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SUMMARY

In various contexts, several mathematicians have discovered a binomial theorem of the following
form: Let T,, 7, be complex matrices such that T, 7, =¢gT; T,. Then

(T\+T2)" = § )T T *
k=0

and the polynomials @, x(g) are given explicitly. We describe an application of this result in our
work on matrices whose eigenvalues have certain symmetries.

In various contexts, several mathematicians in recent years have discovered
a beautiful binomial theorem:

THEOREM 1. Let T,, T, be (complex) matrices such that
(1) L,T)=qI'T,

for some complex number q. Then for each positive integer n, we have the
binomial expansion

@ (T +T)' =L e @TFT

k=0

where the coefficient a, ,(q) are polynomials in q satisfying the properties
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() @i k(@ = i@ +q"" " Fau i (@) Sfork=12,...m
Qpo=0ppn=1;

3 - A-q@)1-¢") - (1-g" _

@ and® = T - -ai-g) (- 5’

L (iii) degree a, ,(q) = k(n—k).

PROOF. Multiplying (2) by T,+ T, and comparing coefficients we get ().
Then (ii) follows from (i) by induction and (iii) as a simple consequence. ®

This theorem is attributed to several authors in the recent monograph [4,
p. 28]. It was discovered yet again in [3]. We were led to it in the course of our

work on matrices whose eigenvalues have certain symmetries. This application
of Theorem | is described in this note.

The eigenvalues of the p x p matrix

0 1 0 0 « 0
0 0 1 0 -« 0
@ R
0 0 0 0 - 1
|t 0 0 0 - 0 |

are the pth roots of ¢. This symmetric distribution of roots is a very special

instance of the following general situation. Let X be a complex matrix of order
n = pr, having the special form

0 A, 0 0 -+ 0 |
0 0 A 0 - 0
& x| o

0 0 0 0 A
A, 0 0 0 - 0

where A,,..., A, are square matrices of order r. We will call such a matrix a
pXp block cyclic matrix. Let S be the block diagonal matrix

(6) S = diag(/,, wl,, ...,w? '),
where [, is the identity matrix of order r and w is the primitive pth root of

unity. Then S™' XS = wX. This implies that the eigenvalues of X are symmetri-
cally distributed in the following sense: they can be enumerated as

(7 Qi oos s @hy, Ay 0P, 0P,

We call an n-tuple like (7) a p-Carrollian n-tuple and we say that the matrix X
has a p-Carrollian spectrum.
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Note that if a scalar matrix is added to (4) then its spectrum is no longer
p-Carrollian. However, certain diagonal perturbations do preserve this prop-
erty. In [2] Choi proved the following interesting proposition. Let

R A4,

8 Z= ,
® P

where A,, A, and R are r X r matrices such that R commutes with A,. Then the
spectrum of Z is 2-Carrollian. (Note that such a matrix Z is not necessarily
similar to —Z.)

Choi has used this in connection with his work on some K-theoretic questions
about matrices. For us its interest is in the following interpretation. Write

o v=|R
o v=|g

Then Z =X+ Y, where X is a 2 x 2 block cyclic matrix. We saw above that the
spectrum of X is 2-Carrollian and Choi’s proposition says that this property is
preserved when we perturb X by adding to it the block diagonal matrix Y, pro-
vided R commutes with A4,.

It turns out that this phenomenon occurs for all values of p. More precisely,
we have:

THEOREM 2. Let X be a px p block cyclic matrix as in (5) and let Y be a
block diagonal matrix of the form

(10) Y= o oo,

0 0 0 - wf'R

where w is the primitive pth root of unity. Let
(11) Z=X+Y.
Suppose R commutes with A}, Ay, ...,A,_|. Then the spectrum of Z is p-

Carrollian.

In an earlier paper [1] we gave a proof of Theorem 2 based on the block
LU-decomposition often used in numerical analysis. Choi had used a very
similar idea in his proof [2]. We will now give a proof based on Theorem 1.

PROOF OF THEOREM 2. We will first prove the theorem in a special case:
assume that R commutes with all the matrices A}, A4,,...,A4,. In this case the
matrices X and Y given by (5) and (10) satisfy the commutation relation

(12) XY =wYX.
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From (3) one sees that

ap ((w) = 0 forl<k=sp-1.
Hence, by Theorem 1
(13) (X+Y)P=XP+Y?

Now note that the matrix X” is block-diagonal and its diagonal entries are
AgyAsy + Aspy» Where g runs over all cyclic permutations of {1,2,..., p}.
So, by (13) the matrix Z” is also block-diagonal. Hence Z™ is block-diagonal
for m=p,2p,3p,.... We claim that

(14) trZ™=0 if m#p,2p3p,...

