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Algebraic Immunity for Cryptographically Significant
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Abstract—Recently, algebraic attacks have received a lot of
attention in the cryptographic literature. It has been observed
that a Boolean function f used as a cryptographic primitive, and
interpreted as a multivariate polynomial over F-, should not have
low degree multiples obtained by multiplication with low degree
nonzero functions. In this paper, we show that a Boolean function
having low nonlinearity is (also) weak against algebraic attacks,
and we extend this result to higher order nonlinearities. Next, we
present enumeration results on linearly independent annihilators.
We also study certain classes of highly nonlinear resilient Boolean
functions for their algebraic immunity. We identify that functions
having low-degree subfunctions are weak in terms of algebraic
immunity, and we analyze some existing constructions from this
viewpoint. Further, we present a construction method to generate
Boolean functions on n variables with highest possible algebraic
immunity [Z] (this construction, first presented at the 2005
Workshop on Fast Software Encryption (FSE 2005), has been the
first one producing such functions). These functions are obtained
through a doubly indexed recursive relation. We calculate their
Hamming weights and deduce their nonlinearities; we show that
they have very high algebraic degrees. We express them as the
sums of two functions which can be obtained from simple sym-
metric functions by a transformation which can be implemented
with an algorithm whose complexity is linear in the number of
variables. We deduce a very fast way of computing the output to
these functions, given their input.

Index Terms—Algebraic attacks, annihilators, Boolean func-
tions, nonlinearity, stream ciphers, Walsh spectrum.

I. INTRODUCTION

very well studied model of stream cipher is the nonlinear
Acombiner model, where the outputs to several linear feed-
back shift registers (LFSRs) are combined using a nonlinear
Boolean function to produce the key stream. This model has
undergone a lot of cryptanalysis and to resist those attacks, dif-
ferent design criteria have been proposed for both the LFSRs
and the combining Boolean function. The main criteria on the
combining function are balancedness, a high algebraic degree, a
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high nonlinearity, and correlation immunity. Another model is
the filter generator, in which the content of some of the flip-flops
in a single (longer) LFSR constitute the input to a nonlinear
Boolean function which produces the keystream. This model is
theoretically equivalent to the combiner model, but the attacks
do not work quite similarly on each system. The main criteria
on the filtering function are balancedness, a high algebraic de-
gree, and a high nonlinearity. There are a large number of papers
studying all of these criteria and one may refer to [12], [34], [43],
[14], [50], and the references in these papers for more details.

Very recently, a new attack that uses cleverly overdefined sys-
tems of multivariate nonlinear equations to recover the secret
key has gained a lot of attention (the idea of using such systems
comes from Shannon [45], but the improvement in the efficiency
of the method is recent). It is known as algebraic attack [3], [4],
[22]-[25], [35], [38]. Given a Boolean function f on n variables,
different kinds of scenarios related to low-degree multiples of f
have been studied in [24], [38]. The core of the analysis is to
find minimum (or low) degree annihilators of f orof 1+ f,i.e.,
to find minimum (or low) degree nonzero functions g such that
fxg=0o0r(1+ f)*g = 0. To mount the algebraic attack,
one needs only low-degree annihilators [24], [38] of f,1 + f
(at least one and, better, as many linearly independent ones as
possible).

In this paper, we study the immunity of Boolean functions
against algebraic attacks, called the algebraic immunity. We
show some relationships between the algebraic immunity and
the nonlinearity of a Boolean function by proving that a Boolean
function with low nonlinearity must have low algebraic immu-
nity. This result relates the algebraic immunity to the Walsh
spectrum of a Boolean function. We also present enumeration
results on the number of annihilators.

We study the algebraic immunity of those functions satisfying
the criteria recalled above. We present experimental results on
highly nonlinear resilient (that is, balanced and correlation im-
mune) functions which are rotation symmetric [32], [47], [48],
[33], [37]. The experiments have been done using Algorithm 1
[38] on functions of seven, eight, and nine variables and their
complements. The results found are encouraging, which shows
that there exist highly nonlinear resilient functions that are also
good in terms of their algebraic immunity (see also [20]).

So far, little attempt has been made to provide construction
of Boolean functions that can resist algebraic attacks. One at-
tempt in this direction is to analyze some existing construc-
tion methods that can provide Boolean functions with some
other cryptographic properties to see how good they are in terms
of algebraic immunity [5]-[7], [16]. We study different con-
struction methods of resilient functions: primary constructions,
which produce functions directly, and secondary constructions,
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which give new functions from previously designed ones. We
have experimentally studied some functions which are of Maio-
rana—McFarland type [11], i.e., which can be seen as concatena-
tions of affine functions. We also show that, if a Boolean func-
tion has low-degree subfunctions, then it is not good in terms
of algebraic immunity. This completes the analysis on Maio-
rana—McFarland type functions presented in [38].

Analyzing existing construction methods to see how good
they are in terms of algebraic immunity is only an ad hoc at-
tempt, as these existing construction methods are not meant for
getting good algebraic immunity. In this paper, we provide a
construction method where the algebraic immunity is the main
concern. We introduce the (primary) construction of a 2k-vari-
able Boolean function with algebraic immunity provably equal
to k (that is, optimal). This construction, initially presented at
the 2005 Workshop on Fast Software Encryption (FSE 2005)
and presented there as a secondary one, has been originally the
first one producing functions with optimum algebraic immunity.
The construction is iterative in nature (a function with two more
variables is constructed at each step). This function can then
be used in a secondary construction, to obtain a balanced func-
tion with highest possible algebraic immunity or with a reason-
ably high algebraic immunity, nonlinearity, and (if necessary)
resiliency order. We show that the function has very high alge-
braic degree. We also give an algorithm permitting to deduce the
function from two symmetric functions, which allows to have a
very fast way (whose complexity is linear in the number of vari-
ables) of computing the output to the function, given its input.
This was necessary so that the function can be efficiently used.
Indeed, to make the complexity of algebraic attacks greater than
2128 (j.e., more complex than exhaustive search) a strict min-
imum seems an algebraic immunity of 8—see Section II, Re-
mark 1—which implies at least 15 variables for the function
itself, plus the number of variables necessary for applying a
secondary construction ensuring balancedness and good non-
linearity, and if necessary good resiliency; the efficiency of the
stream cipher is then a real challenge.

Other fast computable functions exist with optimal algebraic
immunity (they have been given originally in [29] and a little
later in [10], with further examples). They are symmetric and
present therefore a risk if attacks using this peculiarity can be
found in the future. Our functions do not have this drawback.

As this current effort has been an ongoing work for some
time, a lot of issues have been raised in this area in the meantime.
One should first note that by algebraic immunity we mean the re-
sistance against standard algebraic attacks, done in a particular
way, i.e., using linearization. One does not need linearization
if algorithms using Grobner bases can be properly exploited.
However, algebraic immunity is still a relevant notion, since
cryptosystems must at least resist the attacks by linearization,
and since the complexity of the attacks by Grobner bases (which
are faster than the attacks by linearization) is difficult to eval-
uate. Further, it should be noted that based on some recent works
related to fast algebraic attacks [2], [25], [9], one should concen-
trate more carefully on the design parameters of Boolean func-
tions for proper resistance. This is the reason why, in one of the
recent papers [29], the term of “annihilator immunity” is used
instead of ““algebraic immunity.” However, even in the case of
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fast algebraic attacks, the algebraic immunity plays an impor-
tant role, as shown in [1].

II. PRELIMINARIES

A Boolean function on 7 variables may be viewed as a
mapping from F3J' into F5, the finite field with two elements.
We denote by B,, the set of all n-variable Boolean functions.
One of the standard representations of a Boolean function

f(z1,...,x,) is by the output column of its truth table, i.e., a
binary string of length 2"
.f:[.f(0707"'70)7.f(1707'"70)7.f(0717"'70)7

FOL1,..,0), .. f(1,1,.. . 1)

The set of 2 € FJ* for which f(z) = 1 (respectively, f(z) = 0)
is called the on-set (respectively, offset), denoted by 1¢ (respec-
tively, O¢). We say that a Boolean function f is balanced if the
truth table contains an equal number of 1’s and 0’s.

The Hamming weight of a binary string S is the number of
ones in the string. This number is denoted by wt(S). The Ham-
ming distance between two strings, S; and S5 is denoted by
d(S1,S2) and is the number of places where S; and So differ.
Note that d(S1, S2) = wt(S1 + S2) (by abuse of notation, we
also use + to denote the addition in F5, i.e., the XOR).

Any Boolean function has a unique representation as a mul-
tivariate polynomial over F5, called the algebraic normal form
(ANF)

1<i<n

+ E i TiT5 4 -+ 012, .nT1T2 .. - Ty
1<i<j<n

where the coefficients aog, a;, a;j, ..., a12. » belong to {0,1}.
The algebraic degree deg(f) is the number of variables in the
highest order term with nonzero coefficient. A Boolean function
is affine if there exists no term of degree strictly greater than 1
in the ANF and the set of all affine functions is denoted by A,,.
An affine function with constant term equal to zero is called a
linear function.

It is known that a Boolean function should have high alge-
braic degree to be cryptographically secure [31]. Further, it has
been identified recently that it should not have a low-degree mul-
tiple. More precisely, it is shown in [24] that, given any n-vari-
able Boolean function f, it is always possible to get a Boolean
function g with degree at most [ %] such that f x g has degree at
most [ 5]. Here the functions are considered to be multivariate
polynomials over F and f * ¢ is the polynomial multiplication
over Fy. Thus, while choosing a function f, the cryptosystem
designer should be careful that it should not happen that the de-
gree of f x g falls much below [ %] with a nonzero function g
whose degree is also much below [%]. In fact, as observed in
[24], [38], it is enough to check that f and f + 1 do not admit
nonzero annihilators of such low degrees.

Definition 1: Given f € B,, define

AN(f)={g € Bn| f*g=0}.
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Any function g € AN(f) is called an annihilator of f.

