes. Expand the coefficients around + and use (3.18) and
(3.13) to get

m+2
(3.21) THH+rh)=r"d+ ¥ cﬁd”+0{r“|d|”’”]‘],

] B
where the ¢, are polynomials in rh. Now substitute for J [rom (3.12},
m+l
{1.22) d=rhi+ Y NI:.. __J:'f;krkh‘f"' - R+ Q(pm' 1Y),
k-2

and the lemms mllows. O

LEMMa 3. () £f O, i = .27 are the quadrants of R?, then T4 + rh)
meaps O3, © By fndo (3 fnr r:LEI £
(ii} f is r:ontmuous.fv differentinble on O, M B, for 1 = k = 27, Lei

r}T'
4 ﬁ'ﬁJ :
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Then TJ," ig lower triengulor and
(3.23) Ti =1+ Pi(rk) + O(r™~ 1y,

where P! is a polynomial of degree m + 1| with no constant ferm and coeffi-
ceents in L,k =m o+ 2
(iii) T is i-1.

Proor. (1) We need to show that on B,
(3.24) sgn{fi_, - n') =senh, i=1,...,p.
By (3.12) on B,
il - =R 1+ rM(R)) + rEML(R),

where M, is a polynomial in A with hounded coefficients and |M,(h)| is
bounded by M., forall(x, A) € B.But(x, i) € B = aM*r™~! < |B'| < a 'r %,
where a is posilive conslant depending only on the constant € of (d).

Choose M * sp that

(3.25) aM* > M,.
The relation {3.24) follows from
[3.26) ﬁ:_1{ﬁ + aM'*rm'*g} i ﬂi > {alM* — szrm+2 + G[r""_”} - 0

and

M*{h (1+ MR} =1+ 0(r).

{ii) It is easy to see that T(H + rh) is continuously differentiable on B with
derivatives

= | T 1{ Ly(4; 1) ?;f k(m}j?;

Note Lhal,

Mo, a,b=1,

an® —{ﬁﬂ,, a<i-1,
and L{#, ) =0, k=4 Soi<j=T=0while
(3.27) Fi= —r 4P L4,

Now write .
Ls(ﬁ;‘} =L L}{ﬁ? o ﬁ? 1]
+ mEIL;—W { 4= fi 1}

(3.28)

+ 08k =8P e

mi- 1

Y. P.rhjdt + O(d™"?)
k-1

by {3.13), where d =4!_, — n' and P, are polynomialz in & such that
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P10} = 1. Now apply (3.21} and (3.28) to {3.27) and then substitute (3.22) lor
o and (i1} follows.
(iii) Follows from Lemma Al of the Appendix. O

Proor or TusoweM 1. By Lemma 3 formula (3.8) is valid for (x,£) € §.
Moreover, from Lemma 2,
(3.29) Ri(e) =t + r7'P(rt) 1 O(r™rLy,

where P iz a polynomial of degree m | 1 in rf with no constant or linear
term and coefficients which are polynomials in L, ..,, 2 <m | 2. From
{(3.23) and (3.28)

"
det | ()| = det | Fi(h + rh(e))| "= _]_[15?‘,-"{7"; +rh(t)”!

4 »
(8.30) = T1(1 + Pi{rk{en)) ™ + (™)
-1
1+ Virt) + O{r™1),

where V iz a polynomial of degree m + 1 in #f with no constant lerm and
coefficients which are polynomialain L, .., 2k =m + 2
Moreover, {rom (3.29) and B_(1), ’

s : w0
w8+ rD i) = =(d)[1 + 'n'lll:{ﬁ}} Ub(re) + -+
3.3 o '
el by {'H] YUt - Ubmes( pt)

+ O(r (8},

where the U? are polynomials of degree = m + 1 with no constant term.
Substituting hack (3.30} and (3.31) in (3.8) provides an approximation Lo the
numerator in {3.8) and integraiing this wo get an approximation to the
denominator in (3.8). Together these approximations ensure thai

Ep [|mr(2X) — &()(1 + Qx(rt, x, w))1[(£,X) & §]|dt = O(r™+7)

for a suitable @%. We get @, by dropping all terms of degree m + 1 in Qr.
The coefficients are cvidently polynomials in L, . ,{#) and =, . ,r’rrr(ﬁr]
1 =k =m + 1. But the former are polynomials in the elements of D" which
are rational functions of L:_J(E]']l Now,

(8:32)  Bofe(0)[Q.(r,x,7) - Qx(rt, x,m)]1[(£,X) € 8] at

= {r™ 4
since for x = & all eoefficients in both functions are bounded. Further

(3.33) Epfﬁrftlx}l{{t,XJEE}dt=PI{T,X}g§[ O(rmth
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by B,.. Finally,
Epfd:{t}{?m{rt, X e S, =sM*sr™ Lor|l] = r %) dt = O(r™"')
and the theorem follows. O

