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Abstract—The shear-sort algorithm [19] on an SIMD mesh model
requires 44N + O(W) time for sorting N elements arranged on a

JN x /N mesh. In this paper, we present an algorithm for sorting N
elements in time O(N1 4) on an SIMD Multi-Mesh architecture, thereby
significantly improving the order of the time complexity. The Multi-Mesh
architecture [23], [24] is built around n2 blocks, where each block is an
nx nmesh with n= N1/4, so that each processor will uniformly have
four neighbors in the final topology.

Index Terms—2D mesh, Multidimensional mesh, wrap-around
connection, SIMD, MIMD, sorting, shear-sort.
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1 INTRODUCTION

SEVERAL interesting results on the complexity of parallel sorting
are given in the literature [1 ] [2], [3], [4], [5]. Odd-even Merge-Sort
can sort N numbers in O(Iog N) steps on an N-node hypercube [6],

as well as on bounded-degree derivative networks of the hyper-
cube, commonly known as hypercubic networks [7], such as but-
terfly, shuffle-exchange graph, de Bruijn graph, Benes network,

and cube-connected cycles (CCC). The O( ’"ghzﬁlj ) step algorithm

for sorting M items on an N-node hypercubic network is described
in an architecture-independent setting by Preparata in [8] and was
implemented by Nassimi and Sahni in [9]. Algorithms for sorting
M packets on an N-node hypercubic network when M > N are
described in [10], [11], and [12]. The O(log N log log N) step algo-
rithm for sorting on hypercubic networks [13] is based on merging
JN lists of /N items. Randomized O(log N)-step algorithm for
sorting on hypercubic networks are described in [14], [15], and [16].

Thompson and Kung [17] developed an O(m) time sorting
algorithm using a mesh connected SIMD parallel computer with-

out wrap-around connections. Schnorr and Shamir gave a 3JN
time algorithm on an MIMD mesh model [18]. Finally, Scherson

and Sen came up with an optimal 44N + O(JN ) step algorithm on
an SIMD mesh model and a 3N step algorithm on the more
powerful MIMD model [19]. Leighton’s Column-sort algorithm [7]
is a seven-phase algorithm that sorts N items in an r x s mesh into
column-major order, where r > s. Algorithms for optimal sorting

on a multidimensional mesh using the MIMD model were pro-
posed by Kunde [20], [21]. In a 4D mesh, the required steps on his

model will be O(Nw) for sorting N elements. In [7], Leighton has

; : : 1/k
given an algorithm that sorts N elements in O(N ") steps on a

k-dimensional N'*sided array. The shear -sort algorithm de-
scribed in [19] was extended by Corbett and Scherson [22] (for
both SIMD and MIMD models) to sort N = nk elements, on a k-

: y . k
dimensional mesh having n  nodes.
(k? k) nlogn

2

The sorting time was

+ O(nk). This appears to be, so far, the best known algo-
rithm for sorting on a k-dimensional mesh, using the basic principle
of shear-sort from [19]. Thus, in a 4D mesh without wrap-around
connections (using SIMD model), this algorithm in [19] would re-
quire approximately 6n log n + o(n) steps to sort n' elements. Pres-
ence of wrap-around connections along all four dimensions would
not, however, improve the order of the time complexity.

In this paper, we propose an algorithm for sorting N = n' ele-
ments using the SIMD model of [19] by a Multi-Mesh network
[23], [24]. The Multi-Mesh network is different from the multidi-
mensional mesh proposed in [22]. A Multi-Mesh (MM) network
having n" processors is built around n’ meshes (blocks) of size nx n
each. The degree of each processor is four for n > 2, which is same
as that in an Illiac IV architecture, whereas the degree of each
processor in a 4D mesh with n' nodes is eight (having wrap-
around links). The time complex1ty of the first versmn of our pro-
posed algorithm is O(N Iog N) as opposed to O(N 2) on a 2D
mesh [19]. For N = 4,096, our algorithm requires around 1,070
compare-exchange/routing steps, whereas the 2D shear-sort
would require about 1,310 compare-exchange/routing steps.