To check that a function has good algebraic immunity, it is
necessary and sufficient to check that f and f + 1 do not admit
nonzero annihilators of low degrees. Indeed, if f or f + 1 has
an annihilator g of low degree d, then f x g either is null or
equals g and therefore has degree at most d; conversely, if we
have f x g = h where g # 0 and where g and h have degrees
at most d, then either ¢ = h, and then ¢ is an annihilator of
f+1,0r g # h,and we have then f x g = f x h by multiplying
both terms of the equality f x ¢ = h by f, which proves that
f * (g + h) = 0 and shows that g + h is a nonzero annihilator
of f of degree at most d.

Definition 2: Given f € B, we define its algebraic immu-
nity as the minimum degree of all nonzero annihilators of f or
f + 1, and we denote it by AZ,,(f).

Note that AZ,,(f) < deg(f), since f* (1+ f)=0.As f or
1+ f must have an annihilator at a degree < [ 5| [24], we have

AL (f) < [51-

Remark 1: Let an n-variable function f, with algebraic im-
munity [ %] be used as a filtering function on a linear automaton
(e.g., an LFSR) with m > 2k states, where £k is the length of the
key (otherwise, it is known that the system is not robust). Then
the complexity of an algebraic attack using one annihilator of
degree [ %] is roughly

(e () = (- ()

(see [24]). Let us choose £k = 128 (which is usual) and
m = 256, then the complexity of the algebraic attack is greater
than the complexity of an exhaustive search, that is 2!2%, for
n > 15. If the attacker knows several linearly independent
annihilators of degree [% ], then the number of variables must
be enhanced.

Remark 2: There are some recent works [2], [25], [9], [1],
based on which one may need to consider the situations fur-
ther to annihilators. Consider, for instance, the situation when
f*h = 0, and h is a lowest degree annihilator of f. Let the
degree of h be dj,. Then generally we expect that the cryptanal-
ysis will be performed considering the annihilator / and its de-
gree is an important parameter in the complexity of the attack.
Consider that one has designed a scheme considering this sce-
nario. However, it may very well happen that f x g = H, where
deg(H) = deg(h), but deg(g) < deg(h) and in such an event
one may get a better attack (with lower complexity) using g.
This has been exploited in [26] to present an attack on SFINKS
[8].

In this work, we are concentrating on algebraic immunity as
defined in Definition 2. One should note that algebraic immunity
(as in Definition 2) is not a property that can resist all kinds of
algebraic attacks, but clearly this is a necessary one. Our studies
in this paper are based in the scope of this definition and we leave
it as open problem to see how these analyses can be extended
keeping in mind the properties emerged to resist fast algebraic
attacks.
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The nonlinearity of an n-variable function f is its distance
from the set of all n-variable affine functions, i.e.,

ni(f) = min (d(f,9)).
Boolean functions used in cryptographic systems must have
high nonlinearity to withstand linear and correlation attacks
[31], [12].

It is known that there are highly nonlinear Boolean functions
of low degrees; as example, there exist quadratic bent func-
tions that have degree 2 and maximum possible nonlinearity
on—1 _ 92%-1 when n is even. Such functions f, as they are
by themselves of low algebraic degree, will have low values of
algebraic immunity AZ,,(f). On the other hand, we may have
Boolean functions of low nonlinearity with high algebraic de-
gree. Interestingly, if we replace the algebraic degree by the al-
gebraic immunity, the situation changes. In this paper, we show
that, if a function has low nonlinearity, then it must have a low
value of AZ, (f). This implies that if one chooses a function
with good value of AZ,(f), this will automatically provide a
nonlinearity which is not low. However, it does not assure that
the nonlinearity is very high (see Section III). Hence, the alge-
braic immunity property takes care of two fundamental prop-
erties of a Boolean function, algebraic degree and nonlinearity,
but it does this incompletely in the case of nonlinearity. We will
recall also that this property stays unchanged with respect to
linear transformation unlike correlation immunity or propaga-
tion characteristics.

Many properties of Boolean functions can be described by the
Walsh transform. Let z = (z1,...,2,) and w = (w1, ...,wy)
both belonging to F3' and - w = x1wy + - - - + 2w, Let f(z)
be a Boolean function on n variables. Then the Walsh transform
of f(z) is an integer valued function over F* which is defined
as

Wiw) = 3 (-1,

zEF}

A Boolean function f is balanced if and only if W;(0) = 0.
The nonlinearity of f is given by
1

0 =2 g

Wi (w)|-

Correlation-immune functions and resilient functions are two
important classes of Boolean functions. A function is m-re-
silient (respectively, rnth-order correlation immune) if and only
if its Walsh transform satisfies W;(w) = 0, for 0 < wt(w) < m
(respectively, 1 < wt(w) < m).

Following the notation as in [42], [43], [48] we use
(n,m,d,o) to denote n-variable, m-resilient function with
degree d and nonlinearity o. Further, by [n,m, d, o] we denote
unbalanced n-variable, m-th order correlation immune function
with degree d and nonlinearity o.

III. ALGEBRAIC IMMUNITY AND WALSH SPECTRUM

Toward proving the results relating algebraic immunity and
the nonlinearities of a Boolean function, we first present the
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following result, where we relate the algebraic degree with the
weight of the function.

Theorem 1: Let f € By, and AZ,(f) > d. Then

n— 1

(D)< X (7):

d d—
i=0 =0

Hence, for every n-variable function f, we have

AT, (f)—1 " n—AZ,(f) "
2 (i)SWt(f)S ; (,,)

Proof: Let g be a function of degree at most d. Let the ANF
of g equal

E G ;5 + -

1<i<j<n
+ E Qi ...
1< < <ig<n

n
ag + E a;T; +
1=1

igTiy - Tiy.

Note that ¢ is an annihilator of f if and only if f(z) = 1
implies g(z) = 0. Hence, g belongs to AN(f) if and only if
the coefficients in its ANF satisfy the system of homogeneous
linear eguations which translates this fact. In this system, we
have Y. (’Z) number of variables (the a’s for the monomials
up to degree d) and wt(f) many equations. If the number
of variables is greater than the number of equations, then
we will get nontrivial solutions. Thus, the fact that f has no
annihilator g of degree d implies that the number of equations
is greater than or equal to the number of variables, that is,
wi(f) > 300, (). Similarly, when considering 1+ f, we get
wt(14+f) > 3%, (g). This gives, wt(f) < 2" — >0 (%),
ie, wi(f) < Y07 ("). The last double inequality is
obtained by choosing d = AZ,,(f) — 1. O

(5]
(51,

N3

Theorem 1 gives an alternative proof of AZ,(f) <
which was given in [24]. Indeed, when applied to d =
it leads to a contradiction, since we have

©[3

%1 [5]-1

(1) 5 ()

1=0 i=

w3

Note that the converse of Theorem 1 is not always true. For
example, the affine functions are balanced, but clearly they have
linear annihilators.

Applying Theorem 1 with d = [ 5] — 1, we get the following.

Corollary 1: AT, (f) = [%] implies

1 f is balanced when n is odd;

2 Yt (") <wt(f) <320 () when n is even.

Now we connect algebraic immunity with nonlinearity. We
first need a simple lemma, which has its own interest.

Lemma 1: Forany f € B,, and any | € A,,, we have

ALn(f) =1 < ATn(f +1) < AZn(f) + 1. (M
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More generally, for any f € B, and for any h € B,, whose
algebraic degree equals 7, we have

AT, (f) — 7 < ATo(f +h) < AT () + 7.

Proof: For any g such that f * g = 0, we have (f + h) *
((h41)*g) = 0. For any g such that (1 + f)* g = 0, we have
(1+ f+h)*x((h+1)x*g) = 0. This gives the inequalities on
the right. Applying them to f + [ and f + h instead of f gives
then the inequalities on the left. O

Note that these relations are still valid (changing 7 into the
global number of variables) if f and [ (respectively, h) are de-
fined on different (maybe intersecting) sets of variables. Note
also that, if these sets of variables are disjoint, then, denoting by
m the global number of variables, we have

AL, (f) < AL, (f+1) < AZ,.(f)+1
and

AT, (f) S AZp(f +h) < AZL(f) + 7

since it is then possible to obtain an annihilator of degree
AZ,.(f + 1) (respectively, AZ,,(f + h)) of f or f + 1 by
restricting to FJ' x {0} an annihilator of the same degree of
f + 1 (respectively, f + h).

Siegenthaler [46] proposed to add to a given function f a
linear function on disjoint variables for increasing the resiliency
order of f; clearly, this secondary construction does not permit
achieving good algebraic immunity.

Theorem 2: If nl(f) < Zf:() (7). then AZ,.(f) < d +
1. More generally, if the Hamming distance nl,.(f) between f
and the set of Boolean functions of algebraic degrees at most r
(the so-called Reed—Muller code of order r, RM(r, n)) satisfies
nl,.(f) < Z;:izo (™), then AZ,,(f) < d + r. In other words
AT, (f)—r—1

n
> ()

i=0

nl,(f) >

Proof: Let h be a function of degree at most 7 such that
nlo(f) = d(f,h) = wt(f + h). I nl.(f) < 30, (") then
AZ,(f + h) < d, according to Theorem 1. Lemma 1 shows
then that AZ,,(f) < d + r. The last inequality is obtained by
choosing d = AZ,,(f) —r — 1. O

During the review process of this paper, a bound on the (first-
order) nonlinearity has been obtained in [36]:

(")

This bound improves upon the corresponding bound of The-
orem 2. It has been further generalized in [18] to a bound on the
higher order nonlinearity, which improves in some cases upon
the corresponding bound of Theorem 2.

