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which give new functions from previously designed ones. We

have experimentally studied some functions which are of Maio-

rana–McFarland type [11], i.e., which can be seen as concatena-

tions of affine functions. We also show that, if a Boolean func-

tion has low-degree subfunctions, then it is not good in terms

of algebraic immunity. This completes the analysis on Maio-

rana–McFarland type functions presented in [38].

Analyzing existing construction methods to see how good

they are in terms of algebraic immunity is only an ad hoc at-

tempt, as these existing construction methods are not meant for

getting good algebraic immunity. In this paper, we provide a

construction method where the algebraic immunity is the main

concern. We introduce the (primary) construction of a -vari-

able Boolean function with algebraic immunity provably equal

to (that is, optimal). This construction, initially presented at

the 2005 Workshop on Fast Software Encryption (FSE 2005)

and presented there as a secondary one, has been originally the

first one producing functions with optimum algebraic immunity.

The construction is iterative in nature (a function with two more

variables is constructed at each step). This function can then

be used in a secondary construction, to obtain a balanced func-

tion with highest possible algebraic immunity or with a reason-

ably high algebraic immunity, nonlinearity, and (if necessary)

resiliency order. We show that the function has very high alge-

braic degree. We also give an algorithm permitting to deduce the

function from two symmetric functions, which allows to have a

very fast way (whose complexity is linear in the number of vari-

ables) of computing the output to the function, given its input.

This was necessary so that the function can be efficiently used.

Indeed, to make the complexity of algebraic attacks greater than

(i.e., more complex than exhaustive search) a strict min-

imum seems an algebraic immunity of —see Section II, Re-

mark 1—which implies at least 15 variables for the function

itself, plus the number of variables necessary for applying a

secondary construction ensuring balancedness and good non-

linearity, and if necessary good resiliency; the efficiency of the

stream cipher is then a real challenge.

Other fast computable functions exist with optimal algebraic

immunity (they have been given originally in [29] and a little

later in [10], with further examples). They are symmetric and

present therefore a risk if attacks using this peculiarity can be

found in the future. Our functions do not have this drawback.

As this current effort has been an ongoing work for some

time, a lot of issues have been raised in this area in the meantime.

One should first note that by algebraic immunity we mean the re-

sistance against standard algebraic attacks, done in a particular

way, i.e., using linearization. One does not need linearization

if algorithms using Gröbner bases can be properly exploited.

However, algebraic immunity is still a relevant notion, since

cryptosystems must at least resist the attacks by linearization,

and since the complexity of the attacks by Gröbner bases (which

are faster than the attacks by linearization) is difficult to eval-

uate. Further, it should be noted that based on some recent works

related to fast algebraic attacks [2], [25], [9], one should concen-

trate more carefully on the design parameters of Boolean func-

tions for proper resistance. This is the reason why, in one of the

recent papers [29], the term of “annihilator immunity” is used

instead of “algebraic immunity.” However, even in the case of

fast algebraic attacks, the algebraic immunity plays an impor-

tant role, as shown in [1].

II. PRELIMINARIES

A Boolean function on variables may be viewed as a

mapping from into , the finite field with two elements.

We denote by the set of all -variable Boolean functions.

One of the standard representations of a Boolean function

is by the output column of its truth table, i.e., a

binary string of length

The set of for which (respectively, )

is called the on-set (respectively, offset), denoted by (respec-

tively, ). We say that a Boolean function is balanced if the

truth table contains an equal number of ’s and ’s.

The Hamming weight of a binary string is the number of

ones in the string. This number is denoted by . The Ham-

ming distance between two strings, and is denoted by

and is the number of places where and differ.

Note that (by abuse of notation, we

also use to denote the addition in , i.e., the XOR).

Any Boolean function has a unique representation as a mul-

tivariate polynomial over , called the algebraic normal form

(ANF)

where the coefficients belong to .

The algebraic degree is the number of variables in the

highest order term with nonzero coefficient. A Boolean function

is affine if there exists no term of degree strictly greater than

in the ANF and the set of all affine functions is denoted by .

An affine function with constant term equal to zero is called a

linear function.

It is known that a Boolean function should have high alge-

braic degree to be cryptographically secure [31]. Further, it has

been identified recently that it should not have a low-degree mul-

tiple. More precisely, it is shown in [24] that, given any -vari-

able Boolean function , it is always possible to get a Boolean

function with degree at most such that has degree at

most . Here the functions are considered to be multivariate

polynomials over and is the polynomial multiplication

over . Thus, while choosing a function , the cryptosystem

designer should be careful that it should not happen that the de-

gree of falls much below with a nonzero function

whose degree is also much below . In fact, as observed in

[24], [38], it is enough to check that and do not admit

nonzero annihilators of such low degrees.

Definition 1: Given , define
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Any function is called an annihilator of .

To check that a function has good algebraic immunity, it is

necessary and sufficient to check that and do not admit

nonzero annihilators of low degrees. Indeed, if or has

an annihilator of low degree , then either is null or

equals and therefore has degree at most ; conversely, if we

have where and where and have degrees

at most , then either , and then is an annihilator of

, or , and we have then by multiplying

both terms of the equality by , which proves that

and shows that is a nonzero annihilator

of of degree at most .

Definition 2: Given , we define its algebraic immu-

nity as the minimum degree of all nonzero annihilators of or

, and we denote it by .

Note that , since . As or

must have an annihilator at a degree [24], we have

.