We have then improved the order of our proposed algorithm to

1/4
O(N")
for N > 4,096 elements. To be precise, in this modified version, the
+ o(Nl/4) steps the second
stage of merging can be done in 39N"* + o(N
+ o(N1/4). Moreover, the topol-

ogy of the MM network also provides us with the flexibility of

. This modified algorithm outperforms the 2D shear-sort

first stage of merging requires 15N

) steps, and the

overall time complexity is 58N
1) sorting N independent sets of N'? elements each, in
AN o(Nm) time and

2) sorting NV

19]\]1/4

. 3/4 .
independent sets of N elements each, in

0(N1/4) time.

2 BAsIC CONCEPTS AND TERMINOLOGIES

The Multi-Mesh (MM) network consists of n” meshes of size n x n
each, which themselves are again arranged in the form of an n x n
matrix. Each constituent n x n mesh in this matrix is termed as a
block. In a 2D mesh, each of the four corner processors is of degree
two and the remaining boundary processors are each of degree
three. In the MM network, these corner and boundary processors
of different blocks are interconnected in a suitable manner as de-
scribed below, so that the degree of each processor is four for n > 2
and the diameter of the network is 2n. (The proof that the diameter
of the MM network is upper bounded by 2n was given in [23], and
that it is exactly equal to 2n has been given in [24].)

Each block can be umquely identified using two coordinates o
and f as B(e, f). Each of the n' processors can be uniquely iden-
tified using a four-tuple of the coordinate values. For example,
P(e, B, x, y) is a processor lying at the xth row and the yth column
of the block B(e, f). Each of these four coordinates may assume a
value between one and n (both inclusive).
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A processor designated as P(o, B, x, y) is connected to its four
neighbors given by P(e, B, x = 1, y + 1), if they exist, using the in-
trablock connections. Additional connections termed as interblock
links, among the boundary/corner processors of different blocks,
are given in the following way:

1) P(e, B, 1, y) is connected to P(y, 8, n, &), where 1 <y, o, B< n.
As a special case, for a = y, these links connect two proces-
sors in the same block. These links are called the vertical in-
terblock links.

2) P(e, B, x, 1) is connected to P(e, x, B, n) where, 1 <x, o, < n.
For B = x, these links connect two processors in the same
block. These links are called the horizontal interblock links.

All of these links are two-way connections. An example of a Multi-
Mesh network for n = 3 is given in Fig. 1, where all the interblock
links are not shown.

=
l
W

\ry

Fig. 1. An example of a Multi-Mesh Network for n = 3. (All interblock
links are not shown.)

We refer to the directions corresponding to the coordinate val-
ues y, x, &, and f as column, row, third, and fourth dimensions,
respectively. Apart from the row (R) and column (C) sort used in a
2D mesh, we introduce the idea of sorting in two more direc-
tions—a T-sort for sorting the elements across the third dimension
and an F-sort for sorting the elements across the fourth dimension.
Let D(e, B, x, y) denote the data element residing in the processors
P(o, B, x, y).

DEFINITION 1. By a C operation, we mean independent column sorts for
all the blocks in parallel, where the direction of column sort of all
the columns within a block is nondecreasing downward for even
values of o + 8 and nondecreasing upward for odd values of o + J3,
i

D(e, B 1,y) <D(e, B,2,y) <--- <D(e, B, n, y), if o + B is even,
and

D(e, B,1,y) 2D(e, B, 2,y) 2---2D(ex, B, n, y), if  + B is odd.
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DEFINITION 2. By an R operation, we mean independent row sorts for all
the blocks in parallel, where the directions of row sorts of two con-
secutive rows are opposite within a block (i.e., if the first row is
sorted from left to right, then the second row is sorted from right
to left and so on); also, the same rows of two consecutive blocks are
sorted in opposite directions. In particular, we assume that, when
o+ Biseven,

D(e, B,x,1) <D(e, B, x, 2) <--- <D(e, B, x, n), for odd x,
and

D(e, B, x,1) 2D(e, B, x,2) = --- > D(e, B, x, n), for even x.
When a + [ is odd, the above inequalities will be reversed.

log n iterations of such R and C operations followed by an R op-
eration sort the nx n mesh in a snake-like row-major ordering [19].