Theorem 2 and the result of [36] give a new reason why one
should not use functions f with low nonlinearity, since in that
case AZ,, (f) would be low. However, they do not assure that if
f has high algebraic immunity (for instance, an optimum one
ATZ,(f) = [5]) then its nonlinearity will be high. Indeed,

AL, (f)—2

>

=0

nl(f) > 2
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the result of [36] implies then that f has nonlinearity at least
[41-2
25020 (™71), thatis,

e n—1
e ()
2
if n is odd and

gn-1 (n—l) <n—1>
s-1) Uy

if n is even. According to Stirling’s formula, these values are
approximately equal to 2"~ — \/221? for odd n and to 2"~ —

n41 . .
\2/% for even n. They are very far from the maximum possible
on /2—1 )

nonlinearity 2"~ 1 —

A. Count of Annihilators

In the proof of Theorem 1, we get wt(f) many homogeneous
linear equations whose variables are the coefficients in the ANF
of g. Let us denote the coefficient matrix of this system of equa-
tions by My 4. Then My 4 has wt( f) many rows and Z?:o )
many columns. The rank 7 4 of My 4 satisfies

>0}

1=

T4 < min {Wt(f)

1) Ifrpg =0, (), then there is no nonzero annihilator

of degree < d.

2) Ifryq < 30, (7). then there are nonzero annihilators of
degree < d. There will be Z;:izo () — r¢,q many linearly
independent annihilators having degree < d.

It is clear [24] that a larger number of independent annihilators
helps better in cryptanalysis. Thus, when considering a Boolean
function, one should check the number of independent annihi-
lators at the lowest possible degree.

Definition 3: Given f € B, we denote by #LDA,,(f) the
number of independent annihilators of f of degree AZ,,(f).

Theorem 3:
1) Take f € B,,, with AZ,,(f)=d. Then #LDA (<)
2) Take balanced f € B,, with AZ,,(f) = %, n even. Then

#LDAL() = 4+ (1)

3) Take f € B, such that AZ,(f) =

#LDA,(f) = (n+1)

Proof: The proof of item 1) is as follows: if two annihila-
tors of degree d have the same degree d part in their algebraic
normal forms, then they must be equal since their sum being
then an annihilator of degree strictly smaller than d, it must be
null. We deduce that #LDA,,(f) is upper-bounded by the di-
mension of the quotient RM(d, n)/RM(d — 1,n), thatis, (7).

Now we prove item 2). Here, wt(f) = 2" 1. The function
f has an annihilator of degree 7. The corresponding coefficient
matrix My » has 2"~! many rows and

2’

n+1

“5=, n odd. Then

w3

()=

SRS

=0
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many columns. Thus, rank of My, = is at most 2"~ '. The number
of independent solutions is lower bounded by

(b ()4 ()

Now we prove item 3). Here wt(f) = 2"~1, according to
Corollary 1. By hypothesis, there is no nonzero annihilator up
to degree 2= 1 - The coefficient matrix M, »—1 isa 2"~ Lxon—
square matnx since =

=0

As it has no nontrivial solution, its rank 7" equals 2", The func-
tion f has an annihilator of degree . In this case, the corre-
sponding coefficient matrix M nt1 has 2"~1 many rows and
2n-l 4 (n+1) many columns. Thus the rank of M
that of M,

solutions equals

e n e n
e ()= (k) o
2 2

In Section IV, we study certain constructions of cryptograph-
ically significant Boolean functions in terms of algebraic immu-
nity.

i1 equals
, i.e., equals 2", The number of 1ndependent

IV. STUDYING FUNCTIONS FOR THEIR ALGEBRAIC IMMUNITY

A statistical analysis has shown in [38] that any randomly
chosen balanced function on large number of variables has no
bad algebraic immunity with very high probability. This result
has the same flavor as the fact that most of the Boolean functions
have high algebraic degrees and high nonlinearities in general
(see [39]). That is, if one chooses a Boolean function randomly,
the probability that these three characteristics will not be bad
is high. Heuristic arguments exposed in [20] suggest even that
almost all Boolean functions have in fact algebraic immunity
at least |5 |. This has been later confirmed in [51]. However,
when considering a specific construction technique, the number
of functions constructed by that method is much lower than the
total space of Boolean functions and generally such statistical
analysis does not work.

A. Experimental Results on Rotation Symmetric Boolean
Functions

If we intend to construct (n,m,d,z) functions with best
possible parameters along with the best possible algebraic
immunity, we can first consider a subset of Boolean functions,
which is sufficiently particular so that the study will be simpli-
fied (mathematically and/or algorithmically) and sufficiently
nonpeculiar so that it will be possible to find such functions (as
it can be with random ones). The rotation symmetric Boolean
functions (RSBFs) received a lot of attention recently for this
reason [32], [47], [48], [33], [37]. These functions are invariant
under circular translation of indices in the input variables. We
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present experimental results related to the algebraic immunity
of the RSBFs which are available in [47], [48], [33], [37].

Experiment 1: Here we test the algebraic immunity for
(7,2,4,56) RSBFs. It is given in [47] that there are 36 such
functions with f(0) = 0. Out of them, 24 functions contain
linear terms. For these functions, AZ,(f) equals 3, which
is one less than the highest possible value [§] = 4. Out of
them 12 functions have #LDA,,(f) = 3 and the remaining
12 have #LDA,(f) = 4. The 12 functions having no linear
term have algebraic immunity AZ, (f) = 4, which is the
highest possible value. According to Theorem 3 (item 3) (we
have also checked this by experiment), for these functions
#LDA,(f) = (r;) = 35.

Experiment 2: Here we examine the (8,1,6,116) RSBFs
with f(0) = 0 the number of which is 10272 as recalled in
[48]. Out of them, 6976 attain highest algebraic immunity, i.e.,
4 and we find that for these functions #LDA,,(f) = 35. The-

orem 3 (item 2) asserts that the value should be greater than or
8
8

equal to =~ = 35. This gives an example, where the bound is
tight. For the remaining 10272 — 6976 = 3296 functions, the
algebraic immunity is 3. Out of them, 1536 many functions f
have only one annihilator of degree 3 (but no degree 3 annihi-
lator for 1 + f), 1504 many functions f have no annihilator of
degree 3 (but one degree 3 annihilator for 1 + f), and 256 many
functions f have one annihilator of degree 3 and also one de-
gree 3 annihilator for 1 + f. According to Theorem 3 (item 1),
#LDA,(f) < (i) = 56. So for these functions, the bound is
not sharp.

Experiment 3: In the preceding two experiments, we exam-
ined the functions which are balanced. Now we consider the
[9,3,5,240] RSBFs which are not balanced. We consider the
8406 functions with f(0) = 0, see [33], [37]. According to
Corollary 1 (item 1), the algebraic immunity of these functions
will be strictly less than 5. Here, after experiment, we get the al-
gebraic immunity of all 8406 functions as 4. According to The-
orem 3 (item 1), #LDAg(f) < (2) = 126. In the table at the
bottom of the page, we present the number of functions satis-
fying a particular #LD Ag(f) and #LD Ao(1 + f).

Studying the resilient functions on seven and eight variables
and unbalanced correlation immune functions on nine variables
for this rotation-symmetric class of Boolean functions, it is ev-
ident that there exist functions which are good in terms of alge-
braic immunity.

B. Analysis of Some Construction Methods

Very few primary constructions of Boolean functions
achieving at high levels the cryptographic criteria recalled in
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the introduction are known (see [19]). A general principle of
construction exists: concatenating low-degree functions as in
the Maiorana—McFarland construction. But this principle has
some limits with respect to the usual criteria (see [14]) and it
has drawbacks with respect to the algebraic immunity as we
show now.

1) The Maiorana—McFarland Construction: The original
Maiorana—McFarland class of bent functions is as follows (see
e.g., [13]). Consider n-variable Boolean funct}ons of the form
f(w,y) =z - n(y) + g(y), where z,y € F}?, mis a permu-
tation on F,” and g is any Boolean function on % variables.
Function f can be seen as concatenation of 2% distinct (up to
complementation) affine functions on 5 variables.

A similar type of concatenation technique has also been used
for construction of resilient functions [11] (see also [44], [42]).
Concatenating k-variable affine functions (with repetition al-
lowed) nondegenerate on at least 7 + 1 variables generates an
me-resilient function f on n-variables. For such a function f, it
is easy to find an annihilator of degree n — k + 1 as described
in [38]. In fact, it is shown in [20] that, unless a heavy condi-
tion is satisfied (which is very improbable unless % is almost
equal to n), it is easy to find an annihilator of degree n — k. It
has been commented in [38, Example 1 and the following para-
graph] that % is generally greater than 7 (this seems true for the
Maiorana—McFarland type of functions presented in [41], [14];
but this has not been checked for some large classes of Maio-
rana—McFarland type of functions described in [42], [17]) and
hence it is possible to get a nonzero annihilator g of degree less
than % However, it should be noted that in construction of re-
silient functions, there are techniques that use concatenation of
k-variable affine functions where k < % In such a case, the an-
nihilators described above will have degree greater than 7 and
will not be of practical use as there are other annihilators of de-
gree < % which are not of the form given in [38, Theorem 2].

2) Secondary Constructions:

e We first study a construction of functions proposed

by Siegenthaler [46]. Given f € DB,, we denote by
LDGA,(f) the set of non null f; € B, with lowest

possible degree such that f * f; = 0or (1+ f) x f; = 0.

Proposition 1: Let f, g be two Boolean functions on the vari-
ables x1,xa, ..., x, with AZ,,(f) = d; and AZ,,(g) = ds. Let
h = (1 + .Z‘n+1)f + Tn+19 S Bn+1. Then

1) If dq 75 dy then .AIn+1(h) = min{dl, dz} + 1.

2)Ifdy = dy = d,thend < AZ,,41(h) < d+ 1, and

AZ,11(h) = d if and only if there exists f1,91 € B,
of algebraic degree d such that { f x f; = 0,g*¢g; = 0} or
{(1+ f) + f1 = 0,(1+g) x g1 = 0} and deg(f1 + 1) <
d—1.