Remark 1: Let an -variable function , with algebraic im-

munity be used as a filtering function on a linear automaton

(e.g., an LFSR) with states, where is the length of the

key (otherwise, it is known that the system is not robust). Then

the complexity of an algebraic attack using one annihilator of

degree is roughly

(see [24]). Let us choose (which is usual) and

, then the complexity of the algebraic attack is greater

than the complexity of an exhaustive search, that is , for

. If the attacker knows several linearly independent

annihilators of degree , then the number of variables must

be enhanced.

Remark 2: There are some recent works [2], [25], [9], [1],

based on which one may need to consider the situations fur-

ther to annihilators. Consider, for instance, the situation when

, and is a lowest degree annihilator of . Let the

degree of be . Then generally we expect that the cryptanal-

ysis will be performed considering the annihilator and its de-

gree is an important parameter in the complexity of the attack.

Consider that one has designed a scheme considering this sce-

nario. However, it may very well happen that , where

, but and in such an event

one may get a better attack (with lower complexity) using .

This has been exploited in [26] to present an attack on SFINKS

[8].

In this work, we are concentrating on algebraic immunity as

defined in Definition 2. One should note that algebraic immunity

(as in Definition 2) is not a property that can resist all kinds of

algebraic attacks, but clearly this is a necessary one. Our studies

in this paper are based in the scope of this definition and we leave

it as open problem to see how these analyses can be extended

keeping in mind the properties emerged to resist fast algebraic

attacks.

The nonlinearity of an -variable function is its distance

from the set of all -variable affine functions, i.e.,

Boolean functions used in cryptographic systems must have

high nonlinearity to withstand linear and correlation attacks

[31], [12].

It is known that there are highly nonlinear Boolean functions

of low degrees; as example, there exist quadratic bent func-

tions that have degree and maximum possible nonlinearity

, when is even. Such functions , as they are

by themselves of low algebraic degree, will have low values of

algebraic immunity . On the other hand, we may have

Boolean functions of low nonlinearity with high algebraic de-

gree. Interestingly, if we replace the algebraic degree by the al-

gebraic immunity, the situation changes. In this paper, we show

that, if a function has low nonlinearity, then it must have a low

value of . This implies that if one chooses a function

with good value of , this will automatically provide a

nonlinearity which is not low. However, it does not assure that

the nonlinearity is very high (see Section III). Hence, the alge-

braic immunity property takes care of two fundamental prop-

erties of a Boolean function, algebraic degree and nonlinearity,

but it does this incompletely in the case of nonlinearity. We will

recall also that this property stays unchanged with respect to

linear transformation unlike correlation immunity or propaga-

tion characteristics.

Many properties of Boolean functions can be described by the

Walsh transform. Let and

both belonging to and Let

be a Boolean function on variables. Then the Walsh transform

of is an integer valued function over which is defined

as

A Boolean function is balanced if and only if .

The nonlinearity of is given by

Correlation-immune functions and resilient functions are two

important classes of Boolean functions. A function is -re-

silient (respectively, th-order correlation immune) if and only

if its Walsh transform satisfies , for

(respectively, ).

Following the notation as in [42], [43], [48] we use

to denote -variable, -resilient function with

degree and nonlinearity . Further, by we denote

unbalanced -variable, -th order correlation immune function

with degree and nonlinearity .

III. ALGEBRAIC IMMUNITY AND WALSH SPECTRUM

Toward proving the results relating algebraic immunity and

the nonlinearities of a Boolean function, we first present the
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following result, where we relate the algebraic degree with the

weight of the function.

Theorem 1: Let and . Then

Hence, for every -variable function , we have

Proof: Let be a function of degree at most . Let the ANF

of equal

Note that is an annihilator of if and only if

implies . Hence, belongs to if and only if

the coefficients in its ANF satisfy the system of homogeneous

linear equations which translates this fact. In this system, we

have number of variables (the ’s for the monomials

up to degree ) and many equations. If the number

of variables is greater than the number of equations, then

we will get nontrivial solutions. Thus, the fact that has no

annihilator of degree implies that the number of equations

is greater than or equal to the number of variables, that is,

. Similarly, when considering , we get

. This gives, ,

i.e., . The last double inequality is

obtained by choosing .

Theorem 1 gives an alternative proof of

which was given in [24]. Indeed, when applied to ,

it leads to a contradiction, since we have

Note that the converse of Theorem 1 is not always true. For

example, the affine functions are balanced, but clearly they have

linear annihilators.

Applying Theorem 1 with , we get the following.

Corollary 1: implies

1 is balanced when is odd;

2 when is even.

Now we connect algebraic immunity with nonlinearity. We

first need a simple lemma, which has its own interest.

Lemma 1: For any and any , we have

(1)

More generally, for any and for any whose

algebraic degree equals , we have

Proof: For any such that , we have

. For any such that , we have

. This gives the inequalities on

the right. Applying them to and instead of gives

then the inequalities on the left.

Note that these relations are still valid (changing into the

global number of variables) if and (respectively, ) are de-

fined on different (maybe intersecting) sets of variables. Note

also that, if these sets of variables are disjoint, then, denoting by

the global number of variables, we have

and

since it is then possible to obtain an annihilator of degree

(respectively, ) of or by

restricting to an annihilator of the same degree of

(respectively, ).

Siegenthaler [46] proposed to add to a given function a

linear function on disjoint variables for increasing the resiliency

order of ; clearly, this secondary construction does not permit

achieving good algebraic immunity.