Fig. 2a is an example of a 4 x 4 mesh containing e (= 16) unor-
dered elements. Fig. 2b is the sorted sequence after shear-sort. The
proof of the correctness of the shear-sort algorithm [19] onan nx n
mesh was based on the 0-1 principle [24], with input data elements
taken from the set {0, 1} only. The correctness of the proposed al-
gorithm will also be proved using the 0-1 principle and, hence-
forth, all the input data elements will be considered to be taken
from the set {0, 1}. When an input data element is either 0 or 1, the
n x n mesh sorted in snake-like ordering will appear as given in
Fig. 2c. We shall use the concept of “clean” and “dirty” rows as
mentioned in [18], [19]. Let us denote a “clean” row containing all
Is by , a “clean” row containing all Os by ¢, and a “dirty” row
containing Os and 1s by . Hence, in terms of ¢, 6, and ws, a sorted
block can be represented by a column of ¢, §, and ws containing, at
most, only one 8. In general, 0s and 1s may be intermixed in any
order in a dirty row. But, in a sorted block, 0s and 1s in a dirty row
are arranged as a sequence of consecutive 0s followed by consecu-
tive 1s. In other words, in a dirty row of a sorted n x n mesh, the
data value changes from 0 to 1 (for increasing order) only once.
We denote a dirty row in which the data value changes from 0 to 1
in the left to right direction (e.g., ....00011..) by the symbol & ",
whereas the dirty rows where the ordering is in the opposite di-
rection (e.g., ...11100...) will be denoted by & .

149 |13 1|2 3|4 0o/o0|0 |0

2|6 |10 |14 8 |7| 6|5 o(o0jo0 |0

317|115 9 | 10 11| 12 011 |1

5|18 (1216 16 | 15]| 14| 13 111 |1
(@) (b) (©

Fig. 2. Shear sort (a) unordered elements in an n x n mesh, (b) a
snake-like row-major sorted sequence, (c) sorted sequence with ele-
ments from {0, 1}.

DEFINITION 3. An ordered block B(c, P) is defined as an even block,
where o + B is some even number. In such a block, the snake-like
sorted sequence starts from the leftmost end of the first row and
ends at the nth row.

DEFINITION 4. An ordered block B(c,, p) is defined as an odd block, where
o + B is some odd number. In such a block, the snake-like sorted
sequence starts from the nth row and ends at the leftmost end of
the first row.

Consider n’ data elements, denoted by D(*, B, * *), residing at n
blocks (i.e., n x n meshes) for a fixed value of , where “*” indicates
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all possible values from one to n. If we consider a set of all the data
elements for a given (x, y) value from n such blocks, then there will
be n” such sets of n data elements each, i.e., each set consists of data
elements D(*, B, x, y) for a fixed value of 3, x, and y each.

DEFINITION 5. A T operation sorts each set of n data elements D(*, B, x, y)
in parallel over the third dimension, so that,

D(L, B xy)<D@, B x y)<--<D(n, B, x ), if Bis odd,

and

D(1,8,x,y)2D@2, B, x,y)2---2D(n, B, x, y), if B is even.

Note that there is no direct link among the respective proces-
sors in the MM network to effect the T operation. Hence, the T
operation is accomplished in three stages. The first stage consists
of n shifts of data elements along the vertical interblock links (as
shown in Fig. 1), so that the ith columns of the blocks B(*, f), for a
given f, i.e., of all the blocks B(e, f), 1 < a < n, are brought to the
block B(i, f). The situation is explained in Fig. 3 with the help of an
example for n = 3. Data elements A,, A,, and A; originally resident
on the blocks B(1, 1), B(2, 1), and B(3, 1) will now appear in the first
row of block B(1, 1). Similarly, B,, B,, and B, are brought to row 2
of block B(1, 1), and so on. The T operation actually involves the
sorting of the sequences (A}, Ay, A;), (By, B,, By), etc., each of which
is now available in a single row. In the second stage, all the rows
in each block for a particular  will be sorted in the same direction
(this is different from the R operation of Definition 2, where the
consecutive rows of the same block have been sorted in different
directions), but the direction of row sorts will alternate for con-
secutive 8 values. The third stage is just the reverse of the first
stage, in which the sorted data elements are transferred back to the
ith columns of the respective blocks having the same f value. In
general, the first and the third stages of T operation require a total
of n + n = 2n routing steps. The second stage can be completed in n
parallel steps of odd-even transposition sort. Thus, the T operation
needs a total of 3n steps.