#LD Ag(f) 16 17 18 | 19 | 20 | 21
#LDAy(1 + f) 0 2 3 4 | s
#f 5658 1758 774 180 12 24
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Proof: Let f1 € LDGA,(f) and g1 € LDGA,(g). If
fxfi=0,then (1+ 1) * f1xh=0.1f (14 f) x f1 =0,
then (1 + x,41) * f1 * (1 + h) = 0. Also, if g * g1 =0, then
Tpni1xg1xh=0andif (14+g)*g1 =0, then z,, 1 *xg1*(1+h)=0.
Thus,

ALoi1(h) < min{ AL, (f), AZu())} +1. @)

Letp = (1 4+ 2pi1)p1 + Tny1p2 € LDGA, 1(h). Let us first
consider the case with h * p = 0 which implies

(1 4+ 2pq1) f * p1+ Tpy1g9 * p2 = 0.

So fxp; = 0and g * po = 0. Similarly, for the case with
(T+h)*xp=0,ie,

I+ zpp)x(1+f)*pr+2pp1(14+9)*xp2=0

we have (1 + f)*p; = 0and (1 + g) * po = 0. Now there can
be three cases in both scenarios.
a) pj is zero and ps is nonzero. So deg(p2) > do which gives
deg(p) > da + 1.
b) po iszero and py is nonzero. So deg(py) > dy which gives
deg(p) > di + 1.
¢) Both pq, ps are nonzero. So deg(py) > d; and deg(p2) >
dsy, which gives deg(p) > max{d;, d2}+1, when dy # ds.
So for dy # ds we get

ATy 41(h) 2 min{ AT, (f), ATn(9)} + 1. )

Equations (2) and (3) give the proof of item 1).
Now we prove item 2). Consider

p=(1Hznt1) fitznt191 = fr+ent1(fi+g1) e LDGA, 11 (h).

Clearly, p has degree at least d, since f; has degree at least d.
So,d < AZ,+1(h) < d+ 1.

If AZ,,+1(h) = d, then the highest degree terms of f; and
g1 must be same which gives deg(f1 + ¢g1) < d — 1. Note that
we have {f * fi = 0,g% g1 = O} or {(1+ f) x f1 = 0,
(1 + g) x g1 = 0}. Conversely, if there exists f1,91 € B,
of algebraic degree d such that {f % f; = 0,9 % g1 = 0} or
{(1+ )5 fr = 0, (1+g) g1 = 0} and deg(f1 +g1) < d—1,
then clearly AZ,,4+1(h) = d. O

We cannot say that the construction of Proposition 1, first in-
troduced by Siegenthaler [46] for obtaining resilient functions,
is good or is bad in terms of algebraic immunity, since

— a good construction is supposed to gain 1 (respectively, k)

for the algebraic immunity when we add 2 (respectively,
2k) variables, here we add only one;

— the construction is very general since every function can

be obtained from it.

The next corollary is a direct consequence of Proposition 1
and of the upper bound [ %] on the algebraic immunity of n-vari-
able functions.

Corollary 2: Let

h= 14 zn1)f +Tny19 € Bnga
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where 7 is even and AZ,,1(h) = % + 1 (i.e., has maximum
possible value). Then AT, (f) = AZ.(g9) = % (i.e., is max-

imum) and there do not exist f1, g1 € B, of degree 3 such that

{f+fi=0and gxg1 =0} or {(1+f) * f1 =0 and (14g)* g1 =0}
and such that all 5 degree monomials of f; and g; are the same.
We now observe that two functions on an odd number 7 of vari-
ables and with optimum algebraic immunity always have some
relationships.

Corollary 3: Let f,g € B,, where n is odd and AZ,(f) =
AT, (g) = 2L (the maximum possible value). Then there must
exist fi,g1 € B, of degree “} such that {f = f; = 0 and
gxg1 =0}or{(1+ f)*fi =0and (1+ g)*g; = 0} and
such that all "T'H degree monomials of f; and g; are same.

Proof: Let

h = (1 + xn—l—l)f + Tn+19 € Bn+1-

According to Proposition 1, AZ,1(h) equals "+ since it

cannot be greater than ”T“ O

e In [49], Tarannikov has proposed an important construction
of resilient functions. A similar kind of construction has been
derived in [40] (and has been later generalized in [15]). It has
been shown in [27] that if we denote by Hj the function from
which we start in this construction and by H; the function ob-
tained after 7 steps (this function has 37 more variables than Hy)),
then AZ,,(Hy) < AZ,+3:(H;) < AZ,(Hy) + 7 + 2. Later, it
has been proved in [7] that the n-variable functions constructed
by Tarannikov’s method [49], [40] attain Q(y/n) algebraic im-
munity.

e We also like to present some observations on (9, 1,7, 240)
functions constructed in [42, Theorem 10(b)]. The operation
on strings z8y = (z ® y°) + (2° ® y) is defined in [42],
where z¢, y© are bitwise complements of x, y, respectively,
and where ® is the Kronecker product, whose definition is:
(i)ier ® (Y;)jes = (2iY;) i jyerx.s- Obviously, when applied
to strings corresponding to the truth tables of Boolean functions,
this operation $ corresponds to the so-called direct sum, that is,
the addition of Boolean functions with disjoint sets of variables
(if the definitions of the functions use same symbols to desig-
nate some variables, then these symbols must be duplicated so
that the functions become defined on different variables). Now
we present the construction of a (2p + 1,1,2p — 1,2% — 2P)
function as given in [42] for p > 4.

Construction 1: [42, Theorem 10(b)] Let A1, A2, A3, A4 be
the 3-variable linear functions nondegenerate on two variables
(i.e., the functions 1 + xs, T2 + 3, T1 + x3, T1 + T2 + T3).
Let g; be the 4-variable function x; + x4, for 2 = 1,2, 3. Let
h1, ho be bent functions on (2p — 4) variables, let hs, ha, hs be
bent functions of (2p — 6) variables and hg, h7 be two strings of
lengths 227=6 41 and 22?6 — 1 which are prepared by properly
adding and removing 1 bit from the truth table of (2p — 6)-vari-
able bent functions, respectively. Let f be a concatenation of the
following sequence of functions. h1$A1, ho$Aa, h3Sg1, haSgo,
hs$93, he$Az, h7$)4. Thisis a (2p + 1,1,2p — 1,2% — 27)
function.

Example 1: For p = 4, we choose: hy =
0000010100110110, Ao = 0000010100110110, A3 = 0001,



3112

hs = 0001, hy = 0001, hg = 00010, hy = 001. In this
case, we find a (9,1, 7,240) function f; with AZq(f1) = 3.
If one replaces the function h, = 0000010100110110 by
hs = 0000010100111001, then we get a (9,1, 7, 240) function
fQ with AIQ(fQ) =4,

We observed that changing the order of affine functions can
change the algebraic immunity without any change in order of
resiliency, nonlinearity, and algebraic degree. The change in the
last four bits in hy implies that the concatenation of Ao, 1 4 Ao,
14 A2, Ao will be replaced by 14 A2, Ao, A2, 1+ Xo. We observed
that this increases the algebraic immunity from 3 to 4.

C. Functions With Low-Degree Subfunctions

In this subsection, we discuss why a Boolean function with
low-degree subfunction is not good in terms of algebraic immu-
nity. This extension of a result presented in [38], and its comple-
ments, are simple, but they have some importance for the design
of pseudorandom generators.

Proposition 2: Let f € B,,. Let g € B,,_,. be a subfunction of
f(z1,...,x,) after fixing r many distinct inputs x;, , ..., z; €

{z1,...,z,}. If the algebraic degree of g is d, then AZ, (f) <

Proof: Let wx;,...,x; be fixed at the values
@iy, ...,a;, € Fy Thus, g is a function on the variables
{x1,.. . en} \ {24, ..., 25, }. Obviously, (1 +a;, +z;,)...
(14a;, +x;, )(1+g) is an annihilator of f. The algebraic degree
of (1+a;, +x;,) ... (1+a;. +x;, )(14g) is d+r. O

The Maiorana—McFarland construction can be seen as con-
catenation of 2" affine functions on n — r variables to construct
an n-variable function. Clearly, we have affine subfunctions of
the constructed function in this case, and hence deg(g) = 1 fol-
lowing the notation of Proposition 2. Thus, as already recalled
at Section IV-B1, there will be annihilators of degree 1 + r.
Note that if 7 is small, then one can get annihilators at low de-
gree [38, Theorem 2, Example 1]. This works for any function,
which needs not be of Maiorana—McFarland type only. For in-
stance, let us consider a 20-variable function, with a subfunc-
tion of degree 2 on 17-variables, i.e., we fix three inputs. In that
case, the 20-variable function will have an annihilator of degree
243 =05.

Proposition 3: The (2p + 1)-variable function presented in
Construction 1 has a subfunction of degree at most p — 1 when
T2p+1 = 0.

Proof: Consider the subfunction when z,41 = 0. The
subfunction (call it ¢) in concatenation form is h1$Aq, ha$)s.
Since hy, ho are bent functions on 2p — 4 variables, they can
have algebraic degree at most p — 2. Further, A1, A\ are 3-vari-
able linear functions. The algebraic normal form of ¢ is (1 +
Z2p)(h1 + A1) + x2p(ha + A2). So the degree of g is smaller or
equaltol + (p—2) =p— 1. O

Theorem 4: For a function f € B,, (n odd) generated out of
Construction 1, AT, (f) < [5].
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Proof: Heren = 2p + 1. Wetake g € B,,_1,1e.,r =1
according to Proposition 2. Further from Proposition 3

n—1

2
Thus, AZ,,(f) < %54 —1+1=[%]. O

- 1.

deg(g) <p—-1=

Now we answer why the algebraic immunity of these two
functions in Example 1 are different. The reason is that, in the
first case, the functions hj, ho are same with the ANF z123 +
Zo14. Thus, the subfunction g (i.e., h1$A1, ha$ o) is a degree-2
function. So the maximum algebraic immunity, according to
Proposition 2, can be 2 + 1 = 3. In the second case, h; is dif-
ferent from A5 and the algebraic degree of g (i.e., h1$A1, ha$)2)
becomes 3 and it achieves the value 3 + 1 = 4. Thus, Proposi-
tion 2 helps in answering this question. It is important to note
that this technique can be employed to study the upper bound of
algebraic immunity for various constructions by analyzing their
subfunctions and in particular, directly for the constructions pro-
posed in [42], [14].