Theorem 2: If , then

. More generally, if the Hamming distance between

and the set of Boolean functions of algebraic degrees at most

(the so-called Reed–Muller code of order , ) satisfies

, then . In other words

Proof: Let be a function of degree at most such that

. If then

, according to Theorem 1. Lemma 1 shows

then that . The last inequality is obtained by

choosing .

During the review process of this paper, a bound on the (first-

order) nonlinearity has been obtained in [36]:

This bound improves upon the corresponding bound of The-

orem 2. It has been further generalized in [18] to a bound on the

higher order nonlinearity, which improves in some cases upon

the corresponding bound of Theorem 2.

Theorem 2 and the result of [36] give a new reason why one

should not use functions with low nonlinearity, since in that

case would be low. However, they do not assure that if

has high algebraic immunity (for instance, an optimum one

) then its nonlinearity will be high. Indeed,
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the result of [36] implies then that has nonlinearity at least

, that is,

if is odd and

if is even. According to Stirling’s formula, these values are

approximately equal to for odd and to

for even . They are very far from the maximum possible

nonlinearity .

A. Count of Annihilators

In the proof of Theorem 1, we get many homogeneous

linear equations whose variables are the coefficients in the ANF

of . Let us denote the coefficient matrix of this system of equa-

tions by . Then has many rows and

many columns. The rank of satisfies

1) If , then there is no nonzero annihilator

of degree .

2) If , then there are nonzero annihilators of

degree . There will be many linearly

independent annihilators having degree .

It is clear [24] that a larger number of independent annihilators

helps better in cryptanalysis. Thus, when considering a Boolean

function, one should check the number of independent annihi-

lators at the lowest possible degree.

Definition 3: Given , we denote by the

number of independent annihilators of of degree .

Theorem 3:

1) Take , with . Then .

2) Take balanced with , even. Then

.

3) Take such that , odd. Then

.

Proof: The proof of item 1) is as follows: if two annihila-

tors of degree have the same degree part in their algebraic

normal forms, then they must be equal since their sum being

then an annihilator of degree strictly smaller than , it must be

null. We deduce that is upper-bounded by the di-

mension of the quotient , that is, .

Now we prove item 2). Here, . The function

has an annihilator of degree . The corresponding coefficient

matrix has many rows and

many columns. Thus, rank of is at most . The number

of independent solutions is lower bounded by

Now we prove item 3). Here , according to

Corollary 1. By hypothesis, there is no nonzero annihilator up

to degree . The coefficient matrix is a

square matrix, since

As it has no nontrivial solution, its rank equals . The func-

tion has an annihilator of degree . In this case, the corre-

sponding coefficient matrix has many rows and

many columns. Thus, the rank of equals

that of , i.e., equals . The number of independent

solutions equals

In Section IV, we study certain constructions of cryptograph-

ically significant Boolean functions in terms of algebraic immu-

nity.

IV. STUDYING FUNCTIONS FOR THEIR ALGEBRAIC IMMUNITY

A statistical analysis has shown in [38] that any randomly

chosen balanced function on large number of variables has no

bad algebraic immunity with very high probability. This result

has the same flavor as the fact that most of the Boolean functions

have high algebraic degrees and high nonlinearities in general

(see [39]). That is, if one chooses a Boolean function randomly,

the probability that these three characteristics will not be bad

is high. Heuristic arguments exposed in [20] suggest even that

almost all Boolean functions have in fact algebraic immunity

at least . This has been later confirmed in [51]. However,

when considering a specific construction technique, the number

of functions constructed by that method is much lower than the

total space of Boolean functions and generally such statistical

analysis does not work.

A. Experimental Results on Rotation Symmetric Boolean

Functions

If we intend to construct functions with best

possible parameters along with the best possible algebraic

immunity, we can first consider a subset of Boolean functions,

which is sufficiently particular so that the study will be simpli-

fied (mathematically and/or algorithmically) and sufficiently

nonpeculiar so that it will be possible to find such functions (as

it can be with random ones). The rotation symmetric Boolean

functions (RSBFs) received a lot of attention recently for this

reason [32], [47], [48], [33], [37]. These functions are invariant

under circular translation of indices in the input variables. We
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present experimental results related to the algebraic immunity

of the RSBFs which are available in [47], [48], [33], [37].

Experiment 1: Here we test the algebraic immunity for

RSBFs. It is given in [47] that there are 36 such

functions with . Out of them, 24 functions contain

linear terms. For these functions, equals , which

is one less than the highest possible value . Out of

them 12 functions have and the remaining

12 have . The 12 functions having no linear

term have algebraic immunity , which is the

highest possible value. According to Theorem 3 (item 3) (we

have also checked this by experiment), for these functions

.

Experiment 2: Here we examine the RSBFs

with the number of which is 10272 as recalled in

[48]. Out of them, 6976 attain highest algebraic immunity, i.e.,

and we find that for these functions . The-

orem 3 (item 2) asserts that the value should be greater than or

equal to . This gives an example, where the bound is

tight. For the remaining functions, the

algebraic immunity is . Out of them, 1536 many functions

have only one annihilator of degree (but no degree annihi-

lator for ), 1504 many functions have no annihilator of

degree (but one degree annihilator for ), and 256 many

functions have one annihilator of degree and also one de-

gree annihilator for . According to Theorem 3 (item 1),

. So for these functions, the bound is

not sharp.