After Step 3

Initial Data Setup After Step 1 After Step 2

Fig. 3. Three steps of data movements in the first stage of T operation.

DEFINITION 6. Consider the n elements D(e, *, x, y) for a given set of
values of o, x, y. An F operation sorts each such set of n data ele-
ments in parallel over the fourth dimension, so that

D(, 1, x,y) <D(r, 2, x,§) <--- <D(et, , X, y)

Again, there is no direct link among the processors whose data
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elements are to be sorted using F operation. Hence, the F operation
is also accomplished in three stages, just like the T operation in a
total of 3n steps.

DEFINITION 7. A 3D block is a sequence of alternate odd and even sorted

blocks for a given value of 3, such that

1) for odd B, all the elements of the sorted block B(ct, B) are less
than or equal to all the elements of the sorted block B(c + 1, ),
for1 < a< n, and

2) for even B, the ordering sequence will be just the reverse.

We call it a block-major snake-like ordering. Thus, in a block-

major snake-like ordering,

D(,B,**<D(@2,B,** <---<D(n, 8, * %), for odd values of B
and
D(, B **2D@2,B**=---2D(n, B,**), for even values of .

DEFINITION 8. A 4D Block is a sorted sequence of n' elements consisting
of n consecutive 3D blocks, where all the elements of the first 3D
block are less than or equal to all the elements of the second 3D
block, all the elements of the second 3D block are less than or equal
to all the elements of the third 3D block, and so on, i.e.,

D(* 1, % <D(*2,**<---<D(* n*%.

Fig. 4 shows an example of a 4D block for n = 3, along with its
constituent 3D blocks.

First Second Third
3-D Block 3-D Block 3-D Block
-— 0 0 0} L4746 45} L47 47 50}
1 0 0 41| 41 | 42 51| 51|51
{ 1 1 1] { 40| 37 | 37 | {52 55 | 56 |
— 3| 3 2} — 28| 28 29} | 64| 64 62}
{ 2 202 { 33|33 |32 { 60 | 60 |61
1|1 1 [ 33|34 |34 57|57 |57 [
L1 6|9 10} L 27|26 |25 } L] 66| 66 |67 }
14| 12| 11 { 22123 |23 { 74| 72 |68
{ 15| 15| 16 18| 18 |17 7479 |79 —

| ]

Fig. 4. The final order of elements in a 4D block.

The underlying principle of sorting n' elements is the same as
column shearing of an n x n mesh as used in the shear-sort algo-
rithm [19]. First, the proposed algorithm will sort each individual
n x n mesh in parallel using shear-sort in a snake-like row-major
ordering. There are n’ such meshes or blocks. In the second step,

we shall merge n such blocks corresponding to a given f-value to
make a single 3D block. There will be n such 3D blocks. If we
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Fig. 5. (a) sorted blocks of Os and 1s, (b) sorted blocks in terms of ¢, J,

and o, (c) blocks after log n steps of T-C operations, (d) blocks in
terms of ¢, 6, and win a 3D block.