It should be noted that the converse of Proposition 2 is not
always true. That is, a function having low-degree annihilator
does not need to have some low-degree subfunction by fixing
a few variables. As example, one may refer to the 5-variable
function

f=r1+ 2o+ zomat+ w304+ (T2t 23+ 2102+ ToTs+T32T4)T5.

This function has algebraic immunity 2 and the only annihilator
of degree 2 is

1+ 1+ To+ 1114 + T304 + (LEQ + x3 + 1134){175.

If one verifies all possible subfunctions of f after fixing 1 and 2
variables, it is not possible to get subfunctions of degree 1 and
0, respectively.

Note that the observation we made for Maiorana—McFar-
land’s functions does not seem to apply to those Boolean
functions that can be seen as concatenations of indicators of
flats [17].

V. CONSTRUCTION TO GET OPTIMAL ALGEBRAIC IMMUNITY

We have recalled in Section IV-B that very few primary
constructions of Boolean functions achieving at high levels
the usual cryptographic criteria are known, and we have seen
that these constructions do not seem to be able to achieve good
algebraic immunity. In this section, we present a construction
to design a Boolean function of 2k variables with algebraic
immunity k. The construction is iterative in nature. At each
step, two variables are added and the algebraic immunity is
increased by 1. The constructed function is not balanced, but
the bias with respect to balancedness tends to zero when k tends
to infinity. The constructed function has not a high nonlinearity
either. The bias with respect to optimum nonlinearity is slightly
better than the minimum observed in Section III after Theorem
2. This primary construction can be (must be) combined with
secondary constructions to lead to functions satisfying all of
the necessary cryptographic criteria. Since we will be able to
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give a very efficient way of computing its output (with a linear
complexity in the number of variables), its introduction in a
secondary construction is efficient even if its number of vari-
ables is large. Last but not least argument, it is the first known
provably efficient way of obtaining functions with optimal
algebraic immunity (the next one appeared in [29]). We show
that the function has very high algebraic degree.

Construction 2: We denote by ¢2, € Dy the function de-
fined by the recursion

= ok |2k || Pkl bk “4)

¢2k+2

where || denotes the concatenation, (in terms of algebraic normal

form, we have then ¢o12 = ¢or + Tok+1T2k+2(P2k + d)%k)),
and where ¢3, is defined itself by a doubly indexed recursion

¢2j_¢21 2||¢2] 2||¢2] 2||¢L2—;12 &)

i.e., in terms of algebraic normal form

Phj = b Ly + (21 + m25) (D, 1y + By o)
+x2; 1725 (¢L27i2 + ¢L2—;_12) , forgj>0,2>0

with base step ¢’? = ¢; forj > 0, ¢4 =i mod 2 fori > 0.

To understand the recursion in the Construction 2, we present
an example up to some depth.
© Do = Par—2ld3y olldos_ollP3) o
° ¢%k—2 = 4%1«—4”45%1«—4”45%1«—4|I¢§k—4'
° ¢§k—4 = 45%1«—6||¢gk—6||¢gk—s||¢gk—6-
This goes on until we reach the null level for at least one of
the two indices.
Below we present the construction idea as truth table concate-
nation.
Step 1: ¢ = 0001
Step 2: ¢4 = ¢2¢2¢20110
Step 3: ¢ = Pap4pap2011001101001
Step 4:
Ps = PePePePap2011001101001
$20110011010010110100110010110.

To prove that ¢, has algebraic immunity %k, we need inter-
mediate results. In the proofs, we will use the fact that, for any
f € B, and any subset V' of {0,1}", the restriction to V' of
an annihilator of f is an annihilator of the restriction of f to
V. For technical reasons, during our proofs, we will encounter
certain situations when the degree of a function is negative. As
such functions cannot exist, we will replace those functions by
function 0.

Lemma 2: Assume that the function ¢o; € Bs; has been gen-
erated by Construction 2 for 0 < 7 < k and that AZo;(¢2;) =4
for0 < ¢ < k.If, forsome 0 <4 < kand j > 0, there exist g €
AN($3.)and h € AN(¢]+1) such that deg(g+h) <i—2—3j
then g = h.

Proof: We prove Lemma 2 by induction on .

For the base step7 = 0, deg(g+h) < 0—2—7 < —2 implies
that such a function cannot exist, i.e., g+h is identically 0, which
gives g = h.
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Now we prove the inductive step. Assume that, for 7 < /, the
induction assumption holds (for every 5 > 0). We will show
it for ¢ = £ (and for every j > 0). Suppose that there exist
g € AN(¢3,)and h € AN(ph) with deg(g+h) < £—2—3.
By construction, if 7 > 0 then we have
2([ 1)||¢ 2(0— 1)”¢ 2(0— 1)”45;&1,1)

+1 j+1 j+1 j+2
by = ](z 1)||¢§(e 1)||¢;(z 1)”45;(@71)

J'

and if 5 = 0 then

¢(2]e = ¢g(£—1) ||¢(2](z—1) ||¢S(Z—1) ||¢5%(z—1)-

Let us denote

g = viljva||vs|lvg,

h =wvs||ve|lvz]|vs.

Since deg(g + h) < £ — 2 — 4, from the ANF of g + h =
(v14+v5) + @201 (V1 + V5 + V2 +v6) + T2r (V1405 +v3 +v7) +
ZTop—129¢(v1 + - - - + vg) we deduce the following.

o deg(vi+wvs) < Ll— 2 J=U-1)=2—-(j—-1).1f5>0
then v1 € AN(¢2 —1))s V5 € AN(gb;(z_l)) implies that
V] = U5, accordlng to the induction assumption. If j = 0,
then we have v1,v5 € AN(¢(4—1)), and therefore (v1 +
vs5) € AN(¢a(r—1)), with deg(vy + v5) < £ — 2. Suppose
that v1 + v5 # 0, then we would have deg(vy + v5) >
¢ — 1, since ATy(s_1)(¢2(¢—1)) = £ — 1, by hypothesis; a
contradiction. Hence v + v5 = 0 i.e., v; = vs.

o deg(va +vg) < (£L—1)—2—jand vy € AN(? 2(5 1))
vg € AN (¢;?'ll_1)), imply that vy = g, according to the
induction assumption.

o deg(vs+wv7) <({—1)—2—jand w3 € AN(qﬁQ([ 1))
v7 € AN((j)Q(Z 1)) imply that v3 = vy, according to the
induction assumption.

o deg(vatvs) < (£—1)—2—(j+1)and vy € AN(QSQ—; 1)
vg € AN ((bé"f 1)) imply that vy = vg, according to the
induction assumptlon.

Hence, we get g = h. O

Lemma 3: Assume that the function ¢o; € Bs; has been gen-
erated by Construction 2 for 0 < ¢ < k and that AZo;(¢o;) =4
for0 < ¢ < k. If, for some 0 < 7 < k and j > 0, there ex-
ists g € AN(¢3,) N AN () such that deg(g) < i + j, then
g = 0.

Proof: We prove Lemma 3 by induction on 7 — j.

For the base step (i.e., 2 — j < 0), we have from construction
o5 1= ¢27+1 (this can easﬂy be checked by induction). Hence,
g € AN(¢3,) N AN (¢, + 1), and g = 0.

Now we prove the inductive step. Assume that the induction
assumption holds for 7 — j < £, £ > 0, and let us prove it
mm—]_/+1SMageAN()mAN@”UWMm
1—75=/0+1.

If 7 > 0, we have

j 1
2% = 2(L 1)”¢2(i 1) [ 2(i— 1)||¢j2z§_1)7

¢j+1_ j(L 1)||¢;?;1_1)”¢é?;1_1)”¢j2?;2_1)
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Let us denote

9= v1lloa [usllos, we have

v € AN (¢3i1,)) N AN
va,03 € AN (¢ 1)) N AN

(#561))

oty

vs € AN (¢351,)) N AN (387 ) .

and

1) Since deg(g) < i+j, wehavedeg(vs) < i4+j = (i—1)+
(j+1).Since (i —1) — (j+1) =i—j —2 < £, we have
vy = 0, according to the induction assumption. So the ANF
of gis vy 4+ w1 (v1 +v2) 4+ woi(v1 +v3)+ w2122 (v1 +
vy + wv3). Then deg(vy + v2), deg(v1 + v3), deg(vy +
va + v3) < i+ j — 1, which implies deg(v;), deg(vs),
deg(vs) < i+j— 1.

2) We have then deg(v2) < i+ j—1 = (i —1)+ j and
deg(vg) <i+j—1=(—1)+j.Since (1 —1) — j =
1 — 7 —1 < {, we have vo = vz = 0, according to the
induction assumption.

3) Sincevs = v3 = vy = 0,the ANFof gis (1+z9;—1+x2;+
Zoi—1%2;)v1. So,deg(v) <i+j—2=(—1)+(j—1).
Here (i — 1) — (j — 1) = £ 4 1. So, we can not use the
induction assumption directly. Now we break v; again into
four parts as

2(1 2)”%(1 2 ||¢2(z N
+1
26i-1) = P 2)”%@ D5 o) 1P5 2

U1 —Ul,l||vl,2||111,3||111,4-

(;52(1 1)

Using similar arguments as in items 1) and 2), we have
vie = v1,3 = v14 = 0. So, deg(v11) < i+ j— 4
Doing the similar process j times, we will get some func-
tionv € AN(¢2(i_j))ﬁAN(¢%(i_j)). Atevery step of this
subinduction, the degree decreases by 2, and we have then
deg(v) < i+j—2j = i—j. Breaking v for the last time into
four parts and using thatv € AN (¢a(;—j)) VAN (d5; 1),
we have

bai—iy = P26 i-Dllb2g—j-1) P25 -l 51y
= o )llP3i—j- 1y 1930— -1y 1656 — 1)

n || "

$2i—j)
v =v'[]v"||v

Using similar arguments as in items 1) and 2), we have
v =" =" = 0. So, deg(v’) <i—j—2.And €
AN((;SQ(L j—1)) implies that, if v’ ;é 0, then deg(v) >
1—j—1,a contradlctlon Hence, v" = 0 which implies
g = 0.
If 7 = 0, then the proof is similar to the last step in item 3)
above. O

Now we present the main result.
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Theorem 5: The algebraic immunity of the function ¢sj, ob-
tained in Construction 2 equals %, for every k& > 0.