Experiment 3: In the preceding two experiments, we exam-

ined the functions which are balanced. Now we consider the

RSBFs which are not balanced. We consider the

8406 functions with , see [33], [37]. According to

Corollary 1 (item 1), the algebraic immunity of these functions

will be strictly less than . Here, after experiment, we get the al-

gebraic immunity of all 8406 functions as . According to The-

orem 3 (item 1), . In the table at the

bottom of the page, we present the number of functions satis-

fying a particular and .

Studying the resilient functions on seven and eight variables

and unbalanced correlation immune functions on nine variables

for this rotation-symmetric class of Boolean functions, it is ev-

ident that there exist functions which are good in terms of alge-

braic immunity.

B. Analysis of Some Construction Methods

Very few primary constructions of Boolean functions

achieving at high levels the cryptographic criteria recalled in

the introduction are known (see [19]). A general principle of

construction exists: concatenating low-degree functions as in

the Maiorana–McFarland construction. But this principle has

some limits with respect to the usual criteria (see [14]) and it

has drawbacks with respect to the algebraic immunity as we

show now.

1) The Maiorana–McFarland Construction: The original

Maiorana–McFarland class of bent functions is as follows (see

e.g., [13]). Consider -variable Boolean functions of the form

, where , is a permu-

tation on and is any Boolean function on variables.

Function can be seen as concatenation of distinct (up to

complementation) affine functions on variables.

A similar type of concatenation technique has also been used

for construction of resilient functions [11] (see also [44], [42]).

Concatenating -variable affine functions (with repetition al-

lowed) nondegenerate on at least variables generates an

-resilient function on -variables. For such a function , it

is easy to find an annihilator of degree as described

in [38]. In fact, it is shown in [20] that, unless a heavy condi-

tion is satisfied (which is very improbable unless is almost

equal to ), it is easy to find an annihilator of degree . It

has been commented in [38, Example 1 and the following para-

graph] that is generally greater than (this seems true for the

Maiorana–McFarland type of functions presented in [41], [14];

but this has not been checked for some large classes of Maio-

rana–McFarland type of functions described in [42], [17]) and

hence it is possible to get a nonzero annihilator of degree less

than . However, it should be noted that in construction of re-

silient functions, there are techniques that use concatenation of

-variable affine functions where . In such a case, the an-

nihilators described above will have degree greater than and

will not be of practical use as there are other annihilators of de-

gree which are not of the form given in [38, Theorem 2].

2) Secondary Constructions:

• We first study a construction of functions proposed

by Siegenthaler [46]. Given , we denote by

the set of non null with lowest

possible degree such that or .

Proposition 1: Let , be two Boolean functions on the vari-

ables with and . Let

. Then

1) If then .

2) If , then , and

if and only if there exists

of algebraic degree such that or

and

.
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Proof: Let and . If

, then . If ,

then . Also, if , then

and if , then .

Thus,

(2)

Let . Let us first

consider the case with which implies

So and . Similarly, for the case with

, i.e.,

we have and . Now there can

be three cases in both scenarios.

a) is zero and is nonzero. So which gives

.

b) is zero and is nonzero. So which gives

.

c) Both , are nonzero. So and

, which gives , when .

So for we get

(3)

Equations (2) and (3) give the proof of item 1).

Now we prove item 2). Consider

Clearly, has degree at least , since has degree at least .

So, .

If , then the highest degree terms of and

must be same which gives . Note that

we have or

. Conversely, if there exists

of algebraic degree such that or

and ,

then clearly .

We cannot say that the construction of Proposition 1, first in-

troduced by Siegenthaler [46] for obtaining resilient functions,

is good or is bad in terms of algebraic immunity, since

— a good construction is supposed to gain (respectively, )

for the algebraic immunity when we add (respectively,

) variables, here we add only one;

— the construction is very general since every function can

be obtained from it.

The next corollary is a direct consequence of Proposition 1

and of the upper bound on the algebraic immunity of -vari-

able functions.

Corollary 2: Let

where is even and (i.e., has maximum

possible value). Then (i.e., is max-

imum) and there do not exist of degree such that

and or and

and such that all degree monomials of and are the same.

We now observe that two functions on an odd number of vari-

ables and with optimum algebraic immunity always have some

relationships.

Corollary 3: Let where is odd and

(the maximum possible value). Then there must

exist of degree such that and

or and and

such that all degree monomials of and are same.

Proof: Let

According to Proposition 1, equals since it

cannot be greater than .

In [49], Tarannikov has proposed an important construction

of resilient functions. A similar kind of construction has been

derived in [40] (and has been later generalized in [15]). It has

been shown in [27] that if we denote by the function from

which we start in this construction and by the function ob-

tained after steps (this function has more variables than ),

then . Later, it

has been proved in [7] that the -variable functions constructed

by Tarannikov’s method [49], [40] attain algebraic im-

munity.

We also like to present some observations on

functions constructed in [42, Theorem 10(b)]. The operation

on strings is defined in [42],

where , are bitwise complements of , , respectively,

and where is the Kronecker product, whose definition is:

. Obviously, when applied

to strings corresponding to the truth tables of Boolean functions,

this operation corresponds to the so-called direct sum, that is,

the addition of Boolean functions with disjoint sets of variables

(if the definitions of the functions use same symbols to desig-

nate some variables, then these symbols must be duplicated so

that the functions become defined on different variables). Now

we present the construction of a

function as given in [42] for .

Construction 1: [42, Theorem 10(b)] Let , , , be

the -variable linear functions nondegenerate on two variables

(i.e., the functions , , , ).