imagine n rows of a sorted block as n sorted elements, then merg-
ing n such blocks will be similar to the merging of n sorted rows in
a 2D mesh. In a sense, we are now extending the notion of an ele-
ment, i.e., one row of a sorted block is now considered to be one single

element taken from the set {¢, §, @} with the ordering ¢ < § < ®.
A sorted 2D block will now appear as (¢¢ -+ ¢dw -+ ®) T where T
denotes the transpose. Also, consecutive 2D blocks will be sorted
in alternate directions in terms of ¢,  ,and . An example of four
individually sorted 2D blocks of size 4 x 4 with elements from the
set {0, 1} and its equivalent representation in terms of ¢, §, and @

have been shown in Figs. 5a and 5b, respectively, for any odd o

With this extended notion of elements, the T-sort on the third
dimension will be equivalent to the column sort [19] on a 2D mesh.
Also, note that the corresponding columns in two consecutive
blocks are sorted in alternate directions. Therefore, for merging n
2D blocks for a given f-value, we need log n iterations of T-C op-
erations, after which the resulting structure of the blocks B(1, 1),
B(2, 1), B(3, 1), and B(4, 1) is shown in Fig. 5c. Since there are n
number of §s and they may be distributed over, at most, two
blocks, we need 4n + o(n) steps to completely sort these two
blocks. We will then show that a sequence of T-C-R-C-R opera-
tions will generate a 3D block containing only one 6. Corre-
sponding to the example of Fig. 5a, the resulting structure of
blocks B(1, 1), B(2, 1), B(3, 1), and B(4, 1) after these steps is shown
in Fig. 5d. Note the increase in the number of ¢s in Fig. 5d from
that in Fig. 5c after the Js in Fig. 5c are further sorted.

The final step is to merge these n 3D blocks into a single 4D
block. For that, we further extend our notion of an element by
calling a column of n ¢s as @, a column of n ws as Q, and a column
of n elements taken from the set {¢, 6, ®} as A. Thus, the blocks in
Fig. 5d can be represented as @, @, A, Q, respectively. In general,
we assume that ¢s, §s, and @s may be intermixed in any order in a
A. But, in a 3D block, the only dirty block A contains a sequence of
consecutive ¢s followed by a single & (either 6" or §7) and, finally,
a sequence of consecutive ws. We can now consider a 3D block as
a column of elements taken from the set {®, A, Q} with the order-
ing ® < A < Q. Merging n such sorted 3D blocks will then be simi-
lar to the merging of n sorted rows in a 2D mesh containing these
further extended elements. The F operation will now be equivalent
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to a column sort in a 2D mesh and a T operation acts like a row
sort in a 2D mesh. We show later that we need log n iterations of F-
T operations, followed by a fixed sequence of operations for
merging two 3D blocks, so as to generate a 4D block. The sorting
algorithm is described in the next section.

3 ALGORITHM FOR SORTING n' DATA ELEMENTS

3.1 The Algorithm Multi-Sort

Step 1: 2D SORT: (Sorting over row and column dimensions only)
Sort each of the n” blocks independently in parallel in row-major
snake-like ordering, using the optimal algorithm in [19], so that
two consecutive blocks in any row or any column of processor
blocks are sorted in reverse directions.

Step 2: 3D SORT: (Sorting over row, column and the third dimen-
sion) All the n sorted blocks in a column of processor blocks, des-
ignated as B(i, f), 1 <i< n, are merged to produce one sorted 3D
block, consisting of n’ sorted elements, in the block-major snake-
like ordering. For this merging, perform log n iterations of T-C
operations, followed by a 2D sort and a sequence of T-C-R-C-R
operations. Consecutive 3D blocks are sorted in reverse directions.

REMARK. The above steps of the algorithm are quite distinct from the 3D
sort described in [7] which is based on sorting in all the three
planes—RC, CT, and TR. On the other hand, the algorithm
Multi-Sort does not require sorting in the TR plane.

Step 3: 4D SORT: (Sorting over all the four dimensions) Merge the n
3D blocks to produce a 4D block of n' data elements. For this merg-
ing, perform log n iterations of F-T operations followed by Steps 1
and 2, and then a sequence of F-T-C-R-T-C-R-C-R operations.

To prove the correctness of the algorithm Multi-Sort, we pro-
ceed as follows:

: After egcecuting Step 1 of the above algorithm, there will be at most
n” &sin n different blocks. We now show that there will be at most
one din any 3D block after the completion of Step 2, and, finally, after
executing Step 3, we will be left out with at most only one &.