Proof: We prove Theorem 5 by induction on k. There is
nothing to check for k£ = 0. In the inductive step, we assume the
hypothesis true until £ and we have to prove that any nonzero
function goj 4o such that gap4o¢porr2 = 0 has degree at least
k + 1 (proving that any nonzero function gsj4o such that
92k+2(Pak+2 + 1) = 0 has degree at least k + 1 is similar).
Suppose that such a function gopo with degree at most k
exists. Then, gox42 can be decomposed as

92k+2 = 92k:||9/2k||9§/k||h2k

where gok, ghy, g, € AN (dor), and hop € AN(¢L,). The
algebraic normal form of go 2 is then

Tok42) = gok + Tokt1(92k + gor)
+ Tary2(g2r + 9o1)
+ Tok+1T2k+2
- (92k + gox + gop + har)-

92k+2(5l717 B

If gor+2 has degree at most k, then (gor + g5,) and (gor +
g5 ) have degrees at most k& — 1. Because both functions lie in
AN (¢a1) and AZoy(¢ar) = k, we deduce that goy, + gb, = 0
and gor, + g4, = 0, which give, gar. = g5, = g4y Therefore,
9242 = 92k + T2rt1Z2k+2(g2k + hok)

deg(gar) < k

and

deg(gar + hor) < k — 2.
According to Lemma 2, we have gor, = hog. According to
Lemma 3, we have then go, = hog = 0 that gives, gor+2 = 0.
This completes the proof. O

Remark 3: Let f; € B; be some [-variable function and let
fit2r = fi + ¢ar, be the direct sum of f; and ¢or. Then we
have the following results.

D nl(fiyar) = 2'nl(bor) + 225 nl(fi)=2nl(dar)nl(fr) >

4knl(fl)

2) If f; is r-resilient, then f;4 o is also r-resilient.

3) deg(fi42r) = max{deg(f;), deg(¢2)}.

4) wt(figar) = wt(dar)(2' — wit(f1)) (22
wt(par))wt(f1).

5) AZy ok (fi+2r) > k+ 1, for nonzero function f; (see [30]
for detailed proof).

In particular, if f; is a nonconstant 1-variable function, we get a
balanced function with optimum algebraic immunity.

Obviously, this is not the only secondary construction which
can be used with ¢o.

A. Properties of the Constructed Functions

1) Hamming Weight and Nonlinearity of ¢or.: We shall see
that ¢o is not balanced (it does not output as many 1’s as 0’s),
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but that its bias with respect to balancedness tends to zero when
k tends to infinity.

Proposition 4: The Hamming weight of ¢},

wt (hy) = [{z € F5* | ¢ (a) = 1}
equals 221 — (2:;1.1) for k > 1 and i > 0. Then

2k —1
wt(par) = 92k=1 _ < k ) , fork>1.
Proof: Letus denote wi;, = wt (¢4, ) and wag, = wt(¢or) =
wt (¢9,) = w9,,. According to Relations (4) and (5), we can
write: wy = 0

forany k£ > 1 (6)

i, il i i+1
Wop = Wap_o T 2Wsp_o + Wyy o,

forany k>1, i>1 (7)

1
Wag = 3Wak—2 + Way_o,

and

wh =i[mod 2] for any ¢ > 0. (8)

?

Let us prove by induction on k that wj, = 22F=1 — (%¢_1), for

any k > 1. This is true for £ = 1 and for any 7 > 0. Indeed, we
have
#) = z129 = 0001
¢y = (i — 1)[mod 2] (x1 + 1)(zy + 1)
+ i[mod 2] (z1 + x2) + (i + 1)[mod 2] z1x9
=z1 + 22+ (i1 — 1) mod 2,

forany 2 > 1.

So, wy =1=2" — (}) and wh = 2 = 2! — (1;) fori > 0.

We assume now that the induction assumption is true until
k — 1 and we prove it for k. Note that we have 22¢—1 = 3.
22k73 + 22k73 and 22]«:71 — 22k73 +2. 22k73 + 22k73. We
have also

2k —1 _ 2k — 3 n 2k — 3
k - k-1 k
since
3 2k — 3 n 2k — 3
k-1 k

(2k — 3)! o @k-3 o (2k—1)!
= PR = e R = T
angk 1 2k — 2 2k —2
<k+i>:<k+i—1>+<k+i>

[ 2k-3 o 2k — 3 N 2k —3
S \k+i-2 E+i—1 E+i )’

So, (6) and (7) and the induction assumption imply that

; _ 2% — 1
w2k_22k1_<k+i>' O

The weight 22F—1 — (Zkk:ll)) of ¢y, is therefore equivalent to
22k=1(1 — ﬁ), which is asymptotically balanced.
Given the recent result of [36], we can exactly calculate the

nonlinearity.
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Theorem 6: nl(pay) = 2271 — Qkkjll .
Proof: Consider the (2k + 1)-variable function 22541 +

ok (71, ..., o). This function is at a distance

()

from the linear function xo, 4 1. Thus, nl(2op1 + Por) < 22F —
(Qkk). Since xar4+1 + ok is of full algebraic immunity & + 1
[30], following [36, Corollary 1], one gets nl(zak+1 + Par) >
22k _ (Zkk) Thus,

2k
nl(zapgr + por) = 22F — < I ) . )

It is well known and easily checked that, for every 2k-variable
function f, we have nl(zor+1 + f) = 2nl(f). This completes
the proof. O

Note that nl(¢poy) = 2271 — (2,;:11) , which is strictly greater
than the lower bound 22* ._1 —.(Zk ) as preseqted in [.36, Corol-
lary 2]. However, the nonlinearity of the function ¢sy, is not very

2k—1
good. The ratio %m, where nlmagz = 221 — 2k—1
is the maximum possible nonlinearity of Boolean functions,
2k—1

k . .
equals 2‘);11 ~ \/Qﬁ and is therefore not sufficient for use of

the function without using a secondary construction to enhance
the nonlinearity.

2) Algebraic Degree of ¢or: When the weight of the func-
tion ¢, is odd, then clearly its algebraic degree is 2k. We shall
subsequently prove that, when the weight is even, the algebraic
degree is also very high. Note that, denoting respectively bg/ Cok
and ¢}, the 2-variable functions equal to the factors of H§=3 Z;
in the ANFs of ¢oy, and ¢, , (4) and (5) straightforwardly imply
that cop4o = cop, + cy, and ch; = cb-1, + 5t But it seems
difficult to find directly the exact expression of cgj satisfying
these constraints (with the initialization cgj = c9; forj > 0,
ch =i [mod 2] for i > 0). We shall observe that, changing the
initialization in the recursive definition of cof, and using only
(5) in the recursion leads to an affine function go. Considering
then the difference between g2 and co5 will permit to obtain a
recurrence relation on cj, which will not involve the cj, ’s. In
fact, in the next proof, we shall be able to partially develop this
method directly on ¢y, which will give more information; we
will deduce then our result on ¢y through a simple reduction.

Proposition 5: Let cop, be the 2-variable function equal to the
factor of Hjig 2; in the ANF of ¢5;. Then we have

cor, = ([(logy(k)] [mod 2] ) (z1 + z2)

Y

0<t<log, (k)

Co(r—2t) T cst (10)

where cst is some bit depending on k.

Proof: Let qé ; be recursively defined by (5), with the ini-
tialization ¢§ = #[mod 2], for any positive or negative 7. We
have qéj = z1+To+ - +Toj_1+T2j+(i4+])] n}od 2] (this can
be easily checked by induction). The function 75; = ¢5; + q5;
satisfies (5) and we have 7 = 0 for i > 0, r3; = ¢o; + ¢3; for
Jj > 0.

The function réj is the addition of what we collect with (5) (or
its translation in terms of ANF) for all the paths starting from
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the point of coordinates (4,25) and arriving for the first time
to a point of coordinates (0, 2[) (where 2/ can be any integer
between 0 and 2(j — %)), and constituted of the concatenation of
elementary paths going from a point of coordinates (s, 2¢) to a
point of coordinates (s + €,2¢t — 2), e € {—1,0,1}.

We deduce that

1
k-2

=~
|
N

k—1-1

H UF,‘,I+’I‘
r=1

(¢>21 + qgl)

>

ec{—1,0,1}F711,
€1t ter_1_1=—1;
V> 1,ei4ten 1120

Il
<)

where U_1 , = (22,1 +1)(x2r +1), Uy, = Z2r_1+ 22, and
Uiy = Top_1T2y.
This implies, for £ > 3

k—2

C%k72 = Z (CQZ + 21+ 22+ CSt)
=0

> 1
ee{—1,1}F—1-1

€14 Fep_1_1=—1;
Vt>1,e++€p_1-1>0

where the cst’s are constants. The number

m = > !
eef{-1,1}* 170
€14 tep_1=—1;

Vt>1,e;4-+ep_1-12>0

equals 1 for [ = k — 2; it equals 0 for | = k — 3; and for
I < k — 4, it equals the number of paths from the point of
coordinates (4,2j) where i = 2; j = k — 2 to the point of
coordinates (7, 2j) where ¢ = 2; j = [ 4+ 2 which do not cut the
axis of equation ¢ = 0 (indeed, the two last elementary paths are
necessarily (2,2l +4) — (1,24 2) and (1,2]4+2) — (0, 21)).
Note that 7; is null if £ — [ is odd. We assume now that k& — [ is
even. Then 7; equals the number of all paths between these two
points (the points (2, 2k — 4) and (2, 2{ + 4)), that is, (’Z_ill:;)
minus the number of paths cutting the axis : = 0. This last
number equals the number of paths from the point of coordinates
(4,27) where i = 2; j = k— 2 to the point of coordinates (4, 27 )
where (4 = —2; j = [+ 2) (replacing the lower part of each path
cutting the axis by its mirror image with respect to this axis). We

have then
(k—l—4> (k—l—4>
= k—l— - .
T4 T4+2

. k—1—4y -
Hence, since (k,,,4) is even for k — [ even greater than 4 and

equals 1 for k—I = 4, and according to Lucas’ theorem, ;[ mod
2] equals 1 if and only if k£ — [ is a power of 2. We deduce,
denoting k — [ by 2*

>

1<t<log, (k)

Cop o = (Co(k—2t) + 1 + 22) + C5t.