Let be the -variable function , for . Let

, be bent functions on variables, let , , be

bent functions of variables and , be two strings of

lengths and which are prepared by properly

adding and removing 1 bit from the truth table of -vari-

able bent functions, respectively. Let be a concatenation of the

following sequence of functions. , , , ,

, , . This is a

function.

Example 1: For , we choose:

, , ,
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, , , . In this

case, we find a function with .

If one replaces the function by

, then we get a function

with .

We observed that changing the order of affine functions can

change the algebraic immunity without any change in order of

resiliency, nonlinearity, and algebraic degree. The change in the

last four bits in implies that the concatenation of , ,

, will be replaced by , , , . We observed

that this increases the algebraic immunity from to .

C. Functions With Low-Degree Subfunctions

In this subsection, we discuss why a Boolean function with

low-degree subfunction is not good in terms of algebraic immu-

nity. This extension of a result presented in [38], and its comple-

ments, are simple, but they have some importance for the design

of pseudorandom generators.

Proposition 2: Let . Let be a subfunction of

after fixing many distinct inputs

. If the algebraic degree of is , then

.

Proof: Let be fixed at the values

. Thus, is a function on the variables

. Obviously,

is an annihilator of . The algebraic degree

of is .

The Maiorana–McFarland construction can be seen as con-

catenation of affine functions on variables to construct

an -variable function. Clearly, we have affine subfunctions of

the constructed function in this case, and hence fol-

lowing the notation of Proposition 2. Thus, as already recalled

at Section IV-B1, there will be annihilators of degree .

Note that if is small, then one can get annihilators at low de-

gree [38, Theorem 2, Example 1]. This works for any function,

which needs not be of Maiorana–McFarland type only. For in-

stance, let us consider a 20-variable function, with a subfunc-

tion of degree on 17-variables, i.e., we fix three inputs. In that

case, the 20-variable function will have an annihilator of degree

.

Proposition 3: The -variable function presented in

Construction 1 has a subfunction of degree at most when

.

Proof: Consider the subfunction when . The

subfunction (call it ) in concatenation form is , .

Since , are bent functions on variables, they can

have algebraic degree at most . Further, , are -vari-

able linear functions. The algebraic normal form of is

. So the degree of is smaller or

equal to .

Theorem 4: For a function ( odd) generated out of

Construction 1, .

Proof: Here . We take , i.e.,

according to Proposition 2. Further from Proposition 3

Thus, .

Now we answer why the algebraic immunity of these two

functions in Example 1 are different. The reason is that, in the

first case, the functions , are same with the ANF

. Thus, the subfunction (i.e., , ) is a degree–

function. So the maximum algebraic immunity, according to

Proposition 2, can be . In the second case, is dif-

ferent from and the algebraic degree of (i.e., , )

becomes and it achieves the value . Thus, Proposi-

tion 2 helps in answering this question. It is important to note

that this technique can be employed to study the upper bound of

algebraic immunity for various constructions by analyzing their

subfunctions and in particular, directly for the constructions pro-

posed in [42], [14].

It should be noted that the converse of Proposition 2 is not

always true. That is, a function having low-degree annihilator

does not need to have some low-degree subfunction by fixing

a few variables. As example, one may refer to the -variable

function

This function has algebraic immunity and the only annihilator

of degree is

If one verifies all possible subfunctions of after fixing and

variables, it is not possible to get subfunctions of degree and

, respectively.

Note that the observation we made for Maiorana–McFar-

land’s functions does not seem to apply to those Boolean

functions that can be seen as concatenations of indicators of

flats [17].

V. CONSTRUCTION TO GET OPTIMAL ALGEBRAIC IMMUNITY

We have recalled in Section IV-B that very few primary

constructions of Boolean functions achieving at high levels

the usual cryptographic criteria are known, and we have seen

that these constructions do not seem to be able to achieve good

algebraic immunity. In this section, we present a construction

to design a Boolean function of variables with algebraic

immunity . The construction is iterative in nature. At each

step, two variables are added and the algebraic immunity is

increased by . The constructed function is not balanced, but

the bias with respect to balancedness tends to zero when tends

to infinity. The constructed function has not a high nonlinearity

either. The bias with respect to optimum nonlinearity is slightly

better than the minimum observed in Section III after Theorem

2. This primary construction can be (must be) combined with

secondary constructions to lead to functions satisfying all of

the necessary cryptographic criteria. Since we will be able to
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give a very efficient way of computing its output (with a linear

complexity in the number of variables), its introduction in a

secondary construction is efficient even if its number of vari-

ables is large. Last but not least argument, it is the first known

provably efficient way of obtaining functions with optimal

algebraic immunity (the next one appeared in [29]). We show

that the function has very high algebraic degree.

Construction 2: We denote by the function de-

fined by the recursion

(4)

where denotes the concatenation, (in terms of algebraic normal

form, we have then

and where is defined itself by a doubly indexed recursion

(5)

i.e., in terms of algebraic normal form

for

with base step for , for .

To understand the recursion in the Construction 2, we present

an example up to some depth.

• .

• .

• .

This goes on until we reach the null level for at least one of

the two indices.

Below we present the construction idea as truth table concate-

nation.

Step 1:

Step 2:

Step 3:

Step 4:

To prove that has algebraic immunity , we need inter-

mediate results. In the proofs, we will use the fact that, for any

and any subset of , the restriction to of

an annihilator of is an annihilator of the restriction of to

. For technical reasons, during our proofs, we will encounter

certain situations when the degree of a function is negative. As

such functions cannot exist, we will replace those functions by

function .