To see this note that X* always has zero blocks on its diagonal if & is not an
integral multiple of p. Hence tr Y/ X*=0 for all j and for all k#p,2p,.... If
k=rp then X k is block-diagonal whose diagonal entries are the rth powers of
AgyAsq " As(p)» 0 Tunning over all cyclic permutations of {1,2,...,p}. So,
if j is not an integral multiple of p but & is, then again tr Y/X*=0. So, the
statement (14) follows from (2).

Now, it is a consequence of Newton’s identities connecting elementary sym-
metric polynomials and sums of powers that if E and F are two n X n matrices
with tr E¥=tr F¥, 1<k < n, then E and F have the same eigenvalues. See, ¢.g.,
(5, p. 44]. Hence, (14) implies that the matrices Z, wZ,...,w"" 1Z all have the
same eigenvalues. This completes the proof of the special case of the Theorem.

In the general case, when R commutes with 4,,...,4, , but not with 4,,
the above proof can be modified as indicated below.

Instead of (12) we now have a relation

(15) XY =wYX+E,

where E is a p x p block matrix all whose block entries are zero except the one
in the bottom left corner, and this entry is E,=A,R-RA,.

At the next step, we find that now Z? is not necessarily block-diagonal.
However, it still has a special form: it turns out to be a block lower triangular
matrix. To see this note that if l=v< pand if J is a product of v matrices each
of which is a p x p block cyclic matrix then J has a special block structure: all
blocks of J are zero except those which are on the vth superdiagonal or on the
(p—v)th subdiagonal. (The case v =p says that a product of p such matrices
is block-diagonal.) Now consider a typical mixed term C in the expansion of

(Y+X)P. If X occurs k times as a factor in C, where 1<k=<p-1 and if C is
not yet of the form Y” ¥ XX then we can write

(16)  C=PXYQ,

where P is a product of v block cyclic matrices. Q is a product of 4 block cyclic

matrices and v+u =k —1. One application of (15) converts the equation (16)
into

C = wPYXQ+ PEQ.
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The matrix PEQ in its block form is strictly lower triangular, as can be verified.
Repeated applications of (15) finally bring C to the form

(17 C=w"YP *Xks+T,

where T is a strictly lower triangular block matrix and # is an integer equal to
the number of times a letter Y occurring in the original form (16) is inter-
changed with a letter X using the rule (15) till we reach the final form (17). Had
E been zero our commutation rule (15) would have reduced to (12) and our
expansion for (¥ + X')? would have been given by Theorem 1. Hence, we must
have

p
(18) ZP=(Y+X)P =Y @, (@)Y XP ¥4+ S=YP+XP+S§,
o D

where § is a strictly block lower triangular matrix. In other words Z” is a
block lower triangular matrix as we claimed, and its diagonal entries are
RP+ Ay)Ag) - Ag(p) Where g runs over cyclic permutations of {1,2, ..., p}.

The statement (14) remains true in this case; the details of its verification are
omitted. As before, the general case of the Theorem follows. m

Finally, we make a few remarks on Theorem 1. The coefficients «, ,(q) are
called g-binomial coefficients in [4] and, in a more suggestive notation, are
denoted by [Z]q. Following the analogy with the usual binomial coefficients
one may wonder whether a similar multinomial theorem can be proved. Indeed,
one can prove that if 7,,7,,...,7,, are matrices satisfying the commutation
rules

(19  T;Ti=qTT; forj>i,
then we have

n . . .
L IR B L o
Jlsjz, '1.]m q

where the summation is over all choices of indices j,..., , such that
Jj+ - +j,=n, and the coefficients occurring in the above expansion are de-
fined as

n n n-—j n—(j1+jr+ - +jn_
1) [ - | } =[: } [ .11] [ (U1 J? Im 2)} .
.]1»./29---’Jm q Jilg J2 q Jm-1 q

A little more generally we can prove using Theorem 1 that if 7\, T5,...,T,, are
matrices satisfying the commutation rules

(22) T.T,=q,T;T; forj>ii=12,...,m-1,
then we have
(23) T+ +T)' =L oy i G0 s VT T - T,

where the summation is over all indices /i, ..., J,, such that j, +---+j,, =n and
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the coefficients are defined as

®n;jjneo s s e - 1)

(24) m\iﬂ] ["‘j]} ["”(j1+j2+"'+jm 2)
jl q jZ q: (

./m—l 3w

We wonder whether a neat and simple multinomial theorem can be obtained for
matrices Ty, 75,...,T,, which obey a more general commutation rule

(25) I;Ti=q,T;T,

G forj>is lsism-1.

Since the g-binomial theorem and the g-binomial coefficients turn up in diverse
problems in combinatorics, number theory, probability, geometry, analysis and
physics [4, p. 29], there are likely to be uses for a similar multinomial theorem.
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