NOTES

A NOTE ON WEAKLY DOMINATED EXPERIMENTS

By R. V. RAMAMOORTHI

Michigan State University

and

K. K. ROY

Indian Statistical Institute

SUMMARY. Let $g = (X, \mathcal{A}, \mathcal{P})$ be an experiment. Musemann and Luschgy (1983) showed that if the dimension of g is a non-measurable cardinal, then weak domination of p implies that every measure dominated by p has a support. In this note we give an [example to show that the converse is not true. The example also answers another question raised by Massmann and Luschgy.

1. INTRODUCTION

Let $\mathcal{E} = (X, \mathcal{A}, \mathcal{P})$ be an experiment, where X is a set, \mathcal{A} a σ -algebra of subsets of X and \mathcal{P} a family of probability measures on (X, \mathcal{A}) . \mathcal{E} is said to be weakly dominated if there is a semi-finite localizable measure μ which dominates \mathcal{P} and $\mathcal{P} \subset L_i(\mu)$. See Luschgy and Mussmann (1985) for details.

Let $Ca(\mathcal{E})$ be the set of all bounded measures on (X, \mathcal{A}) . A positive bounded measure ν on (X, \mathcal{A}) is said to have a \mathcal{E} -support if there is an S in \mathcal{A} such that $\nu(S^c) = 0$ and $\nu(S \cap E) = 0$ implies $P(S \cap E) = 0$ for all P in \mathcal{P} .

Define U(2), I(2) by

$$U(\mathcal{E}) = \{ \nu \in Ca(\mathcal{E}) : |\nu| \text{ lins a \mathcal{E}-support} \}$$

$$\Gamma(\mathcal{E}) = \{ v \in Ca(\mathcal{E}) : \forall P \in \mathcal{P}, P(A) = 0 \Rightarrow v(A) = 0 \}.$$

Mussmann and Luschgy (1985) raise the following questions:

- (i) Does V(E) ⊂ U(E) imply E is weakly dominated? (Page 185)
- (ii) Does U(&) = Ca(&) imply & is weakly dominated? (Page 189).

Below we give an example which answers both the questions in the negative. This example first appeared in Ramamoorthi and Yamada (1983).

2. THE EXAMPLE

Let Y be a subset of (0, 1] of cardinality, x_1 . Let $X = Y_n(-1)$

 $\mathcal{A} = \{A \subseteq X : \exists B \text{ symmetric about 0 such that } A \triangle B \text{ is countable}\}\$ $\mathcal{P} = \{P_x : x \in X\} \text{ where } P_x \text{ is the degenerate measure at } x.$

AMS (1980) subject classification : 02B20.

Key words and phrases: Wookly dominated experiment, dimension of an experiment.

If ν is any measure on (X, \mathcal{A}) , then ν is discrete. This follows by noting that \mathcal{A} restricted to Y and -Y gives respectively the power set on Y and -Y and then a theorem of Ulam (1930) gives that ν restricted to Y and -Y is discrete. We thus have

(a)
$$\Gamma(\mathcal{E}) = Ca(\mathcal{E})$$

(b)
$$U(\mathcal{E}) = \Gamma(\mathcal{E}).$$

However $\mathcal E$ is not weakly dominated. If μ is any measure dominating $\mathcal P$ then $\mu(x)>0$ for $x\in X$ and $\{I_{(x)}, x\in Y\}$ will not have a μ -essential supremum in $\mathcal A$.

REFERENCES

LUSCHOY HARALAD and MUSSMANN DIRTER (1985): Equivalent properties and completion of statistical experiments. Sankhyā, 47, Series A, Pt. 2, 174-195.

RAMAMOORTHI, R. V. and YAMADA, S. (1983); On the union of compact statistical structures.

Osaka Journal of Math., 20, 257-264.

ULAM, S. M. (1930): Zur Masstheorie in der allgemenien Mengenlohre Fund Math., 16, 141-150.

Paper received: August, 1985. Revised: February, 1986.