Lemma 2: Assume that the function has been gen-

erated by Construction 2 for and that

for . If, for some and , there exist

and such that

then .

Proof: We prove Lemma 2 by induction on .

For the base step , implies

that such a function cannot exist, i.e., is identically , which

gives .

Now we prove the inductive step. Assume that, for , the

induction assumption holds (for every ). We will show

it for (and for every ). Suppose that there exist

and with .

By construction, if then we have

and if then

Let us denote

Since , from the ANF of

we deduce the following.

• . If

then , implies that

, according to the induction assumption. If ,

then we have , and therefore

, with . Suppose

that , then we would have

, since , by hypothesis; a

contradiction. Hence i.e., .

• and ,

, imply that , according to the

induction assumption.

• and ,

, imply that , according to the

induction assumption.

• and ,

, imply that , according to the

induction assumption.

Hence, we get .

Lemma 3: Assume that the function has been gen-

erated by Construction 2 for and that

for . If, for some and , there ex-

ists such that , then

.

Proof: We prove Lemma 3 by induction on .

For the base step (i.e., ), we have from construction

(this can easily be checked by induction). Hence,

, and .

Now we prove the inductive step. Assume that the induction

assumption holds for , , and let us prove it

for . So let where

.

If , we have
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Let us denote

we have

and

1) Since , we have

. Since , we have

, according to the induction assumption. So the ANF

of is

. Then , ,

, which implies , ,

.

2) We have then and

. Since

, we have , according to the

induction assumption.

3) Since , the ANF of is

. So, .

Here . So, we can not use the

induction assumption directly. Now we break again into

four parts as

Using similar arguments as in items 1) and 2), we have

. So, .

Doing the similar process times, we will get some func-

tion . At every step of this

subinduction, the degree decreases by , and we have then

. Breaking for the last time into

four parts and using that ,

we have

Using similar arguments as in items 1) and 2), we have

. So, . And

implies that, if , then

, a contradiction. Hence, which implies

.

If , then the proof is similar to the last step in item 3)

above.

Now we present the main result.

Theorem 5: The algebraic immunity of the function ob-

tained in Construction 2 equals , for every .

Proof: We prove Theorem 5 by induction on . There is

nothing to check for . In the inductive step, we assume the

hypothesis true until and we have to prove that any nonzero

function such that has degree at least

(proving that any nonzero function such that

has degree at least is similar).

Suppose that such a function with degree at most

exists. Then, can be decomposed as

where , and . The

algebraic normal form of is then

If has degree at most , then and

have degrees at most . Because both functions lie in

and , we deduce that

and , which give, . Therefore,

and

According to Lemma 2, we have . According to

Lemma 3, we have then that gives, .

This completes the proof.

Remark 3: Let be some -variable function and let

, be the direct sum of and . Then we

have the following results.

1)

.

2) If is -resilient, then is also -resilient.

3) .

4)

.

5) , for nonzero function (see [30]

for detailed proof).

In particular, if is a nonconstant -variable function, we get a

balanced function with optimum algebraic immunity.

Obviously, this is not the only secondary construction which

can be used with .

A. Properties of the Constructed Functions

1) Hamming Weight and Nonlinearity of : We shall see

that is not balanced (it does not output as many ’s as ’s),
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but that its bias with respect to balancedness tends to zero when

tends to infinity.

Proposition 4: The Hamming weight of

equals for and . Then

for

Proof: Let us denote and

. According to Relations (4) and (5), we can

write:

for any (6)

for any (7)

and

for any (8)

Let us prove by induction on that , for

any . This is true for and for any . Indeed, we

have

for any

So, and for .

We assume now that the induction assumption is true until

and we prove it for . Note that we have

and . We

have also

since

and

So, (6) and (7) and the induction assumption imply that

The weight of is therefore equivalent to

, which is asymptotically balanced.

Given the recent result of [36], we can exactly calculate the

nonlinearity.

Theorem 6: .

Proof: Consider the -variable function

. This function is at a distance

from the linear function . Thus,

. Since is of full algebraic immunity

[30], following [36, Corollary 1], one gets

. Thus,

(9)

It is well known and easily checked that, for every -variable

function , we have . This completes

the proof.

Note that , which is strictly greater

than the lower bound as presented in [36, Corol-

lary 2]. However, the nonlinearity of the function is not very

good. The ratio , where

is the maximum possible nonlinearity of Boolean functions,

equals and is therefore not sufficient for use of

the function without using a secondary construction to enhance

the nonlinearity.

2) Algebraic Degree of : When the weight of the func-

tion is odd, then clearly its algebraic degree is . We shall

subsequently prove that, when the weight is even, the algebraic

degree is also very high. Note that, denoting respectively by

and the -variable functions equal to the factors of

in the ANFs of and , (4) and (5) straightforwardly imply

that and . But it seems

difficult to find directly the exact expression of satisfying

these constraints (with the initialization for ,

for ). We shall observe that, changing the

initialization in the recursive definition of , and using only

(5) in the recursion leads to an affine function . Considering

then the difference between and will permit to obtain a

recurrence relation on which will not involve the ’s. In

fact, in the next proof, we shall be able to partially develop this

method directly on , which will give more information; we

will deduce then our result on through a simple reduction.

Proposition 5: Let be the -variable function equal to the

factor of in the ANF of . Then we have

(10)

where is some bit depending on .

Proof: Let be recursively defined by (5), with the ini-

tialization , for any positive or negative . We

have (this can

be easily checked by induction). The function

satisfies (5) and we have for , for

.