LEMMA 1. The n sorted columns of ¢, 6, and ws corresponding to n
sorted blocks in a column of processor blocks, can be sorted to form
a 3D block after log n iterations of T-C operations, where the &
may be distributed over at most two columns.

PROOF. The proof is similar to that given in [19] for sorting two
dimensional mesh by log n iterations of column and row
sort. Referring to Fig. 5c, the direction of sorting of ¢, §, and
ws (in a column) alternates in consecutive blocks of a 3D
block. Hence, the C operation plays the same role as that of
a row sort in a 2D mesh. But, the T sort within a 3D block
sorts the elements in increasing order, and, hence, it plays
the same role as that of the column sort of 2D shear sort.
Hence, after log n iterations of T-C operations, all the ¢, J,
and o s will be sorted in increasing order, so that the ds
(which are at most n in number) will be distributed either
over a full block or over two consecutive blocks. O

To sort the two blocks containing d's individually, we need a
2D sort leaving at most two Js in the two blocks. Then, a T opera-
tion will clean one of the blocks (note that two Js facing each other
in consecutive blocks will appear as § and 6", respectively, and,
hence, will be reduced to just one J after the T operation) and after
that, only one block may contain at most two §s. Next, a sequence
of C-R-C will reduce these two Js to at most one d, where the latter
C should span only over two consecutive rows, and, finally, an R
operation sorts the corresponding row. In view of these argu-
ments, we have the following theorem.
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THEOREM 1. log n iterations of T-C operations followed by a 2D sort and
a sequence of T-C-R-C-R operations merge all the n sorted blocks
existing in a column of processor blocks to form a single sorted
chain, i.e., a 3D block.

LEMMA 2. log n iterations of F-T operations over n 3D blocks will result
in a sorted sequence of ®, A, and Q, where the As may be distrib-
uted over, at most, two 3D blocks.

PROOF. Similar to Lemma 1. Here, instead of ¢, 6, o, we will take
®, A, and Q as elements. Since 3D blocks are sorted in alter-
nate directions and, in the 4D block, all the elements will be
in nondecreasing order, F and T operations are equivalent to
the column and row operations, respectively, of the 2D sort.[J

To sort the two 3D blocks containing the As individually, we
first use a 2D sort, followed by a 3D sort, so that there will be only
one A in each 3D block and each such A may contain at most one 6.
Then, an F operation will clean one of the 3D blocks. A T operation
will bring the two As in consecutive positions. A C operation fol-
lowed by an R operation will arrange them appropriately so that
the next T operation will reduce these two consecutive As to one.
Note that, in this single A, there may be, at most, two s, which
will be reduced to only one d by C-R-C operation, and, finally, an
R operation will sort this &.

In view of these arguments, we have the following theorem.

THEOREM 2. log n iterations of F-T operations followed by a 3D sort and
a sequence of F-T-C-R-T-C-R-C-R operations merge all the n
sorted 3D blocks to form a single sorted chain, i.e., a 4D block.

3.2 Timing Analysis

Step 1 can be completed in 4n + o(n) time. Exploiting the fact that
the span of T operation is halved in each iteration of Step 2, the
actual time taken for log n iterations of T-C will be equal to 3n log n

+ 2n — 1, where we assume that compare-exchange of two ele-
ments requires one unit of time. Noting that the T operation fol-
lowing the 2D sort needs to span over only two consecutive proc-

essor blocks, Step 2 can be computed in (3n log n + 2n—1) (for log n
iterations of TC) + (4n + o(n)) (for 2D sort) + (2n + 2) (for T opera-
tion) + (n + n + 2 + n) (for C-R-C-R) = (3n log n + 11n + 3) time.
Similarly, step 3 is accomplished in (5n log n + 2n — 1) (for log n
iterations of FT) + (4n + o(n)) (for 2D sort) + (3n log n + 11n + 3) (for
3D sort) + (2n + 2) (for F operation) + 3n (for T operation) + (n + n
+(@2n+2)+n+n+2+n) (for C-R-T-C-R-C-R) =8n log n + 29n + 8
time. The overall time complexity of the above algorithm is, there-
fore, 11 n log n + O(n); to be precise, the more accurate time com-

plexity comes out to be 11n log n + 44n + o(n) = 2.75 N

O(Nl/4

The above discussions lead to the following theorem.

log N +

), where N = n' is the total number of elements to be sorted.