This completes the proof. ([
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For small indices, this gives
Coy =T1T9
c4 =x1+ 220+ Co+co+cst=x119 + 21 + 2 + St
Ce =T1+ T2+ cqg+ o+ cst = cst,
cg =cCg + c4 + co + cst = w172 + 11 + X2 + S,
cio =cg+cg+co+cst=x1+ 0+ st
Cc12 =cC10 + ¢cg + ¢4 + cst = xy + x9 + cst,
C14 =cC12 + c19 + cg + cst = cst
c16 =T1 + T2+ c14+ 12+ cg + g +cst
=x129 + 1 + 22 + cst
18 =%1 + T2 + C16 + €14 + €10 + €2 + cst
=x1 + 12 + cSt
C20 =%1 + T2 + c18 + ¢16 + C12 + ¢4 + cst
=21 + xo + cst
€22 =x1 + T2 + C20 + €18 + €14 + C + cst

=x1 + T2 + cst.

The coefficient voy of 2129 in coy, satisfies the relation vop, =
ZOStS]OgQ(k) Va(p—2iy and vy = 0, v = 1. It can be shown
by induction that vy, = 1, i.e., ¢oi has degree 2k, if and only
if k is a power of 2 (but we knew this already thanks to Lucas’
theorem and to Proposition 4). Similarly, the coefficient of x1
(or, of z9) in ¢y equals 0 if and only if k£ 4+ 1 is a power of 2.
Hence, ¢2 has most often degree exactly 2k — 1. We deduce
the following.

Proposition 6: For k > 1 the degree of ¢y, is as follows.
1) deg(¢or) = 2k if and only if & is a power of 2.
2) If neither k nor k + 1 is a power of 2, then deg(par) =
2k — 1.
3) If k+1is a power of 2, then 2k — 3 < deg(¢or) < 2k —1.
Proof: From the preceding discussion, items 1) and 2) are
proved. For item 3), if & + 1 is a power of 2, then deg(¢pay) <
2k — 1. Since

bok = bok—s + Tok—1T2x (Por—2 + Pop_s)

we have deg(¢ar) > deg(par—2). So, for item 3), deg(pay) >
2k — 3. O

3) The Structure of ¢or and an Efficient Way of Computing
its Output: Here we study the structure of ¢of. We observe that
the function ¢, can be written as the sum of two functions ¢},
and ¢35, , which can be obtained from symmetric functions by
the same transformation easy to implement. Let ¢'5, and ¢35,
be the sequences of Boolean functions satisfying (4) and (5) for
every k > 2, and initialized as follows: ¢>’3 =r1To+r1+To+1
(that is, ¢y = 6o(z1,22), the indicator of {0,0}) and ¢'5 = 0
fori > 1,¢"5 = x1+x2+i+1[ mod 2]fori > 0. The function
$21, equals the sum of ¢'5;, and ¢"9,., since the sum of ¢'5, and
¢"'5y, equals ¢b, for k = 1 and i > 0 and satisfies the same
recurrence relations. Note that, since ¢’ 3 equals 6o and ¢’ =
for every i > 1, the restriction of ¢’ 3 & to the set of words whose
two first coordinates are not both null is constantly equal to zero.
We shall see that the restriction of ¢’ 3 & to the set of words whose
two first coordinates are both null—let us denote this function
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by 1’ gk_Q—is related to the Boolean function on F;k_g equal
to the indicator of the set of vectors whose Hamming weights
equal k — 1 and £ — 2.

Proposition 7: Let ¢’ ; & be the 2k-variable Boolean function
recursively defined by the following relations

1
¢ forany k > 1, ‘P2k = <P2k 2||<P 2k~ 2||<P 2k—2ll¥ 2525
where the truth table of ', . is the reverse of the

truth table of ¢S, , (hence, '3, ,(x1,...,

s Tok—2) =
' _o(z1 +1,..., ap_o + 1)); in terms of ANF

. o
¢k = (@an—1 + 1)(w2r + 1)@'9 5 + (w21

/0 /1
+x2k) ¢ oo + Ton—1T2k9 9503

e forany k > landanyi > 1

+1
902k—902k 2||90 2k— 2||90 2k— 2”90”2k 23

in terms of ANF

. -
©'or = (Tap—1 + 1) (o + 1)@ 95 _ o + (2061

/i ri+1
+221) 0 950 + Tok—1%260 o1 _o;

« ¢/o=1and¢'{ = 0foranyi > 1.

Then, for any & > 0 and any 7 > 0, 5, equals the indicator
of the set of vectors of F#¥ whose Himming weights equal k —i
and k — ¢ — 1.

Proof: We show this by induction on k. It is true for £ = 0.
Let us prove that, if it is true for some £ > 0, then it is true for
kE+1.

—if4 > 1,avector (%1, ..., Togro) whose Hamming weight
equals k£ + 1 — 2 or k — ¢ either equals x00, where x
is a vector of length 2k whose Hamming weight equals
k+1—i=k—(i—1)ork—i=k—(i—1)—1,orequals
210 or 01, where x has Hamming weight k—ior k—i—1,
or equals 211, where = has Hamming weight k —7 — 1 =
k—(i+1)ork —1—2 =k —(7—1—1)—1 Thiscorresponds

1,
to the relation '35 = @'y 1|51 19511951

—ifi = 0,avector (21, ..., Tar12) whose Hamming weight
equals k + 1 or k either equals (2 + 1)00, where 1 is the
all-one vector of length 2k and = has Hamming weight
2k —(k+1)=k—1or2k—k = k, orequals 210 or z01,
where = has Hamming weight k£ or & — 1, or equals =11,
where = has Hamming weight k—1or k — 2. This corre-
sponds to the relation 5.5 = '3[l 5i |5l 31, O

Remark 4: Note that the ANF of <p’ o) 1S easy to obtain, since
@'Y, is symmetric: for every I C {1,. 2k} the coefficient
of the monomial [, ., «; in the ANF of oo is (1) + (M)
[mod 2], and Lucas’ theorem glves then its effective value.
More importantly, the output to ¢’ 2 & 1S quite easy to compute,
with less than 2k additions with carries.

Let us see what transformation on the truth tables of the func-
tions permits, from the value of ¢’ 3 t_2» to obtain the value of
W'5,_o (ie., of the restriction of ¢, to the set of those words
whose two first coordinates are both null—we know that, for
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the other vectors, ¢’ Ok takes null value). The only difference
between 1’5, and ¢4, is in the relations

0 0 0 0 1
¢12k+2 = 1//2k||1//2k||1/1,2k||1//2k

and

0 —0 /0 0 1
<P/2k+2 = ‘Plgk”@/%ll@/z}cll@/?k

When calculating recursively the value of the function ¢ gk at
avector (21, ..., Ta)), We arrive to a situation where np’gl must
be reversed when, reading © = (z1,...,2z9;) from its right-
most position to its leftmost position, the number of times we
encountered zo; = x9;_1 = 1, minus the number of times we
encountered x9; = =91 = 0 equals —1, for the first time.
We then have to complement all of the remaining coordinates
of x and apply recursively the same transformation to these re-
maining coordinates.

For instance, for z = 000100, we start with a null difference
(between the numbers of 11 and of 00), we read 00, so the dif-
ference is —1, and we have to complement 0001 into 1110; after
reading the two rightmost bits of this last vector, the difference
remains null and after reading the two leftmost bits, it is 1. So
we have ¢/0(000100) = ’0(111000). Let us give a few other

examples:
"2(001100) = 1¢(000000)
/2(100000) = 10 (011100)
¢'0(010010) = 1'0(100010)
and
/2(100001) = 1¢(010001).

The inverse of this transformation is easy to deduce: we
apply a similar principle, but each time we have applied a
complementation according to the count on the previous pairs
of bits, we complement according to the count of previous pairs
of bits of the input vector. This gives the following algorithm,

the transformation from (x1,...,x9;) to (y1,...,y2x) such
that o' (z1, ..., z21) = @' (Y1, .-, Y2k)-

Algorithm 1: Tnput = = (z1,...,%2;). Output y =
(Y1---,Y2)

e Initialize y by x;

e count :=0; 7 :
e while 7 > 0 do

—if x; = x;41 = 1 then count := count + 1;

2k — 1;

—else if z; = x;41 = 0 then

* count := count — 1;

* If count := —1 then replace (y1,...,9i 1)
by (y1 +1,...,y,—1 + 1) and apply count := 0.
—1 =1 — 2

The output to this algorithm is the transformation (inverse
of the above discussed transformation) from (z1,...,22;) to
(Y1, --.,y2k) such that ¢’ (z1, ..., z21) = &' (y1,- .., ya2k). So,
to compute ¢’ (1, . . ., xay ), first we run Algorithm 1 to get the
transformation (y1,...,y2x). Then ¢'(y1,...,y2r) computes
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the value for ¢’(z1, ..., z2)). Hence, we have here a very fast
way of computing the output to 1’5, and therefore to ¢, .