Proor oF THeoreM 2 anp CoeoLLary 1. Evidently since D and D are
simple transforms of T, we need merely check that the approximation to Lhe
density of D (D, respectively) oblained by applying the usual transformation
formula to 7, (-, X) agrees with [17_, c(u®) with crror O™ ' D for m - 1,3,
respectively, This follows readily from Lemmas A2 and A3 in the Appendix if
we idenlify w, with g{{) for m = 2,3 and note that K, = O(»~"). Relation
{(2.8) follows from Lemmas A2 and A3, Corollary Wa) follows immediately {rom
(2.5), while 1(h) follows from (2.6) and Lemma A4, O

ProoF oF THEOREM 3. Evidenlly F, — B, for « satisfying (vii). It is

b

shown in Ghosh, Sinha and Joshi (1982) and Bickel, Gilze and van Zwet
(1985) that the sel of all aueh # is denae in the zet of all priors under weak
convergence. Now (2.9) implies that for any 7 concenlrating on a compaci, the
characleristic function of T satisfies the approximation

je I.Jrr:JpT{'E} It ff;_a 'Ir'.':'rpr{ﬁlﬂ‘}ﬂ{ﬂ] o i elt

ef'“.-"‘.f;u}(l g f r*j-Rk[!,E-'}w(U} fm] dt + O(r™*")
(3.34) =1

Exp{ jﬁ AHH z fp,f(p 2y {0) a’ﬂ]

+ D{‘rm I-'.l.}r

where expl{— L 7_ (¢ YL v, ) is the Fouricr transform of $le)R {2, 8), s0
that the P,z are also polynomials in ». On the other hand, Theorem 1 yields

s
f exp{ 3 wf}pﬂr; t

4=1

=E, fexp{ i (v-“'ﬁzllarm(t,ﬁ}l(x Eq) dt] +O(rm™*h)

S, /

{3.45)

= f_ip .-'1|
e E{v}lr

x(l + L orfeh o t"EQ, . (X w)1(KE 3}] + O(rm "y,

k=1
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Therefore, multiplying by exp{zL 7_,(v' )} we get

1+ f r*‘fP,,_(u, Bhaw( @) df
E—1
(3.36)

Fn

L1 3 orfe, p(m)et ot 4 0 Y,
h=1
where () iz now uniform for |v| = M by the hypothesis of Theorem 3,
Define, as usual,
5.,“_..;,:}{;‘,...,3**) = [AfrawcAl ) POl oty
where the &, - 0,...,p, 7 b, =1{ and
é‘k.lllu Jrl:tl:l"':ltk_lsth + Esrk-'-li“*sgﬂ} = ||II-(£L:I"':l":ﬂl:l::|

and A{ represents an operator product. Apply &, .. s, to both sides of (3.36)
considered as functiona of v. If { > m we obtain

m
{(3.37) ¥ ris-’fahl e Dl @) (8) d8 = O{r=-le!y,
i-l
Let £ 10 maore slowly than 7% Then (3.37) yields
#oP,
[ oo (v, 8)w(6)do =0 forall v, forall k = m,
d I”:]_ T ‘,'] Puﬂ

But by assumption the inlegrand is continuous in #. Since = ranges over a
dense set we conclude that the integrand vanishes identically in 8. S0 £, isa
polynomial of degree less than or equal to £ and hence so ia B,. O

Theorem 4 and Corollary 3 follow from Theorem 3 in the same fashion aa
Theorem 2 and Corollary 1 follow from Theorem 1.

Acknowledgments. We thank Ole Barndorfi-Nielsen, Ib Skoveaard and
Peler McCullagh for some crucial references.

APPENDTX

LEMMa Al. Suppose [: C% » R* where CV is an open convex set in R¥.
Suppose fis differentioble with Hessian | and
(A1) |f=+F <1,

where o iz the identity and |M)| is the operator norm on matrices, Then f is
nonsingulor and fis 1-1.

Proor, By (A1), { is nonsingular:
flad—(f=dy+(f-d) .



CNDERSTANDING THE BARTLETT CORRECTION 1089
It f(a) = f(B), then
0= Jf:f[a +Ab—al)dMb @)
or
(& =gy —f:(f{a Lalb =) ed YAME — o)

Then, by (Al),

b —a| < mi:xif{a +AMb—a))—Jb—a|l<|p a
unless b = a.