The function is the addition of what we collect with (5) (or

its translation in terms of ANF) for all the paths starting from
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the point of coordinates and arriving for the first time

to a point of coordinates (where can be any integer

between and ), and constituted of the concatenation of

elementary paths going from a point of coordinates to a

point of coordinates , .

We deduce that

where , , and

.

This implies, for

where the ’s are constants. The number

equals for ; it equals for ; and for

, it equals the number of paths from the point of

coordinates where ; to the point of

coordinates where ; which do not cut the

axis of equation (indeed, the two last elementary paths are

necessarily and ).

Note that is null if is odd. We assume now that is

even. Then equals the number of all paths between these two

points (the points and ), that is, ,

minus the number of paths cutting the axis . This last

number equals the number of paths from the point of coordinates

where ; to the point of coordinates

where ( ; ) (replacing the lower part of each path

cutting the axis by its mirror image with respect to this axis). We

have then

Hence, since is even for even greater than and

equals for , and according to Lucas’ theorem,

equals if and only if is a power of . We deduce,

denoting by

This completes the proof.

For small indices, this gives

The coefficient of in satisfies the relation

and , . It can be shown

by induction that , i.e., has degree , if and only

if is a power of (but we knew this already thanks to Lucas’

theorem and to Proposition 4). Similarly, the coefficient of

(or, of ) in equals if and only if is a power of .

Hence, has most often degree exactly . We deduce

the following.

Proposition 6: For the degree of is as follows.

1) if and only if is a power of .

2) If neither nor is a power of , then

.

3) If is a power of , then .

Proof: From the preceding discussion, items 1) and 2) are

proved. For item 3), if is a power of , then

. Since

we have . So, for item 3),

.

3) The Structure of and an Efficient Way of Computing

its Output: Here we study the structure of . We observe that

the function can be written as the sum of two functions

and , which can be obtained from symmetric functions by

the same transformation easy to implement. Let and

be the sequences of Boolean functions satisfying (4) and (5) for

every , and initialized as follows:

(that is, , the indicator of ) and

for , for . The function

equals the sum of and , since the sum of and

equals for and and satisfies the same

recurrence relations. Note that, since equals and ,

for every , the restriction of to the set of words whose

two first coordinates are not both null is constantly equal to zero.

We shall see that the restriction of to the set of words whose

two first coordinates are both null—let us denote this function
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by —is related to the Boolean function on equal

to the indicator of the set of vectors whose Hamming weights

equal and .

Proposition 7: Let be the -variable Boolean function

recursively defined by the following relations:

• for any , ,

where the truth table of is the reverse of the

truth table of (hence,

); in terms of ANF

• for any and any

in terms of ANF

• and for any .

Then, for any and any , equals the indicator

of the set of vectors of whose Hamming weights equal

and .

Proof: We show this by induction on . It is true for .

Let us prove that, if it is true for some , then it is true for

.

— if , a vector whose Hamming weight

equals or either equals , where

is a vector of length whose Hamming weight equals

or , or equals

or , where has Hamming weight or ,

or equals , where has Hamming weight

or . This corresponds

to the relation ;

— if , a vector whose Hamming weight

equals or either equals , where is the

all-one vector of length and has Hamming weight

or , or equals or ,

where has Hamming weight or , or equals ,

where has Hamming weight or . This corre-

sponds to the relation .

Remark 4: Note that the ANF of is easy to obtain, since

is symmetric: for every , the coefficient

of the monomial in the ANF of is

, and Lucas’ theorem gives then its effective value.

More importantly, the output to is quite easy to compute,

with less than additions with carries.

Let us see what transformation on the truth tables of the func-

tions permits, from the value of , to obtain the value of

(i.e., of the restriction of to the set of those words

whose two first coordinates are both null—we know that, for

the other vectors, takes null value). The only difference

between and is in the relations

and

When calculating recursively the value of the function at

a vector , we arrive to a situation where must

be reversed when, reading from its right-

most position to its leftmost position, the number of times we

encountered , minus the number of times we

encountered equals , for the first time.

We then have to complement all of the remaining coordinates

of and apply recursively the same transformation to these re-

maining coordinates.

For instance, for , we start with a null difference

(between the numbers of and of ), we read , so the dif-

ference is , and we have to complement into ; after

reading the two rightmost bits of this last vector, the difference

remains null and after reading the two leftmost bits, it is . So

we have . Let us give a few other

examples:

and

The inverse of this transformation is easy to deduce: we

apply a similar principle, but each time we have applied a

complementation according to the count on the previous pairs

of bits, we complement according to the count of previous pairs

of bits of the input vector. This gives the following algorithm,

the transformation from to such

that .

Algorithm 1: Input Output

Initialize by

while do

—if then

—else if then

If then replace

by and apply

—

The output to this algorithm is the transformation (inverse

of the above discussed transformation) from to

such that . So,

to compute , first we run Algorithm 1 to get the

transformation . Then computes
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the value for . Hence, we have here a very fast

way of computing the output to , and therefore to .

Let us see now that the situation with is similar. By defi-

nition, for any and any , is the concatenation of functions

equal to and . Hence, it is the direct sum of

and of the function , where is the -vari-

able function such that equals

for every , equals

for every and every and .

Proposition 8: Let be the -variable Boolean function

recursively defined by the following relations:

• for any

• for any and any

• .

Then, for any and any , equals the indicator

of the set of vectors of whose Hamming weights belong to

one of the two sets

Proof: Let us show this by induction. This is true for .