Let us see now that the situation with ¢7, is similar. By defi-
nition, for any & and any ¢, 45'2’ .. 18 the concatenation of functions
equal to z1 4+ x2 and z1 + x2 4 1. Hence, it is the direct sum of
71 + 72 and of the function "5, _,, where "5, is the 2k-vari-
able function such that 1"’ equals

0 0 0 1
P ak—allP" 2k 2l 1V 2k —all¥" 252
for every k > 1, 9%, equals
1 ' i+1
L e [N SN [ e

forevery k > 1 and every i > 1 and 4"}, = i + 1 [mod 2].

1

Proposition 8: Let ¢ 5, be the 2k-variable Boolean function
recursively defined by the following relations:
e forany k > 1

0 ;0 .0 0 1
¢"or = 0" 2k—all¢" 2210 26—l 252
e forany k > land anyz > 1

7t

i—1 i i i1
¥ ok = ‘pl/;k—QH‘p/ﬂ?k—?”@”;k—Q”‘P”L ;

2k—2>

e L =i+1[mod 2] '

Then, for any k& > 0 and any i > 0, '3, equals the indicator
of the set of vectors of FZ¥ whose Hamming weights belong to
one of the two sets

{jef0,....;k—i—1}|j=k—i—1mod?2};
{je{k—i,...,2k}|j=k—imod2}.

Proof: Let us show this by induction. This is true for £ = 0.
If it is true for some & > 0 then it is true for k + 1
—ifé > 1,avector (x1, ..., Togt2) whose Hamming weight
belongs to
{je{0,....(k+1)—i—1}|j=(k+1)—i—1mod2}
U{]E{(k—i—l)fz ..... 2k} | j=(k+1)—imod 2}

either equals 00, where x is a vector of length 2k whose
Hamming weight belongs to this same set, that is, to

{je{0,....k—(i—-1)—1}|j=k—(i—1)— 1 mod 2}
U{je{k—(G—-1),....,2k} |j=k— (1 — 1) mod 2}
or equals £10 or z01, where the Hamming weight of =
belongs to
{je{0,....k—i—1}|j=k—i—1mod 2}

Uf{je{k—i,...,2k}|j=k—imod?2}

or equals =11, where the Hamming weight of = belongs to
{(je{0,... . k—=(i+1)=1}|j=k—(i+1)—1mod 2}
u{jel{k—(0G+1),....2k} |j=k— (i +1) mod 2}.

This corresponds to the relation

" " //L+1

17t
¥ 2k+2 = <P 2k ||<P ||<P ||<P
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—if4 = 0, avector (x4, ...,
belongs to

Zok+2) whose Hamming weight

{je{0,....(k+1) =1} |j=(k+1)—1mod 2}
U{]E{(k+1) ..... .2k} | j=(k+1)mod 2}

either equals (z + 1)00, where the Hamming weight of z

belongs to
{je{k,...,2k} | j = k mod 2}
U{je{0,....k—1}|j=k—1mod2}
or equals 10 or x01, where the Hamming weight of x
belongs to
{j€{0,....k—1}|j=k—1mod 2}

U{j e {k,...,2k} | j =k mod 2}

or equals =11, where the Hamming weight of « belongs to
{jef{0,....k—2}|j=k—2mod 2}
U{JE{k—l ..... .2k} | j =k —1mod 2}.

This corresponds to the relation

70

0 1
oz = " Sille ol 219" 21 O

Function 9”5, can be obtained from ¢”,,, by the same algo-
rithm as the one giving 1’5, from ¢’,;.

We now present the final algorithm to compute
¢ok(x1, ..., mor). To compute this we need a preprocessing
step to establish two symmetric functions ¢’ and ¢” on
(2k — 2) variables. As the two functions are symmetric, the
following preprocessing step calculates the short truth tables
(corresponding to each input weight) of those two functions.
Here we use the notation for the output to a symmetric function
s at inputs of weight ¢ as s[é].

Preprocessing:

e for(1 =051 <2k —2;1++)

—¢/lil = ¢l = 0:

Yk -2=¢k-1]=1

e for(l =09 <k —2;4++)

—if (i = k — 2 mod 2) then ¢"[i] = 1

e forG=k—-1;i<2k—2;i++)

—if (i = k — 1 mod 2) then ¢"'[i] = 1
Now the following algorithm calculates ¢(z).

Algorithm 2: Input: © = (21, ...,2Ta).
* Y= (Y1, Y2k-2) — (3,...,
e Apply Algorithm 1 on the 2k — 2 bits vector y.

o w — wi(y).

o Output: (1 + (21 V 22))¢'[w] + (£1 + x2) + ¢"[w].

So, following Algorithm 2, the output to ¢ can be very ef-
ficiently computed. Precisely, the number of elementary oper-
ations which have to be performed for calculating the output
to o is less than 12k, since, for each of the functions ¢},
and ¢}, , it equals the number of complementations and addi-
tions (with carries) to apply Algorithm 1, that is, at most 4k,
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plus the number of additions with carries to calculate the output
to a 2k — 2-variable symmetric function, plus, in the case of
"5, the addition (without carry) of a 2-variable affine func-
tion. This means that we can use ¢2;, in a stream cipher, with
the same efficiency as when we used a function defined by a
lookup table or by an ANF, with log,(12k) variables (in prac-
tice, we shall have to choose ¢5; with fewer variables and to
use it in a secondary construction, to obtain a balanced—and if
necessary resilient—function with a good nonlinearity). For in-
stance, if log,(12k) equals 8, then 2k equals 44; if logy(12Fk)
equals 9, then 2k equals 86, and if log,(12k) equals 10, then
2k equals 172. Recall that, before the existence of algebraic at-
tacks, Boolean functions used in stream ciphers had usually at
most ten variables, for reasons of efficiency (unless they were
peculiar as in the case of LILI-128, but their peculiarities have
been responsible of their weaknesses with respect to algebraic
attacks).

Thanks to the observations above, it may be possible to de-
duce the ANF’s of ¢, , ¢, from those of ¢}, , 5, . But the fact
that we could obtain a fast way of computing the output to ¢oy
is more practically interesting than obtaining its ANF.

B. Different Initializations in Construction 2

A drawback of the function ¢oy, is that it is unbalanced. This
happens since ¢ = x5 is unbalanced. If one starts the con-
struction with ¢ as affine function, then the function ¢o; will
always be balanced as ¢y, = x1 42+ (i+j) mod 2 fori > 0,
7 > 0. Now we present some observations in this regard.

1) Take ¢2 =21 + To.

Case 1: qﬁé =x1 + T2 ifiisevenandqﬁé =1+z1+ 29
if 7 is odd for 2 > 0. These are presented in the
following table.

Case 2: Alsoin brackets, we present the results when qbg =
T1 + X9 ifiisoddandqﬁé =14z +x9ifzis
even for 2z > 0.

function degree nonlinearity resiliency AZ

b2 1(1) 0(0) (1) (1)
P4 2(1) 4(0) (1) 2(1)
s 4(4) 20(0) (1) 3(2)
bs 5(6) 88(28) (1)  4(3)
P10 8(8)  372(148) 1(1)  5(4)

Here, for the first case, ¢o5, is always 1-resilient,
optimal algebraic immunity is achieved and non-
linearity is slightly lesser than what we have ob-
served for Construction 2. However, in the second
case, ¢ has poor nonlinearity and lower Al.
2) Then we have attempted ¢, = 1 and ¢4 = 1 + x5 when
7 is even (respectively, odd) and qﬁé = 1+x1+x9 wheniis
odd (respectively, even). We found algebraic immunity is
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optimal but poor nonlinearity. The results are same for both
the cases so we do not write them separately in brackets.

function degree nonlinearity resiliency AZ
b2 1 0 0 1
o 3 2 0 2
o6 4 12 0 3
os 7 58 0 4
P10 8 260 0 5

3) Take ¢» = =1 and ¢ = 21 + x9, 4 > 0. We find that the

ANF of ¢y, is of the form ¢o, = 21 + 22 F, where F is

a function on 2k — 2 many variables. So, Al will be < 2,

since (1 + x1)(1 4 x2) is annihilator of ¢o, for any k& > 1.

So it seems that just by changing the initializations in Construc-

tion 2, it may not be possible to get dramatically better results.

One may need to attempt for completely different kinds of con-
struction to achieve better parameters.

VI. CONCLUSION

In this paper, the algebraic immunity property of a Boolean
function was studied in great details. We first identified a funda-
mental relationship between the Walsh spectrum and algebraic
immunity of a Boolean function, leading to a lower bound on
the nonlinearity (during the review process of our paper, an im-
provement of this bound has been found by Lobanov [36]); this
question of knowing whether these two criteria were opposite
or not was challenging and this shows that they are not. More-
over, we showed similar relationship with the higher order non-
linearities. We followed with certain enumeration results of in-
dependent annihilators, which have some interest from compu-
tational viewpoint. Then we have studied some existing con-
structions in terms of their algebraic immunity, both theoreti-
cally and experimentally; this was necessary for practical design
of cryptographic functions. Next, we presented a construction
of Boolean functions with maximum possible algebraic immu-
nity and studied the cryptographic properties of the construc-
tion. The constructed functions have high degrees but are not
balanced and have insufficient nonlinearity. However, they can
be used in secondary constructions settling these drawbacks. We
gave an algorithm to compute their outputs, which makes them
as easy to calculate as all the other known (infinite classes of)
functions with best possible algebraic immunity. All of these
other functions are symmetric and present therefore a risk if at-
tacks using this peculiarity can be found in the future. We be-
lieve this makes the functions studied here more interesting for
a use in stream ciphers.

The field is still open in many aspects. To be specific, get-
ting a primary construction with optimum properties in terms
of algebraic immunity and several other cryptographic proper-
ties (balancedness, nonlinearity), and avoiding dangerous pecu-
liarities, looks extremely challenging at this point of time, since
it may provide a more efficient design of cryptographic func-
tions meeting all the necessary criteria for being used in stream
ciphers (however, the question of a fast implementation of the
functions will have to be also addressed). In this consideration,
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the method of construction presented in this paper opens a com-
pletely new way of designing cryptographic functions having
provably optimum algebraic immunity and which can be very
efficiently implemented.
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