LEMMa AZ.  Lel
gty = {61+ Rt + B {1 — §4Y + R L0t
be the density of a finite measure u on R? where 8% is Kroneckér delte and let
ga(2) = H(O(1 + R, {(+) - 1))
similarly correspond to pg. Let A(t) = ('), Then

pwh-'= poh 4

Proor. The densities of ph~! and g k™" at {ju’l,. .., [u¥]) diller by the
Lerm

A”E[R £y u’ | + R,J€¢P;|tgiil'j2|w"|u2 +E‘.‘*‘-’-;”f».Ra:_;uJ”i|U2|”ﬂ=!”3|”k|“2) =0

where Rf = R, {1 - 8,;) and ¢; are independent +1 with probability 3
Levma A3, Suppose L ;R ;| = o(1). Then
feu) - 10420, ofot1 20,77 - o T 83,
where ¢, is the slandard normal densily.
Proor. Taylor expand. O
LemMs A4, Suppose Lile,, — 1| —ol(l) and 27 =¢,Y? where Y's are
iid. N(0,1). Let U=5}Y? and V={(ZZ)N1 + E{c — 1)/k)L: Then U

end V have the same -:.'mecrermm funetion up to O(E(e; — 1))

ProoF. Compule the characteristic function of V, lake logarithms and
expand. O



1080 P..J. RICKEL AND J, K. GHOEII

EEFERENCES

Barvmorrr-MIELSEN, 0, H, (1983). On a formula [nr the conditinnal distribution of the maxzimum
likelihuod estimator. Bigmefrike 70 343-365.

BasnporrF-NiELsEN, O, E. and Cox, T3, R, (1984} Bartlelt adjustoents to the likelibood ratio
slatistic and Lhe distribotion of the maximum likclihood estimotor. . oy, Statizé
Soc. Sar, B 46 483405,

Barnmmes-Mikisgn, O, B (1986). lolerenee on [ull or partial parameters based on the standacd-
ized signed Iog likelihood ratio, Hivreetriko T8 307-322.

Barwoonrr-INELSEN, . T and TTa, PLO198E} On the level error alter Buartlett sdjustment of the
likelibwowd rutine statistie. Buomefriba 75 374 378

Bawrwwrr, M. 5, (1937}, Propertiss of sufficiency and statintical tests. Proc. oy, Swe. Lond . Ser.
A 160 268282

Buareacuanya, BN, and Guose, J. K (1978). Validity of formal Fdgeworth expansion. Asr.
Statizt. 6 134-451.

Brexer, F. J. (1974). Bdgeworth expansions in nonparamelric stalisties. Arn. Statiad. 2 1-240.

Biwrew, P J., GliTze, F. und vanw Zawr, W. R (1985), A simple analyziz of thind order efficieney of
estimates, In Proc. Berkeley Conf. in Honor of Jevey Neyman and Jack Kiefer (L.
Le Cam and R, A, Olshen, cds.) 2 749-766. Wudsworth, Belmont, Calif,

Bruwesrey, P. (1961). Séatizéical Inference for Markov Processes, Univ. Chicago Pross, Chicag.

Bow, Gl E P 01948). A general distribution theary for a class of Tikelihood criteria. Biomeetrika 36
T34,

Cranvona, T, und Groose, J. B (1979, Valid saymptotic expansion for the likelibond ratic statistic
and olher perturbed 2 vuriables. Sankhyd Ser, A 41 32-47.

BErnon, B, (1982), The Jackknife, the Bovisirup and (ther Resompling Plans. SLIAM, Philadelphia,

Erron, R (1985}, Bootstrap confidence intervals For a class of parametric problems. Biometrido
T2 45-5A.

Guoss, 4. K, Bivm, B K and JosHn, 5, M, (1982), Expansions for posterior probubility and
integrated Bayes risk In Stetistieel Decision Theory and Reloted Topies I (8. 5.
Crupta and J, O, Bergor, cdz.) 1 405-456. Acudemic, Wew Vork,

Gitee, F. and INer, C. (18978}, Asymiptotic expansions under moment conditions. 2. Wahrsch
Verw. Gebiele 42 67-AT.

Lawrry, D M. (1956} A peneral method for approximating to the distribulion of the likelihnod
ratio criteria. Bicmelrika 43 295-303.

Praxgacy, J, (1974h Asymplolically optimum estimation and test procedures. In Proc. Progue
Bymp, on Agymptotic Stetisties () Hijek, ed ) 1 201-272, Charles Univ,, Prague.

Srew, C. {1888). On the coverage probability of confidenee sels bused on a prior distribution,
Seguenital Meth. Stetiat.: Buonoch Cender Fublicntion 18 485-514.

Warn, A, (1943} Tests of stalistical hypulheses concerning several parameters when the number
of oheervations iz large. Trans, Amer. Math. Soe. 64 426452,

WeLci, B. N. and PrErs, T3, (1963). On formulae for confidenec poinls based on integrals of
wiighted likelthvods, -F. Roy. Stxfiat. Soc, Ser, B 35 318 329,

Wirs, 5. 5 (1938) The large sample distribution of the likelihoad vatio statistic for testing
composite hypotheses. Anr. Math. Statint, 9 G062,



	1.jpg
	2.jpg
	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg
	8.jpg
	9.jpg
	10.jpg
	11.jpg
	12.jpg
	13.jpg
	14.jpg
	15.jpg
	16.jpg
	17.jpg
	18.jpg
	19.jpg
	20.jpg
	21.jpg