If it is true for some then it is true for

— if , a vector whose Hamming weight

belongs to

either equals , where is a vector of length whose

Hamming weight belongs to this same set, that is, to

or equals or , where the Hamming weight of

belongs to

or equals , where the Hamming weight of belongs to

This corresponds to the relation

— if , a vector whose Hamming weight

belongs to

either equals , where the Hamming weight of

belongs to

or equals or , where the Hamming weight of

belongs to

or equals , where the Hamming weight of belongs to

This corresponds to the relation

Function can be obtained from by the same algo-

rithm as the one giving from .

We now present the final algorithm to compute

. To compute this we need a preprocessing

step to establish two symmetric functions and on

variables. As the two functions are symmetric, the

following preprocessing step calculates the short truth tables

(corresponding to each input weight) of those two functions.

Here we use the notation for the output to a symmetric function

at inputs of weight as .

Preprocessing:

• for ( ; ; )

— ;

• ;

• for ( ; ; )

— if then

• for ( ; ; )

— if then

Now the following algorithm calculates .

Algorithm 2: Input: .

• .

• Apply Algorithm 1 on the bits vector .

• .

• Output: .

So, following Algorithm 2, the output to can be very ef-

ficiently computed. Precisely, the number of elementary oper-

ations which have to be performed for calculating the output

to is less than , since, for each of the functions

and , it equals the number of complementations and addi-

tions (with carries) to apply Algorithm 1, that is, at most ,
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plus the number of additions with carries to calculate the output

to a -variable symmetric function, plus, in the case of

, the addition (without carry) of a -variable affine func-

tion. This means that we can use in a stream cipher, with

the same efficiency as when we used a function defined by a

lookup table or by an ANF, with variables (in prac-

tice, we shall have to choose with fewer variables and to

use it in a secondary construction, to obtain a balanced—and if

necessary resilient—function with a good nonlinearity). For in-

stance, if equals , then equals ; if

equals , then equals , and if equals , then

equals . Recall that, before the existence of algebraic at-

tacks, Boolean functions used in stream ciphers had usually at

most ten variables, for reasons of efficiency (unless they were

peculiar as in the case of LILI-128, but their peculiarities have

been responsible of their weaknesses with respect to algebraic

attacks).

Thanks to the observations above, it may be possible to de-

duce the ANF’s of , from those of , . But the fact

that we could obtain a fast way of computing the output to

is more practically interesting than obtaining its ANF.

B. Different Initializations in Construction 2

A drawback of the function is that it is unbalanced. This

happens since is unbalanced. If one starts the con-

struction with as affine function, then the function will

always be balanced as for ,

. Now we present some observations in this regard.

1) Take .

Case 1: if is even and

if is odd for . These are presented in the

following table.

Case 2: Also in brackets, we present the results when

if is odd and if is

even for .

function degree nonlinearity resiliency

Here, for the first case, is always -resilient,

optimal algebraic immunity is achieved and non-

linearity is slightly lesser than what we have ob-

served for Construction 2. However, in the second

case, has poor nonlinearity and lower AI.

2) Then we have attempted and when

is even (respectively, odd) and when is

odd (respectively, even). We found algebraic immunity is

optimal but poor nonlinearity. The results are same for both

the cases so we do not write them separately in brackets.

function degree nonlinearity resiliency

3) Take and , . We find that the

ANF of is of the form , where is

a function on many variables. So, AI will be ,

since is annihilator of for any .

So it seems that just by changing the initializations in Construc-

tion 2, it may not be possible to get dramatically better results.

One may need to attempt for completely different kinds of con-

struction to achieve better parameters.

VI. CONCLUSION

In this paper, the algebraic immunity property of a Boolean

function was studied in great details. We first identified a funda-

mental relationship between the Walsh spectrum and algebraic

immunity of a Boolean function, leading to a lower bound on

the nonlinearity (during the review process of our paper, an im-

provement of this bound has been found by Lobanov [36]); this

question of knowing whether these two criteria were opposite

or not was challenging and this shows that they are not. More-

over, we showed similar relationship with the higher order non-

linearities. We followed with certain enumeration results of in-

dependent annihilators, which have some interest from compu-

tational viewpoint. Then we have studied some existing con-

structions in terms of their algebraic immunity, both theoreti-

cally and experimentally; this was necessary for practical design

of cryptographic functions. Next, we presented a construction

of Boolean functions with maximum possible algebraic immu-

nity and studied the cryptographic properties of the construc-

tion. The constructed functions have high degrees but are not

balanced and have insufficient nonlinearity. However, they can

be used in secondary constructions settling these drawbacks. We

gave an algorithm to compute their outputs, which makes them

as easy to calculate as all the other known (infinite classes of)

functions with best possible algebraic immunity. All of these

other functions are symmetric and present therefore a risk if at-

tacks using this peculiarity can be found in the future. We be-

lieve this makes the functions studied here more interesting for

a use in stream ciphers.

The field is still open in many aspects. To be specific, get-

ting a primary construction with optimum properties in terms

of algebraic immunity and several other cryptographic proper-

ties (balancedness, nonlinearity), and avoiding dangerous pecu-

liarities, looks extremely challenging at this point of time, since

it may provide a more efficient design of cryptographic func-

tions meeting all the necessary criteria for being used in stream

ciphers (however, the question of a fast implementation of the

functions will have to be also addressed). In this consideration,
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the method of construction presented in this paper opens a com-

pletely new way of designing cryptographic functions having

provably optimum algebraic immunity and which can be very

efficiently implemented.
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