THEOREM 3. Algorithm Multi-Sort sorts N = n' elements in 2.75 N*'*
log N + O(Nm) time.

REMARK. If we assume that each compare-exchange and routing step
take the same amount of time, then, for N = 2'* and 2'° elements,

the algorithm Multi-Sort needs roughly 1,070 and 2,270 compare-
exchange/routing steps, respectively. This may be compared with

1,310 and 4,740 compare-exchange/routing steps for sorting 2"
and 2'° elements, respectively, using a 2D shear-sort having time
complexity aN"? + o(N”® log N).

4 CRITICAL ANALYSIS OF DATA MOVEMENTS

We can further improve upon the order of the time complexity for
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sorting by a slight modification of our algorithm. We observe,
from Fig. 3, that, after stage 1 of the T operation, all the elements in
a TC plane will appear in a single 2D block. If we now modify
stage 2 of the T operation as complete sorting of each individual
2D block, then the purpose of log n iterations of T-C operations, as
indicated in Lemma 1, can really be achieved in n (stage 1)+ (4n +
o(n)) (modified stage 2) + n (stage 3) steps = 6n + o(n) steps. The
subsequent 2D sort and T-C-R-C-R operations require (4n + o(n))
+(2n+2)+n+n+2+n=9n+ 4 + o(n) time. Therefore, the total
time required for 3D sort is 15n + o(n).

Similarly, log n iterations of F-T operations can be replaced as
follows: First, we perform the stage 1 of the T operation followed
by stage 1 of the F operation. It can be verified that, after these two
stages, all the elements in an FT plane will appear in a single 2D
block. We now sort each individual 2D block, followed by stage 3
of both T and F operations. Thus, the effect of log n iterations of F-T
operations can be achieved in n (stage 1 of T operation) + n (stage 1
of F operation) + 4n + o(n) (modified stage 2 of F and T operations)
+ n (stage 3 of F operation) + n (stage 3 of T operation) steps = 8n +
o(n) steps. Hence, the total time required for the modified version
of step 3 of the algorithm Multi-Sort turns out to be (8n + o(n)) +
(4n + o(n)) + (15n + o(n)) + (2n + 2) (for F operation) + Bn+n+n+
2n+2) +n+n+ 2+ n) (for T-C-R-T-C-R-C-R) = 39n + o(n). The
overall time complexity of the modified algorithm, therefore, re-
duces to 58n + o(n).

We now state the following theorem.

THEOREM 4. N (= n4) elements can be sorted on the Multi-Mesh net-
work in a total of 58N1/4 + o(N 1/4) comparison-exchange and
routing steps.

For N = 216 elements, this modified Multi-Sort algorithm re-
quires 2,652 compare-exchange/routing steps, whereas the 2D
shear-sort takes 4,740 compare-exchange/routing steps to sort the
same number of elements. In general, this modified Multi-Sort
algorithm outperforms the 2D shear-sort for N > 4,096 elements.

5 CONCLUSION

We have proposed an algorithm for sorting N elements on the Multi-
Mesh topology in O(Nl/4 log N) comparison-exchange/routing steps
and then improved its time further to O(Nw) steps. This time
complexity may be compared with the AN"? + O(I\I3 o log N) com-
parison-exchange steps and O(N3 /8) routing steps in the shear-sort
algorithm [19] on a 2D mesh, having almost the same number of
links as that of the Multi-Mesh topology. Further investigations
are being carried out to reduce the large constant associated with
the O(N1/4) time complexity of the improved version of our algo-
rithm. It can also be worth investigating to find an appropriate
mapping of the Leighton’s Column-Sort algorithm [7] on the MM
network.
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